Interactive Preference-Aware Query Optimization

N. R. Ong #!, S. E. Rojcewicz #2, N. L. Farnan #3, A. J. Lee #*, P. K. Chrysanthis #5, T. Yu *¥¢
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA

{ 'nro5, %srojcewicz, ®nlf4,

4 adamlee, 5 panos }@cs .pitt.edu

* Department of Computer Science, North Carolina State University, Raleigh, NC, USA
Y Qatar Computing Research Institute, Doha, Qatar
yu@csc.ncsu.edu

Abstract—PASQL is an extension to SQL that allows users
of a distributed database to specify privacy constraints on an
SQL query evaluation plan. However, privacy constraints can
be difficult for users to specify, and worse yet, all possible
situations that could lead to a privacy violation may not be
known to the user a priori. To address these challenges, we
propose a GUI-based interactive process for detecting such
violations and generating appropriate constraints. In this work,
we demonstrate two approaches to implementing such a GUI that
provide different ways of analyzing and interactively optimizing
a PASQL query plan.

I. INTRODUCTION

The declarative nature of SQL has been a major strength
of relational database systems: users simply specify what data
they wish to access, and the Database Management System
(DBMS) determines the best plan for accessing that data.
Traditionally, the best plan is assumed to be the one with the
shortest execution time, but that may result in a number of
privacy violations.

As an example, assume a query plan joins Tablea with
TableB at server siteA. If the query is executed, then sitea
becomes aware of the users’ interest in data from both Tablea
and TableB. The fact that these two tables are being used
together could be considered sensitive information, and a plan
that reveals this information to an untrustworthy server may
violate users’ privacy. A standard DBMS does not reveal the
query plan to users, and may unknowingly execute a plan that
violates their desire to keep some aspects of the query hidden
from some servers in the network.

To assuage these types of problems, in previous work we
modified the PostgreSQL DBMS to implement a Preference-
Aware Query Optimizer (PAQO) [2] that was proven to
uphold declarative, user-specified constraints on query plan
execution during the query optimization process. Users specify
these constraints through an extension to SQL that we have
developed called Preference-Aware SQL (PASQL) [3].

PAQO is a powerful tool, but two problems limit its ef-
fectiveness when it is used by itself. First, even while we
assume users have a working knowledge of SQL, it is difficult
for users to recognize the many ways in which a query plan
could violate their privacy preferences, especially in advance.
Second, PASQL syntax is complex and non-intuitive. These
led us to augment PAQO with a GUI to allow users to
explore a query plan and develop constraints capturing their

privacy preferences. In this way, users can interactively define
constraints and invoke PAQO to re-optimize the query plan
until they are confident that the produced query plan satisfies
their privacy concerns. As opposed to existing work (e.g., [5],
[4], [1]) on interactive specification and refinement of SQL
queries, our GUIs allow users to view and generate the query
execution plan rather than the result of the query.

In this demonstration, we will show two GUI solutions
that improve PAQO’s usability through interactive query op-
timization while continuing to optimize runtimes. The first,
referred to as the Query View GUI, is centered around the
query specification whereas the second, the Hierarchical View
GUI, is centered around the elements of constraints, i.e., data
and execution sites. We demonstrate both of these approaches
to interactive query optimization in order to gather feedback
on their use to drive a future user study comparing the two.

II. BACKGROUND
A. System Model and Scenario

In our work, we consider the system model depicted in
Figure 1. The first step of the distributed query evaluation
process is to determine the best plan for evaluating the query.
This plan is divided into sub-plans, each of which is assigned
to be evaluated by a particular server. Each server evaluates its
portion of the query, and the final query result is returned to
the querier. In this traditional setting, users possess no control
over the distribution of partial query plans among the database
servers. Hence, the system is free to choose a query plan that
may violate users’ privacy, as discussed above. To highlight
this problem, consider the following scenario:

