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a b s t r a c t

In the era of “Big Data”, a challenge is how to optimize our use of huge volumes of data.
In this paper, we address this challenge in the context of a public health surveillance system
which identifies disease outbreaks using individual and population health indicators. Our
goal is to automate and improve the accuracy of the selection process of the health
indicators, a process which is data-intensive and computationally expensive. The health
indicators selection process traditionally has been carried out manually by public health
experts in collaboration with health data providers. In particular, we present an approach
for identifying sets of over-the-counter (OTC) medicine products whose aggregate sales
correlate optimally with aggregate counts of emergency department (ED) visits. Towards
this goal, we propose an OTC Analytics Appliance which utilizes a distributed search engine
to efficiently generate time series of time-stamped records and supports “plug-and-play”
search and correlation functionalities. Using the OTC Analytics Appliance with the Pearson
correlation coefficient function, we evaluate Brute-force search, Greedy search, and
Knapsack search for their ability to select the optimal or suboptimal set of OTC products
automatically. Our results show that greedy search is the most preferable, producing a set of
OTC products whose sales that correlate optimally or near optimally to ED visits, while
achieving acceptable search times with large datasets. Also, our evaluations show that our
approach using the greedy search can be potentially used to efficiently identify different
optimal OTC medicine products for detection of different types of disease outbreaks.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

An outbreak detection system is a public health surveil-
lance system used for identifying increases in the incidence
rate of a disease. A Syndromic Surveillance system is a type
of outbreak detection system that monitors the health
status of a community and identifies outbreaks using
individual and population health indicators. Those health
indicators are available before a confirmed diagnoses or
laboratory confirmation [1]. Syndromic Surveillance sys-
tems have used various data sources as health indicators,
including over-the-counter (OTC) medication sales, emer-
gency department (ED) chief complaints, school absenteeism
data, and web search queries [2–4]. Among these, ED data
generally serves as the core data source of many Syndromic
Surveillance systems such as BioSense [5] and RODS [2].
Researchers have shown that common outbreaks can be
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detected 1–2 weeks earlier with ED data than through
conventional disease reporting methods [6].

A common methodology employed in Syndromic Surveil-
lance systems is to aggregate health-related temporal events
into time series that are analyzed algorithmically for the detec-
tion of outliers. The intuition of using OTC medication sales is
that sick individuals typically purchase some OTC medications
to treat themselves before seeing a doctor. For example, in an
Syndromic Surveillance system using OTC medication sales as
an indicator to detect influenza outbreaks, the epidemiologist
would analyze a time series of the daily sales of all cough
syrup, thermometers, and fever reducers in a specific geo-
graphic region. If daily sales of these products exceed some
threshold (e.g., three times the standard deviation from a
baseline value), that could indicate a disease outbreak.

The effectiveness of a Syndromic Surveillance system
depends on three factors:
1.
 The availability of health related data from providers e.
g, hospitals, food and drug retail industry.
2.
 The selection of good health indicators (such as specific
medications sold) to be used for the detection of a disease
outbreak by the Syndromic Surveillance systems.
3.
 The ability of the Syndromic Surveillance system to
provide query processing and data analyses on the fly,
as the data arrives at the system.
Both the bootstrapping, i.e., the selection of health
indicators, and the outbreak detection activities of a Syn-
dromic Surveillance system during its deployment involve
data filtering and spatio-temporal aggregation over time
series. The key difference is that in the former case of the
selection of health indicators the query processing and
analysis is carried out on historical data as opposed to the
latter case of detection which is carried out on current data.

Despite this difference, the increasing volume of mon-
itored OTC product sales in United States is a challenge for
Syndromic Surveillance systems, we must be able to iden-
tify an optimal set of health indicators for a given syndrome
as well as meet the near-real-time requirements of
detection.

Initially, we employed and explored data warehouses and
externally-implemented continuous queries, but we soon
discovered that the performance of the datawarehouse- based
online analytical processing (OLAP) was not able to support
either the selection process or the detection process. The data
warehouse approach required both large amounts of storage
for storing the fact tables and pre-computed statistics and also
incurred large overhead in first storing and then retrieving the
data for analysis [7, 8]. For this reason we subsequently
explored the use of (1) a data stream management system
which efficiently execute continuous queries before storing
the data [9–11], to support the detection process and (2) a
distributed query processing system where filtering and
aggregation take place over collaborating computers, possibly
in the cloud, to support the selection process which often
requires multi-year worth of baseline data. In this paper, we
present the result of our exploration of using a distributed
search engine to implement the selection process for identify-
ing the optimal set of health indicators.
Specifically, our work in this paper was motivated by
three observations: (1) traditionally, the selection process
has been performed manually by public health experts, (2)
it was limited by the amount of data used, and (3)
traditionally, the analysis was centered in the measuring
of the relationship of a manually selected set of health
indicators to some survey, such as of sick individuals or
hospital visits. These observations formulated our hypoth-
esis that if we want to accelerate the selection process and
make it more accurate, then we need an efficient solution
for processing large volume of aggregated data and time series
that automatically identify the optimal set of health indicators.

To support our hypothesis, we developed an OTC
Analytics Appliance that efficiently generate time series
of time-stamped records such as unit sales of certain OTC
products and used it to compare different search algo-
rithms to identify a set of thermometer products (such
as strip or digital, oral or forehead for babies or adult
thermometers) whose sales over time optimally, or close
to optimally, correlates with ED visits for symptoms (such
as fever) consistent with Constitutional syndrome.

Contributions: The two key contributions of this paper
is as follows:
�
 The development of an OTC Analytics Appliance, which
utilizes a distributed search engine, called ElasticSearch
[12], to efficiently generate time series of time-stamped
records. The OTC Analytics Appliance provides an
Optimal OTC Identifier module with “plug-and-play”
search and correlation functionalities and a GUI to
display time series graphs.
�
 An evaluation of three search algorithms, brute-force
search, greedy search, and dynamic programming (knap-
sack search) for their ability to select the minimum set of
OTC products automatically. Our results using the Pearson
correlation coefficient function show that greedy search is
competitive to the brute-force search, producing a set of
OTC products whose sales optimally correlate to ED visits,
while at the same time maintaining scalability with large
datasets. The knapsack search exhibits the worst perfor-
mance. Also, our evaluations show that our approach
using the greedy search can be used to efficiently identify
different optimal OTC medicine products for detection of
different types of disease outbreaks.
Roadmap: Section 2 introduces the OTC Analytics
Appliance. Section 3 presents our experimental datasets
and methods. Section 4 presents the experimental results
for the optimality of the three search algorithms using
data collected during one year period. Section 5 evaluates
the robustness of the three search algorithms whereas
Section 6 presents their scalability evaluation with an
extended dataset of four years. Section 7 briefly reviews
related studies and Section 8 concludes with future work.
2. System architecture

This section gives an overview of OTC Analytics Appli-
ance, then explains each module of the system such as
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distributed search engine, Optimal OTC Identifier and gra-
phical user interface (Fig. 1).

2.1. System overview

As with all “Big Data” analytics, the two fundamental
challenges that we need to address are the inter-related
problems of data storage and data processing. In the context
of our work, the latter, i.e., the data processing, is the biggest
challenge of the two. One solution to these problems was to
adopt one of the emerging MapReduce-based systems, such
as Apache Hadoop [13] that supports distributed processing
and provides a distributed file system. However, writing
MapReduce jobs is not exactly trivial. It requires sufficient
programming skill to rephrase problems into an algorithmic
form suited for MapReduce execution. Given the ease of
creating SQL queries over equivalent MapReduce jobs manu-
ally (especially for complex queries), we explored an alter-
native that offers users the ability to phrase queries in a
declarative syntax. Although Hive [13] was proposed as a
front-end to Hadoop to provide an SQL-like syntax, we
selected to use the Elastic Search [12,14], a RESTful, distrib-
uted search engine (also based on Apache) because it
provides both our needed functionality as well as a straight
forward data path from our current National Retail Data
Monitor (NRDM) production database server to a web-based
graphical interface to display time series graphs.

Fig. 1 shows the overall architecture of our system
which runs on top of a cluster or a network of computers.
Data collected from the various health-related providers
are stored in an Oracle Database Server. Data needed for
a given analysis are extracted using SQL queries from
our production Oracle database and saved to individual
comma delimited files. The SQL query can support any
time period, however, given the popularity of retrievals of
annual data, the system provides pre-compiled queries
that accepts one year time period for convenience and
speed. A loader job parses the retrieved data, transforms
each record into a JSON string and sends the JSON strings
via HTTP to the cluster/network using the batch index
functions of Elastic Search. The API provides an interface
for the distributed search engine, where a submitted query
is parsed and passed to the ElasticSearch and the query
results from ElasticSearch are returned to the query
invoker, e.g., Optimal OTC Identifier and GUI.
2.2. Distributed search engine

A distributed search engine is a system wherein data
records are stored over a network of computers (or nodes)
which act collaboratively to answer queries as well as to
balance the workload among them automatically and
transparently. These records are indexed locally within
each node, which means there is no global catalog (hash
table) of data distribution but each node has partial
catalog. Thus, data retrieval topologically is not a star but
rather a star-chain as shown in Fig. 2 of a simple config-
uration with three nodes. When a query is issued to the
network (distributed system), the query is directed to the
most lightly loaded node, Node 3 (Step 1 in Fig. 2). Based
on its local catalog, Node 3 identifies which records stored
locally meet the query parameters and which nodes store
records that might meet the query parameters (Step 2).
Then, the query is forwarded to all the identified nodes
with records which might be a part of the query result,
Node 1 in our example (Step 3). When Node 1 receives
the request from Node 3, it carries out the same steps as
Node 3, identifying and forwarding the query to Node 2
(Step 4). When a node, such as Node 2, receives a query
and is not aware of any other node in the chain to further
forward the query, it returns the locally stored records as
a part of the query result back to Node 1 (Step 5). In turn,
Node 1 appends its records which are part of the query
result to the ones received from Node 2 and sends them
to Node 3 (Step 6), which in turn, sends them to the Client
(Step 7).

We constructed the distributed search engine of the
OTC Analytics Appliance using Elastic Search. Elastic
Search is a distributed search engine built on top of a
text search engine called Lucene [12,14]. Elastic Search
stores a document (records in our case) in shards located
on different nodes. It decides which shard to put the
document in by computing a hash tag of the documents
primary keys, which by default is a tuple of _index, _type
and _id of a document. In our case of records, the hash tag
was generated based on date of sale, store zip code,
Universal Product Code and promotion status. It then
uses the hash tag modulo the number of shards (nodes) in
the system to pick a shard to store the document. As
mentioned above, we chose Elastic Search primarily for
its ease of deployment and built in query functions for
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grouping data over time periods and feature values
suitable for time series analysis (i.e., faceting). Also, since
it is open-source, our OTC Analytics Appliance can be
easily replicated and used by the community.