Example Scenario

Alice is a low ranking corporate executive who wishes
to investigate possible illegal pollution by her employer,
ManuCo. As a first step in this investigation, she wishes to
join data stored by her employer with that of an environmental
watchdog group (Pollution Watch) and a waterway mapping
service (Mapper) to see if there is any correlation between
where her company has plants holding industrial solvents and
where those chemicals are appearing as waterway pollutants.
To do so, she constructs a query over records describing
hazardous solvents owned by ManuCo (stored in the Supplies
table on ManuCo’s Inventory database server), details of

97 Salndb991idMed 0L Ti$dd @m@/&g%ﬂﬁiﬁﬁurgh Library System. Downlealidd on November 11,2025 at 21:32:05 UTC from IEEE WEI@QM%@W@@OIS

SELECT * _
FROM Plants, Supplies, Polluted_Waters, Waterway_Maps >
WHERE Supplies.type = 'solvent' _
AND Supplies.name = Polluted_Waters.pollutant
AND Plants.id = Supplies.plant_id

AND Polluted_Waters.name = Waterway_Maps.name
AND Waterway_Maps.location = Plants.location;

"solvent" ...

lice "solvent" ...

-

"solvent" ...

name = pollutant,
@ Pollution Watch

-

Tos

Scan,
Waterway_Maps,
@Mapper

cation = location,
@ Mapper

nar nt,
@ Pollution Watch

Polluted_Waters
@ Pollution Watch

Join,
id = plant_id
@ Inventory

Scan,
Polluted_Waters
Pollution Watch

Join,

id = plant_id
Inventory
Scan
Plants,
@Faclities

Scan,
Supplies,
type =solvent’
@ Inventory

\

Trusted

X

Scan,

Supplies,

type = solvent’
@nventory

Scan,
Plants,
@Facilities

Honest but Curious

Fig. 1: A visualization of how PAQO would process Alice’s example query from Section 2. Solid lines indicate Alice passing
her query to PAQO, and PAQO distributing the partial evaluation plans to each server involved in the query. The final result

of the query is passed back to Alice along the dashed line.

ManuCo’s manufacturing plants (stored in the plants table
on ManuCo’s Facilities server), water pollution data (stored
in Pollution Watch’s pPolluted_wWaters table), and waterway
location data (stored in Mapper’s wWaterway_Maps table) as
follows:

SELECT «*
FROM Plants, Supplies, Polluted Waters,
WHERE Supplies.type = ’solvent’
AND Polluted_Waters.pollutant = Supplies.name
AND Plants.id = Supplies.plant_id
AND Polluted_Waters.name = Waterway_Maps.name
AND Waterway_Maps.location = Plants.location;

Waterway_Maps

In issuing this query, however, Alice would not want either
ManuCo or Pollution Watch to become aware of the portion
of her query that was issued to the other, or the join condition
between the Supplies and Polluted_Waters tables. Such
a revelation could easily cost her job, either because her
employer felt that she “knew too much,” or because the
watchdog group applied external pressure to the company after
learning of the intent of her query.

B. PASQL

To help Alice, we propose PASQL, which empowers users
to impose constraints over the plans that evaluate their queries.
PASQL constraints take the following form:

REQUIRING condition 1 HOLDS OVER node descriptor 1

[aND condition 2 HOLDS OVER node descriptor 2]

where a node descriptor is a ternary of the form:

(relational operator, {parameters}, site).
An explanation of the syntax and semantics of PASQL can be
found in [3].

Consider our example scenario. Alice could use the fol-
lowing constraint to prevent the attribute supplies.name from
being evaluated at the server Pollution_Watch.

REQUIRING @p <> Pollution_Watch HOLDS OVER
< %, {(Supplies.name)}, @p >

If Alice also wishes to force the JOIN on pPolluted_waters
and supplies.name to occur at either her local Querier server
or at another site that she trusts, called Trustedsite, she
would add the following constraint to her query.

REQUIRING @p IN {Querier, TrustedSite} HOLDS OVER
< join, {(Polluted_Waters.pollutant,=, Supplies.name)}, @p

Alice may encounter difficulty when attempting to produce
the correct syntax. In addition, it may be difficult for Alice
to determine the appropriate constraints to protect her privacy.
We believe our GUIs mitigate both of these problems.

III. GRAPHICAL USER INTERFACE APPROACHES

We have developed two GUISs, namely, Query View GUI and
Hierarchical View GUI, each of which is based on a different
visual paradigm for analyzing query plans. Both provide users
with a visual mapping of relationships within a query plan, i.e.,
how data moves throughout the distributed system’s servers
and where data is operated on.

The GUIs provide two services: (1) present an interactive
representation of the query execution plan, allowing users
to explore the plan to aid them in the detection of privacy
violations; and, (2) enable users to create constraints without
requiring knowledge of PASQL syntax.

The workflow proceeds as follows:

1) Users specify an initial SQL query without any con-
straints. An initial query execution plan is generated.

2) With the aid of the GUI, users explore the query
execution plan through the visual and interactive rep-
resentation and look for violations of their privacy.

3) If users are not satisfied with the query plan, then they
create appropriate constraints with GUI assistance, and
generate a new query plan.

4) Steps 2-3 are repeated until users deem the query plan
to be satisfactory.

Authorized licensed use limited to: University of Pittsburgh Library System. Downlealidd on November 11,2025 at 21:32:05 UTC from IEEE Xplore. Restrictions apply.

] PAQOLUN oog

Hover the mouse pointer over a site, and the parameter names which are visible to that site wil become highlighted. Ahernatrvely, hover over a parameter in the
[SQL statement, and the sites to which that parameter is disclosed will become highlighted. Color indicates the corresponding operator type.

Show JOIN op lue) agenta)] Show other (result, append, unique, material) operations (Black)

Show SCAN o

Show

ns (Cyan)

& PAGD) 0od
File View Sites Query

Sites Parameters
[=3 bomains =3 Parameters

Query Plan Nodes

Constraints
<JOIN, L{supplies.name = polluted

Constraint List |

VX SITE I= Inventory/241 Params: | | © £ Local Area Network # S Tables
ITE I= Pollution Watch/2a2 pa | ¢ [defauit # Cdpolluted waters

Import save

Active Constraints

Pending Constraints

¥ SITE 1= Mapper/243 Params: ((pl [Querier [pollutant
[X: SITE 1= Mapper/243 Params: {(pol [Faclties [name
[nventory 9 [supplies
[Pollution watch [name
[Mapper ¢ CHplants
[location
¢ Cwaterway_maps
[location
[name.

T I

o [constants.
Preferences

® Show Al Sites - ‘ ‘ prey ‘ ‘
© Show Active Sites

‘ Pollution Watch/242 Mapper/243
[Enter any parameter here, or select a parameter below.

SELECT * B
FROM Plants, Supplies, Polluted Waters, Waterway Maps
WHERE Supplies.type = 'solvent’

AND Polluted Waters.pollutant =

AND Plants.id = Supplies.plant_id

AND Polluted Waters.name = Waterway Maps.name

AND Waterway_Maps.location = Plants.location;

Estimated query time: 13 units ® sites View 1 O Sites View 2 O Sites View 3

| add constraint || Remove constraint || Re-optimize |

(a) Query View

(b) Hierarchical View

Fig. 2: The main screens of each GUIL

Constraint List | New Constraint

® Normal Mode O Expert Made
Any Parameter (Wildcard)
® Select or Type a Parameter

Add Add all

Any Operator (Wildcard) Force at Sites

® Select Operator

- jon__I&3|

® Deny at Sites
Querier/230

Parameters to constrain

supplies.name Facilities/240

Inventory/241
] PollUthor-watthiZa2
Remove [IMapper/2a3

OK Cancel

(a) Query View

|| AddfConstraint: =iE =
The new constraint will have the following rules:
' Force @ Deny
at the following
Site: Happer
Parameter: plants.location
Operator: 0 A
*
Click OK to add th SCAN
prosec
PROJECT
HOIN