We constructed an API using Java to facilitate the
creation of Elastic Search queries for the search engine.
Elastic Search queries are written using JSON. For the
current purpose of the OTC Analytics Appliance, the API
supports two different queries: getTimeSeriesWithDis-
tribution and getTimeSeries. These JSON queries
provide many parameters, such as state, county, zip code,
vendor, store, product category, and product IDs, etc., that
allow querying with multiple conditions by setting list of
values for each of them. They return time series objects for
a set of product IDs aggregated over days, weeks, months or
any time period, that are not weighted average. Their full
specifications are as follows:
getTimeSeriesWithDistribution (String indexType, Date

startDate, Date endDate,

Boolean promotion, String[] stateList, String[]

zipFilter, String[] fipsFilter,

String[] catFilter, String[] vendorFilter, String[]

gtinFilter, String[] storeFilter,

String interval, Integer numCat, Integer numVendor,

Integer numZipcode, Integer numFips,

Integer numState, Integer numGtin, Integer numStore,

String breakdownOf,

Boolean timeSeries, Boolean distribution);

getTimeSeries (String indexType, Date startDate, Date

endDate, Boolean promotion,

String[] stateFilter, String[] zipFilter, String[]

fipsFilter, String[] catFilter,

String[] vendorFilter, String[] gtinFilter, String

[] storeFilter, String interval);

2.3. Graphical user interface

In order to help public health experts to better under-
stand of the OTC data and experiment with query results,
we developed a web-based graphical user interface (GUI)
to display time series graphs of the OTC data, shown in
Fig. 3.
The GUI has controls to select the time period of data to
visualize (start date, end date) and allows to zoom in and
out on the plot by selecting different time frame (1month,
3 month, 6 month, etc.). Users can also specify or filter
vendor ID, state, FIPS (county code), zip code, store ID, OTC
categories, GTIN (Global Trade Item Number) or UPC
(Universal Product Code), date of sale, total unit sales,
promotion status (promoted unit sales) by entering the
appropriate values to the filter boxes. By being able to
set these various query constraints, users can reduce the
number of results returned and better visualize a portion
of the dataset that the users would like to observe and
explore.

In addition, the GUI displays the breakdown of the
data based on geographic location, category, store type
and OTC product in the form of bar charts or pie charts.
Users are able to specify a limit or size of the breakdown
categories.

We programmed the GUI in Java and Javascript utilizing
the JQuery, High Charts and Play Framework libraries.

2.4. Optimal OTC identifier

The Optimal OTC Identifier is the key module responsible
to generate the optimal OTC product set. It is designed to use
the ElasticSearch API to query OTC time series based on the
specified input parameters and further process them (e.g.,
aggregates daily time series into weekly and applies filters)
as needed before are passed as inputs to the search algo-
rithms. Currently, the Optimal OTC Identifier provides two
different filters: product-level and store-product filtering. The
product-level filtering excludes OTC products that have less
than a specific number of days of sales over a specified
period. The store-product filtering, on top of product filtering,
also excludes stores that have less than a specific number of
days of sales over the study period.

The input parameters of Optimal OTC Identifier are
API name, API URL, the file name that store the list of
OTC products to be considered in the analysis, the file
name that has the daily ED visits, product level filtering
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(specify the number of days of sales for per product as a
filter), store level filtering (specify the number of days of
sales for per store as a filter), the file name that stores list
of store codes, start date (starting date for the query), end
date (end date for the query), and type of the search
algorithms (specify the algorithm to be used).

The module outputs optimal or suboptimal product set
(that has the highest correlation value depends on the
search algorithms we choose as an input), correlation
value, an image file that has the weekly time series chart
of OTC set and ED visits.

Currently, the Optimal OTC Identifier uses the Pearson
correlation coefficient function [15] to compute correlation
values between the two time series: a set of OTC product
weekly sales and weekly ED visits. The Pearson correlation
coefficient equation is written as the following:

rxy ¼
∑n

i ¼ 1ðxi�xÞðyi�yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1ðxi�xÞ2∑n
i ¼ 1ðyi�yÞ2

q ð1Þ

In Eq. (1), r is a measure of the correlation coefficient
(linear dependence) between two variables (time series) X
and Y written as xi and yi (where i¼1, 2, …, n), n is the
sample data size, and x and y are the mean values of two
samples from the data.

We implemented three search algorithms – brute-force,
greedy, and dynamic programming (Knapsack search algo-
rithm) – using the Java programming language.

Brute-force search algorithm: The brute-force search or
exhaustive search looks at all possible combination of
thermometer products that is queried from our (distrib-
uted) search engine and computes the correlation value of
each set. It retains the set that has the highest correlation
value with ED visit data. The advantage of this approach is
that it is complete and optimal, i.e., it searches the entire
space of available OTC medical product sets. The disad-
vantage is that its execution time is proportional to the
number of candidate solutions and not scalable to large
datasets. Specifically, the time complexity of brute-force
search is Oð2NÞ [16] where N is the number of OTC medical
products.

Greedy search algorithm: We designed a greedy search
algorithm that uses a successor function that removes OTC
medical products from the set. It starts the computation
from an initial set of all OTC medical products, and
gradually eliminates one product from the set that has
the least contribution to the correlation at each step. This
algorithm is complete (i.e., always finds a solution if one
exists), but does not always give the optimal solution.
However, it gives the optimal solution most of the time as
shown by our experiments in Sections 4 and 5. Compared
to the brute-force search, it is efficient and scalable to our
large datasets. The time complexity of this type of greedy
search is OðN2Þ.