(b) Hierarchical View

Fig. 3: The Constraint Helper Window

A. Query View GUI

The Query View GUI is structured around the SQL query
which is centrally displayed as shown in Figure 2a. It presents
how data moves among servers and where data is operated on
through mouse-hovering events. When the cursor is placed
over a site, the parameters of the operations which occur
at that site become highlighted in the SQL query. Similarly,
when the cursor is placed on a parameter in the SQL query,
it causes the sites which operate on that parameter to become
highlighted. The color depends on the type of operation that is
done to the selected data or at the selected site. In cases where
multiple kinds of operations occur on the same data at the same
site, multi-colored highlighting is displayed. A view can be
customized, focusing on specific operations by appropriately
selecting the colors in the top options panel. For example,
unchecking the “Blue” option will disable highlighting for
JOIN operations.

The constraint panel lies beneath the options panel, and is
currently showing the listing of constraints. The panel contains
two lists of constraints, one for constraints already included in
the current query execution plan (Active Constraints), and one
for constraints that have yet to be included in the query plan
(Pending Constraints). Newly added constraints are placed

in the Pending Constraints listing, and moved to the Active
Constraints list upon re-optimization.

A panel of sites is presented beneath the constraint panel.
Users are able to see the full listing of sites, and can restrict
the list to only sites that are used in the query plan. If users
hover over a site that processes some data in the current query
plan then that data will be highlighted with the corresponding
colors in the SQL query below. Users may also hover over
elements in the SQL query, and sites that handle that data
will be highlighted with the SQL operation color.

Using this view, users can easily determine site and data
relationships visually in clear color, which will be useful for
users analyzing the query plan for privacy violations. In Figure
2a, the mouse is hovering over the supplies.name attribute, so
the Pollution_watch site becomes highlighted. This indicates
that Pollution_Watch operates on Supplies.name. The blue
color of the highlighting indicates that the operation is a JOIN.
As given in our example scenario, this query plan violates
Alice’s privacy requirement.

Figure 3a shows the constraint creation interface as it is used
to create Alice’s constraint. The left side of the window shows
a list of parameters to constrain. In the center is the selected
operation, with the possibility of selecting the wildcard. If
more than one operation was detected in the data/site pairing,
then the system defaults to the wildcard operation. The right

Authorized licensed use limited to: University of Pittsburgh Library System. Downlealidd on November 11,2025 at 21:32:05 UTC from IEEE Xplore. Restrictions apply.

side provides a full listing of sites, where the checkboxes
indicate at which sites data can or cannot be operated at,
depending on the “Force” or “Deny” options. Clicking the
“OK” button finishes the constraint creation, placing the user’s
newly created constraint in the Pending Constraints list.

Once users are finished creating new constraints, they can
click the “Re-Optimize” button to generate a new query plan.
Once optimization is finished, the GUI displays to the users
a comparison between the new query plan and original, with
the option to revert to the previous query plan.

B. Hierarchical View GUI

The Hierarchical View GUI allows users to focus on the
elements of constraints that are most prominent in protecting
their privacy, namely sites and data parameters. Users are given
the query plan in a site- or data-oriented view, where a focus
on a specific site exposes all data parameters that it comes in
contact with, and vice versa. Once users select sites and data
parameters, a list of applicable query plan nodes is displayed
to enable the user to detect privacy violations in the query
plan. Users may then create constraints that correspond to the
sites, parameters, and optionally nodes, that they have selected.
These new constraints are then included in a list of user-
defined constraints, which can be selected for re-optimization.

Users are given a choice on which aspect of the query plan
to use as a starting point for exploration. In the Site View,
a full list of sites is presented in a Domain-specified hierar-
chical structure. Selecting a site presents all data parameters
associated with that site. Conversely, in the Data View, a full
list of data parameters is presented first, divided by tables
and constant types. Tables can be further subdivided into their
corresponding attributes that are relevant to the SQL query.