Knapsack search algorithm: This approach is adopted
from algorithm for 0�1 Knapsack problem. It is a dynamic
programming method for solving optimization problems.
The Knapsack search computes the solutions to the sub-
problems once and stores the solutions in a table so that
they could be reused later. Specifically, it selects one OTC
medical product at each step, and adds it to the knapsack.
If adding this OTC product to the subset of OTCs in the
knapsack increases the correlation value of the subset with
ED visits, then it remains in the knapsack. Otherwise, the
OTC product is discarded (does not kept in the knapsack)
and moves to the next OTC product in the list. Once an OTC
product is eliminated from the knapsack, it does not have
another opportunity to be clustered with the subset in the
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knapsack. By performing in this way, the Knapsack solu-
tion eliminates some of the possible combinations that
may actually include the optimal subset. This means that
the order of the input set determines the output set.
Although there is a way to find out which order of the
input set gives an optimal set, we decided not to imple-
ment it since it is an expensive operation (i.e., almost
behaves like brute-force). Thus, the implemented Knap-
sack search is not optimal but it is complete. It has much
less execution time comparing to the brute-force algo-
rithm. Like the greedy search, it shows a time complexity
of OðN2Þ [16] and it reduces time complexity at the
expense of memory. We decided to use this algorithm as
a kind of low bound in our evaluation.

3. Experimental data and evaluation methods

OTC medication sales: We obtained sales data from the
National Retail Data Monitor (NRDM). NRDM is a public
health surveillance system that collects and analyzes
daily over-the-counter point of sale data to rapidly
identify disease outbreaks. NRDM was built by the RODS
Laboratory at the University of Pittsburgh in collaboration
with the food and drug retail industry, as well as state and
local health departments [17].

NRDM collects daily sales data from over 33,304
(30,820 active) stores from 15 (12 active) different retailers
across the United States and has been operational since
2003. NRDM has a transactional database of 1.23 billion
records for over 9000 medications over a period of 9þ
years. As alluded previously (Section 2.3), each record
contains vendor ID, state, FIPS (county code), zip code,
store ID, OTC category, and GTIN (Global Trade Item
Number) or UPC (Universal Product Code), date of sale,
total unit sales, promotion status (promoted unit sales).
The reason why we keep track of promotion status is that
if there is a rise in a category that predominated by a single
product and that product is promoted we can infer that it
is a false signal.

We loaded four years of transactional OTC data for
Pennsylvania (from 1 January 2009 to 31 December 2012)
from NRDM onto our OTC Analytics Appliance's distribu-
ted search engine deployed on a five node cluster. Each
node was allocated 20 GB of RAM, 24 GB of disk space and
two CPUs. The data was distributed over five shards with
replicas (10 total shards) and comprised 18.5 million
records. The data occupied 6.2 GB and it took approxi-
mately 35 h to index the data into the cluster.

ED visit data: We retrieved time series of daily ED visits
for Constitutional chief complaints in Allegheny County
and the entire state of Pennsylvania, for the time period of
2009–2012, from the Pennsylvania Real-time Outbreak
and Disease Surveillance (RODS) system. The PA RODS
System is a public health surveillance system for the state
of Pennsylvania that collects de-identified ED visit data
from 166 (111 active) hospitals since 1999. Emergency
department visits and daily aggregated number of differ-
ent syndrome categories were obtained from emergency
departments. Hospitals send patient visit data including
registered chief complaint to RODS Laboratory from clin-
ical encounters over virtual private networks and leased
lines using the Health Level 7 (HL7) message protocol in
real time. CoCo (Complaint Coder) automatically classifies
the registration chief complaint from the visit into one of
the seven syndrome categories (Respiratory, Botulinic,
Gastrointestinal, Neurologic, Rash, Constitutional, Hemor-
rhagic) using Bayesian classifiers [2,18].

Evaluation: We evaluated the three search algorithms
by comparing their search results in terms of (1) optim-
ality, measured by the correlation coefficient values (CCVs)
computed by the Pearson correlation coefficient function
(provided in our OTC Analytics Appliance), (2) robustness
in terms of consistently identifying optimal product set
over different periods of time, and (3) scalability, measured
by their runtime.

In our evaluation, we generated time series of thermo-
meter sales for Allegheny County, Pennsylvania. Although
the NRDM offers 23 OTC categories, we chose the thermo-
meter sales category as our indicator for influenza outbreaks
because researchers found a strong correlation (the correla-
tion value is 0.91) between patients with Constitutional
syndrome visiting emergency departments (EDs) and OTC
thermometer sales in Pennsylvania in past influenza seasons
[19]. Villamarin et al. also demonstrated high correlation (the
correlation value is 0.89) between actual and predicted ED
visits using thermometer sales data [20]. There were 596
OTC thermometers. For our experiments, we selected daily
aggregated ED visits for the Constitutional category because
it generalizes complaints such as fever, chills, or malaise. To
reduce the impact of noisy data, we use in our search queries
both filtering processes, namely product-level filtering and
store-product filtering, provided by the Optimal OTC Iden-
tifier of the OTC Analytics Appliance.

We conducted our evaluations on an Apple iMac
computer (3.06 GHz Intel dual cores CPU, 4 GB RAM). The
iMac computer served as a client computer that queried
the distributed system described in Section 2.

4. Optimality evaluation

An optimal solution gives an OTC product set that has
the highest correlation value with ED visits and optimality
can be guaranteed with a brute-force algorithm. Since the
brute-force algorithm takes a long time to produce an
optimal solution, an alternative algorithm that gives a
suboptimal or close to optimal solution to the problem is
often more useful. In this section we evaluate brute-force
search, greedy search, and knapsack search for their ability
to select the set of OTC thermometer products that opti-
mally correlate with ED visits. In this optimality evalua-
tion, we use only one year of data, 2009, which were
aggregated to weekly time series. As a reference (baseline)
we used the correlation value between ED visits and all
596 thermometer products — 0.9077. We conducted two
optimality experiments: (1) with product-level filtering
and (2) with store-product filtering.

4.1. Product level filtering

We created multiple datasets by applying varying levels
of product-level filtering. By setting a product sales thresh-
old of 10 days, we generated a dataset (Dataset 1) that



Table 1
Comparison of search algorithms with different OTC product sets after product level filtering (CCV⋆: Pearson correlation coefficient value; Size†: number of
OTCs in the set).

Datasets Filter criteria
per product

Filter result Brute-force search Greedy search Knapsack search

Size† CCV⋆ Size† CCV⋆ Size† CCV⋆ Size†

Dataset 1 Z10 28 0.9592 9 0.9592 9 0.9586 11
Dataset 2 Z20 26 0.9592 9 0.9592 9 0.9583 10
Dataset 3 Z30 25 0.9589 7 0.9589 7 0.9285 15
Dataset 4 Z50 23 0.9589 7 0.9589 7 0.9567 11
Dataset 5 Z70 20 0.9586 6 0.9586 6 0.9565 9
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included 28 OTC (out of 596) thermometer products. Then,
by varying the threshold from 10 to 70 days, we generated
additional datasets with 26 OTC thermometer products
(Dataset 2 with threshold 20 days), 25 OTC thermometer
products (Dataset 3 with threshold 30 days), 23 OTC
thermometer products (Dataset 4 with threshold 50 days),
and 20 OTC thermometer products (Dataset 5 with thresh-
old 70 days). Incidentally we found that using a filtering
threshold of 40 and 60 days generated exactly the same set
of products found in Dataset 3 and Dataset 4, respectively.
In all cases our datasets have the property that a dataset
with a smaller set of products has a subset of products
found in datasets with a larger set of products.

Optimal sets with product level filtering: We ran the
brute-force search algorithm against all the Datasets 1–5.
Table 1 (Column 4) shows the number of OTC products in
the identified optimal set (i.e., output search result) and
their corresponding aggregated correlation value with the
ED values, for each dataset. In all cases, the aggregated
correlation value of the optimal set is larger than the
correlation value 0.9077 of the total 596-product set as
well as of the correlation value of 0.9079 of the largest, 28
products Dataset 1. In all cases, the aggregated time series
of the optimal sets and ED visits for Constitutional syn-
drome are peaked at the third week of October (October
15–22), 2009. Figs. 4 and 5 show this for Dataset 1 and its
optimal nine OTC product sets, respectively. It is interest-
ing to note that the correlation values of the individual
OTC products in an optimal set are always smaller than
that of the correlation value of their aggregated time
series. For example, the individual correlation value of
the nine OTC products with ED visits ranges from 0.0967
to 0.9414 compared to the 0.9592 of the correlation value
of their aggregated time series. Also, note that the Datasets
1 and 2 produced the same optimal sets with the same
highest correlation values.

Comparison between three search algorithms: We ran the
greedy and knapsack search algorithms against all the
Datasets 1–5. Table 1 summarizes the experiment results
of all three search algorithms. Again, in all cases, the
aggregated time series of the optimal sets and ED visits
are peaked at the third week of October (October 15–22),
2009. In all cases, the brute-force and greedy search
algorithms found the same optimal OTC thermometer
product sets whereas the knapsack consistently found
larger sets (i.e., greater number of OTC products). It is
interesting to note that the set of products found in
smaller more optimal sets found in this search may not
necessarily be a subset of the larger less optimal sets.

4.2. Store-product filtering

We applied store-product filtering i.e., store-level filtering
combined with product-level filtering. By setting product
sales threshold at 10 days and store sales threshold at
60 days, we generated a dataset (Dataset 6) that included
26 OTC (out of 596) thermometer products. By varying the
product threshold from 10 to 50 days and store sales thresh-
old from 60 to 100, we generated additional datasets with 25



Table 2
Comparison of search algorithms with different OTC product sets using store-product filtering (CCV⋆: Pearson correlation coefficient value; Size†: number
of OTCs in the set).

Datasets Filter criteria Filter result Brute-force search Greedy search Knapsack search

Per store Per product Size† CCV⋆ Size† CCV⋆ Size† CCV⋆ Size†

Dataset 6 Z60 Z10 26 0.9612 8 0.9612 8 0.9522 12
Dataset 7 Z70 Z20 25 0.9595 10 0.9595 10 0.9581 11
Dataset 8 Z80 Z30 22 0.9569 9 0.9569 9 0.9569 9
Dataset 9 Z90 Z50 21 0.9561 7 0.9561 7 0.9501 7
Dataset 10 Z100 Z70 17 0.9480 8 0.9480 8 0.9433 7
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Fig. 6. 26 OTC thermometer sales and ED visits.
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Fig. 7. Eight OTC thermometer sales and ED visits.

Table 3
Significant difference test between two individual correlation values.