Figure 2b displays the main view of this GUI (shown in
Site View). On the far left, the lists of user-created constraints
are provided, one for requirements and one for preferences.
Users can specify which constraints are to be included in the
next optimization cycle by using the check boxes. Constraints
that are already included in this optimization cycle are in bold,
while those that are not are gray-colored.

The next panel to the right of the constraints panel is
dependent on the view. If Site View is used, then the Sites
Panel will provide the full list of sites at that position, and the
Parameter Panel will be to the right. If the Data View is used,
then the Parameter Panel will be shown, with the Sites Panel
to the right. The rightmost panel is the Node Panel, which
lists all query plan nodes that contain the selected site(s) and
parameter(s).

Once the user is satisfied with exploring, she also has
the option of selecting elements that she feels violate her
privacy. By choosing sites, parameters, and eventually query
plan nodes, users can add constraints based on their selections.
However, a constraint need-not be defined by a selection in the
Sites, Parameter, and Node Panels. A lack of a selection in
one will trigger a drop down menu in the Constraint Helper
Window (Figure 3b). In addition, the wildcard can also be
selected in this instance.

These constraints will then be added to the Constraint Panel
on the left and ready for re-optimization.

IV. DEMONSTRATION

In this demonstration, we first illustrate how our GUI tools
help to inform users about where the component pieces of their
query will be disseminated during evaluation and hence help
them to detect violations of their privacy before they occur.
From here, we show how our tools can further ease users
through constraining the plans that can be generated to eval-
uate their queries so that such privacy violations are avoided.
Finally, both GUIs will also inform users of the runtimes of
their new constrained query execution plans (if they exist).
Specifically, we utilize the example scenario and query from
Section II, and demonstrate the process of obtaining a query
plan that satisfies Alice’s privacy needs.

Our demonstration begins with the generation of a plan
for Alice’s query without any specified constraints. We show
how both GUIs present the query execution plan to users in a
way that highlights where portions of their queries are being
evaluated. We show how users can explore these interactive
representations of their queries to identify privacy violations.
We then illustrate how our GUI tools aid users in creating con-
straints that can protect their privacy by populating constraints
in response to the state of the query plan exploration. We then
re-optimize the now constrained query through our GUI tools
and show how users can explore the new query execution plan.
Users can ensure their constraints have the desired effect on
query evaluation and compare the estimated costs of the two
plans.

Since it is possible to use different sets of constraints to
satisfy the privacy requirements in our example scenario, we
further demonstrate the features of our GUIs by repeating the
interactive and iterative optimization process using different
constraints. We also discuss the minimal impact that upholding
constraints has on query optimization time. Finally, we invite
participants to experiment with our user interface, and provide
feedback that will help us to develop a future user study
comparing the two GUI tools.

ACKNOWLEDGMENTS

This work was supported in part by NSF awards CCF-
0916015, CNS-0964295, CNS-0914946, CNS-0747247,
OIA-1028162, and CNS-1253204, and by a gift from
EMC/Greenplum. We thank the reviewers for their feedback.

REFERENCES

[1] C. Cerullo and M. Porta. A system for database visual querying
and query visualization: Complementing text and graphics to increase
expressiveness. In DEXA Workshops, 2007.

[2] N. L. Farnan, A. Lee, P. Chrysanthis, and T. Yu. PAQO: Preference-aware
query optimization for decentralized database systems. In ICDE, 2014.

[3] N. L. Farnan, A. J. Lee, P. K. Chrysanthis, and T. Yu. Don’t reveal my
intension: Protecting user privacy using declarative preferences during
distributed query processing. In ESORICS, 2011.

[4] D. A. Keim and V. Y. Lum. Visual query specification in a multimedia
database system. In IEEE Visualization, 1992.

[5] C. Mishra and N. Koudas. Interactive query refinement. In EDBT, 2009.

Authorized licensed use limited to: University of Pittsburgh Library System. Downleabidd on November 11,2025 at 21:32:05 UTC from IEEE Xplore. Restrictions apply.