Product sets Sample size
(weeks)

Correlation
values

Significance

28 OTC
(product filtering)

52 0.9070 pr0:035

9 OTC (optimal set) 52 0.9592
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OTC thermometer products (Dataset 7 with store threshold
70 days and product threshold 20 days), 22 OTC thermo-
meter products (Dataset 8 with store threshold 80 days and
product threshold 30 days), 21 OTC thermometer products
(Dataset 9 with store threshold 90 days and product thresh-
old 40 days), and 17 OTC thermometer products (Dataset 10
with store threshold 100 days and product threshold
50 days). As is the case with product-filtering, datasets with
a smaller set of products are a subset of datasets with a
larger set of products.

Optimal set with store-product filtering: As in the pre-
ceding experiment, we ran the brute-force search
algorithm against all the Datasets 6–10. Table 2 (Column
4) shows the number of OTC products in the identified
optimal set and their corresponding aggregated correlation
value with ED visits, for each dataset. Again, in all cases,
the aggregated correlation value of optimal set is larger
than the correlation value 0.9077 of total 596-product set
as well as of the correlation value of 0.9126 of the largest
26 products Dataset 6. In all cases, the aggregated time
series of the optimal sets and ED visits for Constitutional
syndrome are peaked at the third week of October
(October 15–22), 2009. Figs. 6 and 7 show this for Dataset
6 and its optimal 8 OTC product set, respectively. Again,
the correlation values of the individual OTC products in an
optimal set are always smaller than the values of aggre-
gated time series. For example, the individual correlation
value of the eight OTC products with ED visits ranges from
0.1316 to 0.9425 compared to 0.9612 for their aggregated
time series. In this experiment, Dataset 6 produced the
second smaller optimal set with eight products and the
highest correlation value (0.9612) as compared to Dataset
9 with a 7-product optimal set and the second lowest
correlation value (0.9571).

Comparison among the three search algorithms: We ran
the greedy and knapsack search algorithms against all the
Datasets 6–10. Table 2 summarizes the experiment results
of all three search algorithms. Again, in all cases, the
aggregated time series of the optimal sets and ED visits
peak at the third week of October (October 15–22), 2009.
The brute-force and greedy search algorithms found the
same optimal OTC thermometer product sets whereas
the knapsack consistently found larger sets (i.e., greater
number of OTC products). The smaller optimal sets may
not necessarily be a subset of the larger ones.

4.3. Significance tests

We performed significance tests on correlation coeffi-
cient values: (1) total OTC product set after filtering and



Table 4
All products without filtering.

Year 2009 2010 2011 2012 2009–2010 2009–2011 2009–2012
CCV 0.9077 �0.4579 0.8008 0.5429 0.8569 0.689 0.6014
Number of products 45 35 27 22 45 48 48

ED visits

All OTC sales
Optimal OTC 

sales

Fig. 8. Optimal OTC set and ED visit time series for 2010.

Fig. 9. Best products of individual years. (For interpretation of the
references to color in this figure caption, the reader is referred to the
web version of this paper.)

Fig. 10. Best products of multiple years.
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(2) the optimal set found by brute-force search. Table 3
shows the significance test results for Dataset 1 with
the 28 OTC products vs. an optimal set with nine OTC
products. The last column shows that there is a signi-
ficant difference between their two correlation values
(po ¼ 0:0352). This result also holds for other datasets
in our study. This demonstrates that product sets deter-
mined using our method better correlates with ED visits
than sets that include all products, and that it is signifi-
cantly better when used as a health indicator in determin-
ing an outbreaking of influenza.

5. Robustness evaluation

Robustness characterizes the effectiveness of an algo-
rithm to consistently identify optimal product sets over
different periods of time and different datasets. In order to
evaluate how robust and consistent the identified product
set was over time, we extended our evaluation to utilize
datasets encompassing 4 years (1 January 2009 to 31
December 2012). These extended datasets excluded OTC
products with no sales during the entire time period.

We repeated the first experiment with and without
product filtering in Section 4 with these extended datasets.
We found the best thermometer product set for each year
and for multiple years using the greedy search algorithm
and checked whether the majority of the best correlated
products of the different time periods were the same.

5.1. Product selection without filtering

Table 4 lists the correlation values of all thermometer
product sales with ED visits of each individual year 2009,
2010, 2011, and 2012; and multiple years such as 2009–
2010, 2009–2011, and 2009–2012. It also shows the
number of active products (at least one sales during the
entire time period). We note that in 2010, the Pearson
correlation value between time series of all OTC thermo-
meters and ED visits is �0.4579, which suggests low
correlation and probably opposite tread direction between



ED visits

All OTC 
Thermometer

 sales

Optimal OTC 
Thermometer

 sales

Fig. 11. Optimal OTC set (2009–2012) and ED visit time series.

Fig. 12. Best products of individual years with filtering.

Fig. 13. Best products of multiple years with filtering.
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two time series. Part of the reasons may be due to no
outbreak peak found in ED visits in 2010. It can be also
seen by visual inspection from both Figs. 8 and 11.

The table in Fig. 9 shows the best product sets found
from each individual year 2009, 2010, and 2011, 2012. The
colored rows in each column represent the optimal set of
products for a corresponding year, and the second row in
the table has the correlation value for that set to ED visits
of the same year. Products sets over different years show
few products in common. We found that the 2010 OTC
thermometer sales is not very well correlated with ED visit
data, the correlation value is 0.3119.

The table in Fig. 10 shows the experiment result that we
found as best product sets after extending the datasets by
adding one year each time such as 2009, 2009–2010,
2009–2011, and 2009–2012. For example, we had a pro-
duct set with 16 products that has the highest correlation
value of 0.9595 with ED visit in 2009. By adding 2010 data
to that, we had a set with 13 products that has the best
correlation value of 0.928 with the same filtering criteria.
In this new set there are two new products added and five
products are eliminated comparing to the best product set
we had in 2009. With 2009–2011 dataset, we had a set
with nine products that has a correlation value of 0.8443.
Comparing to the previous set, four products are contained
again that are selected in 2009 best products set, but they
were eliminated in 2009–2010 best set. The last column in
the table shows that the best product set with eight
products obtained from the dataset of four years, 2009–
2012, has the correlation value of 0.8065.

Fig. 11 shows the time series of all OTC thermometer
sales, optimal OTC thermometer sales and ED visits of
4 years (2009–2012). The correlation value of the optimal
set is 0.8056, which is larger than the correlation value
0.6014 of the all 596-product set.

5.2. Product selection with filtering

Fig. 12 lists the best product sets we found for each
individual year 2009, 2010, 2011, and 2012, by applying
product level filtering with the threshold of 10 days of
sales per year. Compared to the previous table in Fig. 9
without filtering, the number of the products in the best
set is decreased each year. The correlation values are
similar to those without filtering except for runs using
2010 data. In the year of 2010 there is only one product in
the best set in this experiment, which further validates our
statement that there was less thermometer sales in this
year and sales were not well correlated with ED visit data.

Fig. 13 shows the results for best products (with
filtering) for individual years and over multiple years,
2009–2010, 2009–2011, and 2009–2012. In general, we



Table 5
Runtime experiment with extended datasets (with filtering).

Datasets Runtime

Year Number
of products

Brute-force
search (s)

Greedy
search (ms)

2009 28 164 7.3
2009–2010 28 289 12.7
2009–2011 28 422 19.3
2009–2012 27 256 30

Table 6
Runtime experiment with extended datasets (without filtering).

Datasets Runtime

Year Number
of products

Brute-force
search (estimated)

Greedy
search (ms)

2009 45 199 days 21.2
2009–2010 48 90 months 18
2009–2011 48 130 months 26
2009–2012 48 180 months 44
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saw that successive individual years had different optimal
product sets. The addition of additional years of data
resulted increasingly different optimal product sets.

From above two experiments, it is clear that the
optimal set identified for a specific year might not be
sufficient to detect outbreaks during the subsequent years.
One reason could be that the Pearson's correlation may
not be a good scoring metric since it does not consider the
temporal nature of the data and treats it as independent
data points. Another could be that the optimal set need to
be recomputed and adjusted at different time periods and
periodically during a year. In our future work, we plan to
investigate these two reasons considering the correlation
of the time series values.

6. Scalability evaluation

In order to measure scalability of our system, we set up
two experiments to compare execution time of brute-force
and greedy search algorithms to find the optimal product
set. The time cost of each search algorithm was measured
by excluding the querying and filtering process at the
distributed search engine since the excluded cost is com-
mon across all three search algorithms. In these experi-
ments we used four datasets with time periods of 2009,
2009–2010, 2009–2011 and 2009–2012 after filtering out
the products with no sales during the specific time
periods. The reported experiment results are average
runtime value taken by executing each of the experiments
10 times.

Experiment 1: In this experiment, we repeated the
optimality evaluation with product-level filtering as in
Section 4. We set the filtering threshold 10 days of sales
for 2009 data (i.e., Dataset 1), 20 days for 2009–2010 data,
30 days for 2009–2011 data and 40 days for 2009–2012
data. The column 2 in Table 5 has the number of remaining
products in each dataset after applying those filtering
criteria. The third column has the runtime result of
brute-force and greedy search algorithms to finish all the
computations. For Dataset 1 (2009), brute-force took 164 s
to identify the optimal set of OTC products while greedy
took 7.3 ms to identify the same optimal set of OTC
products. For reference, we also measured the runtime
cost of the knapsack search to process Dataset 1 and it was
9.7 ms. Evaluating the largest dataset of 2009–2012 year
with filtering, brute-force took 256 s, while greedy took an
average of 30 ms.

Experiment 2: To further assert greedy's scalability, we
repeated the preceding experiment with the same data
sets but without the product-level filtering. The results are
shown in Table 6. Brute-force search did not finish even for
a moderately larger set of products than the 28 products of
Dataset 1. For this reason, we estimated and reported the
run time of the brute-force search algorithm based on
the computation speed of our computer. Specifically, the
estimated run time for processing 45 products for 2009
would take at least 199 days and to compute all four years
worth of data would take about 180 months. Because the
greedy search algorithms took less than 1 s to find the
optimal product set with extended datasets greedy search
is a good choice from both the functional and the practical
point of view.

7. Related work

In the area of processing large volumes of data, variable
or feature selection has many benefits such as facilitating
data visualization and understanding, reducing the mea-
surement and storage requirements, reducing training and
utilization times, etc. The paper [21] introduced a wide
range of aspects of such problems: providing a better
definition of the objective function, feature construction,
feature ranking, multivariate feature selection, efficient
search methods, and feature validity assessment methods.
However, out of all these aspects the constructing and
selecting subsets of variable are the most relevant to our
work. In our approach, once the set of OTC products are
selected, then we form a time series of this set of OTC
product sales that drives the selection of the subset of the
OTC products that constitutes the optimal set of health
indicators. The selection is based on the Pearson correla-
tion coefficient function that evaluates how the set of OTC
product sales correlates to the time series of ED visits. As
mentioned above, the Pearson correlation coefficient func-
tion considers data as independent data points and hence
its results might not be the best possible. As part of our
future work, we plan to consider other functions discussed
in [21], especially those that consider the temporal nature
of the data, i.e., the correlation of the time series values.

In biosurveillance, finding an optimal set of surrogate
health indicators to monitor a disease or syndrome is a
general problem. Traditionally, the selection of health
indicators has been performed manually by public health
experts and is limited by the amount of data available.
Researchers have studied OTC products to identify various
disease outbreaks, however, they have not formally
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evaluated whether different sets of OTC products best
correlate with outbreaks of certain diseases. One of the
methods that has been studied for measuring the relation-
ship of OTC product sales and diseases is to survey of
individuals in the population or survey of sick individuals
[4]. Another method is measuring the relationship of OTC
product sales and hospital visits that have outbreaks at the
same time in the same region, and study OTC products
that best correspond to the epidemic curve of the out-
break. Traditionally, both of those methods have been
performed manually. Our solution adopted the second
method, and automated the process of identifying optimal
OTC products which was the goal of our proposed OTC
Analytics Appliance.

Google Flu Trend is a surveillance system that has been
created to monitor indirect signals of influenza activity
using real-time influenza related web search queries. Such
a system has an advantage over systems that rely on
weekly sentinel physician reporting. In Google Flu Trend,
a list of the highest scoring 45 search queries for influenza
was sorted by mean Z-transformed correlation. Using
those ILI related queries as the explanatory variable, a
linear model was fit to weekly ILI percentages between
2003 and 2007. The final model was tested on 2007–2008
data resulting in a mean correlation value of 0.97 with
CDC-observed ILI percentage [22]. A drawback of Google
Flu Trend is that it depends on user search behavior and
search activity may disproportionally increase during
periods of more severe outbreaks i.e., people who are
not ill are performing searches. Such behavior may
have occurred in the 2012–2013 flu season when Google
estimates were twice that of the CDC observed activity
[23].

8. Conclusions and future work

A Syndromic Surveillance system is a type of outbreak
detection system that monitors the health status of a
community, and identifies disease outbreaks or health
events using various individual and population health
related temporal data. The selection of good health care
indicators is a major factor in the effectiveness of a
Syndromic Surveillance system when detecting an out-
break. Traditionally, this selection has been done manually
and was limited by the speed at which queries could be
executed and human ability to review the results of these
queries. The goal of this paper was to automate and
improve the accuracy of the selection process of the health
indicators, taking advantage of distributed computing
methods and search algorithms.

We developed an OTC Analytics Appliance that measures
the relationship between OTC product sales and hospital
visits during outbreak periods, and identifies the OTC
products that best correspond to the epidemic curve of
(an) outbreak(s). Our OTC Analytics Appliance efficiently
generates time series of unit sales of OTC products by
utilizing a distributed search engine which leverages in-
memory search on large datasets across multiple machines
(or nodes). Its Optimal OTC Identifier implements an
efficient greedy search algorithm that utilizes the Pearson
correlation coefficient function to select a minimum of
OTC products whose sales over time optimally, or close to
optimally, correlates with hospital visits. In order to allow
maximum flexibility and experimentation, the Optimal
OTC Identifier module is designed with “plug-and-play”
search and correlation functionalities. We developed the
OTC Analytics Appliance as a user-friendly and easily
deployable system that uses the MapReduce computa-
tional paradigm.

We used the OTC Analytics Appliance to compare the
greedy search algorithm to the brute-force and knapsack
search algorithms in identifying the set of thermometer
products (such as strip or digital, oral or forehead for
babies or adult thermometers) which optimally correlate
over time with Emergency Department (ED) visits for
symptoms (such as fever) consistent with Constitutional
syndrome. Brute-force search served as our gold standard
approach on identifying optimal OTC product sets that
correlate with ED visits. Since brute-force is computation-
ally intensive, its scalability is limited. The need for a
search algorithm which is computationally less expensive
and can overcome the scalability challenge led us to the
use of a greedy search algorithm. Our greedy search
implementation identified the same optimal sets as the
brute-force algorithm identified in our experiment. It is
efficient in terms of time complexity and scalability to
large datasets.

Our implemented basic version of the Knapsack search
turned out to be as efficient as the greedy search in terms
of run time (o1 s) and returned good results. However,
these results were consistently sub-optimal and worse
than those of the greedy search. Although the general
Knapsack search guarantees to find the optimal solution
(by adding an item into the knapsack either increases or
decreases value not depending on the subset in the
knapsack), we decided against implementing it since its
time complexity is similar to that of the brute-force search
and hence, it would not scale to big data sets.

The robustness evaluations reveal that our optimal or
suboptimal product set may be different year to year,
which suggests the need to periodically update the opti-
mal product set. Adjacent year comparisons of the most
optimal sets of products show multiple differences in the
sets. If one were to use an optimal set found using our
current greedy search implementation one might miss an
outbreak in subsequent years. To address the problem, we
plan to continuously update the optimal product set on
monthly or quarterly basis. We also plan on conducting
additional evaluations using different correlation functions
that consider the correlations of the time series values as a
part of the Optimal OTC Identifier.

Our work was partially motivated by the rapid growth
of the available health related data. We are certain
that this growth in health related data will accelerate.
For this reason, we continue our search for more efficient
search algorithms – a search algorithm that is optimal,
yet efficient and scalable to big datasets. We plan to
experiment with larger regions, such as multiple states,
and with multiple categories of OTC products. In addition,
we plan to apply our framework to identify optimal
product set to build time series modeling for prediction
of ED visits.
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