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ABSTRACT
Data Stream Management Systems performing on-line ana-
lytics rely on the efficient execution of large numbers of Ag-
gregate Continuous Queries (ACQs). The state-of-the-art
WeaveShare optimizer uses the Weavability concept in or-
der to selectively combine ACQs for partial aggregation and
produce high quality execution plans. However, WeaveShare
does not scale well with the number of ACQs. In this pa-
per we propose a novel closed formula, F1, that accelerates
Weavability calculations, and thus allows WeaveShare to
achieve exceptional scalability in systems with heavy work-
loads. In general, F1 can reduce the computation time
of any technique that combines partial aggregations within
composite slides of multiple ACQs. We theoretically ana-
lyze the Bit Set approach currently used by WeaveShare and
show that F1 is superior in both time and space complexi-
ties. We show that F1 performs ∼ 1062 times less operations
compared to Bit Set to produce the same execution plan for
the same input. We experimentally show that F1 executes
up to 60,000 times faster and can handle 1,000,000 ACQs in
a setting where the limit for the current technique is 550.

1. INTRODUCTION
Nowadays more and more applications are becoming avail-

able to wider audiences, resulting in an increase in the amount
of data produced. In order to cope with the sheer volume
of information, enterprises move to Cloud Infrastructures to
minimize the purchase and maintenance cost of machinery,
and be able to scale their services including on-line analytics.

On-line data analytics have gained momentum in many
applications that need to ingest data fast and apply some
form of computation. Data streams are part of this broader
category of data management, where Data Stream Manage-
ment Systems (DSMS) [1, 19, 3, 2, 14] have been proposed
as suitable systems for handling large amounts of data, ar-
riving with high velocity.

A representative example of on-line analytics can be found
in stock market web applications, where multiple clients
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monitor price fluctuations of stocks. In these settings, a
system needs to be able to answer analytical queries (i.e.
average stock revenue, profit margin per stock, etc.) for dif-
ferent clients, each one with (possibly) different relaxation
levels in terms of accuracy.

In DSMS , clients register their analytics queries on in-
coming data streams. Since these queries continuously ag-
gregate streaming data to produce answers, they are called
Aggregate Continuous Queries (ACQs). The accuracy of
an ACQ can be thought of as the window in which the ag-
gregation takes place, and the period at which the answer
is re-calculated. Periodic properties that are often used to
describe ACQs are range (r) and slide (s) (sometimes also
referred to as window and shift [9]). A slide denotes the
period at which an ACQ updates its answer; a range is the
time window for which the statistics are calculated. For ex-
ample, if a stock monitoring application has a slide of 3 sec
and a range of 5 sec, it means that the application needs an
updated result every 3 sec, and the result should be derived
from data accumulated over the past 5 sec. An ACQ re-
quires the DSMS to keep state over time, while performing
aggregations. Often, it is useful to run partial aggregations
on the data while accumulating it, and then produce the
answer by performing the final aggregation over the partial
results [6, 11, 12, 13]. It is clear that the greater the range
and the smaller the slide of the ACQ , the higher its cost is
to maintain (memory) and process (CPU).

Problem Statement In this work we focus on environ-
ments where a large number of long-running ACQs with
different periodic properties (accuracies) are operating on
the same data stream, calculating similar aggregate oper-
ations. Example of such an environment can be a DSMS
deployed to Cloud Infrastructure, which results in a multi-
tentant setting, where muliple ACQs with a wide range of
different periodic features are executed on the same hard-
ware. Since the ACQs are executed periodically (unlike
one-shot queries), the opportunity to reduce the long-term
overall processing costs by sharing final and partial results
arises. For instance, assume that two ACQs monitor an av-
erage stock value over the same data stream. Both have a
slide of 3 sec. The first one has a range of 5 sec, whereas
the second one has a range of 10 sec. In this setting, it is
beneficial to keep calculating the results for the first query
and combine the last two for generating the results for the
second query. This should take place every 3 sec, which is
the common slide among those ACQs. Partial results shar-
ing is applicable for all matching aggregate operations, such
as max, count, sum, average, etc., and for different but com-
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patible aggregate operations, for example sum, count and
average can share results by treating average as sum/count.

Typically, the number of ACQs with similar aggregation
types can be overwhelming in on-line systems [3]. Therefore,
it is crucial to be able to make decisions quickly on combin-
ing different ACQs into execution plans that would benefit
the system. Unfortunately, the former has been proven to be
NP-hard [24], and currently only approximation algorithms
can produce acceptable execution plans.

The state-of-the-art WeaveShare algorithm produces very
high quality execution plans by utilizing the Weavability
concept [8], which is used to decide which ACQs are similar
enough to be combined. WeaveShare is theoretically guar-
anteed to approximate the optimal cost-savings to within a
factor of four for practical variants of the problem [4]. How-
ever, when we tried to implement it in a multiple-tenant
DSMS , we observed that the current approach of calculating
Weavability using Bit Set is very computationally expensive.

This motivated us to explore a more efficient algorithm
to accelerate the calculation process in order to make the
WeaveShare algorithm more scalable for systems with heavy
workloads. Towards this, in this paper we propose a mathe-
matical solution Formula 1 (or F1), which reduces the num-
ber of operations needed to produce the efficient execution
plan by ∼ 1062 times for the same set of 500 queries, and
speeds up the plan generation time in our experiments by
up to 60,000 times. F1 also eliminates concerns over the
amount of system memory as it does not need to store any
large data during its operation. In fact, F1 acceleration
has enabled us to explore additional cost savings that can
be achieved by utilizing the distributed nature of the Cloud
Infrastructure by intelligently colocating ACQs on differ-
ent computing nodes [17]. In general, F1 can reduce the
computation time of any technique that combines partial
aggregations within composite slides of multiple ACQs.

Contributions We make the following contributions:

• We propose a novel closed formula, F1, for calculating
the number of overlapping partial result calculations be-
tween the ACQs, and show that F1 is applicable for all
cases (with and without fragments).

• We theoretically evaluate the state-of-the-art Weavabil-
ity calculation approach against F1 and provide a mathe-
matical proof that F1 improves the time complexity from
at least en to at most 2n, and the space complexity
correspondingly from at least en to constant.

• We experimentally evaluate F1 and show that we can
achieve a speed increase of up to 60,000 times over the
state-of-the-art techniques, which makes the processing
of ACQs much more effective in an on-line DSMS .

• We show experimentally that F1 allows significantly bet-
ter scalability in terms of the number of ACQs, input
rate, and diversity of the ACQ ’s time properties. We
show that F1 is able to successfully process 1,000,000
ACQs when the limit of the current technique is 550.

Roadmap In the next section, we provide the background
of our work. We introduce our new formula, F1, for the
Weavability calculation and its additional optimization in
Section 3. The complexity analysis on it is presented in
Section 4. The evaluation platform and the experiments
are discussed in Section 5. We summarize related work in
Section 6 and conclude in Section 7.

Figure 1: Paired Window Technique

2. BACKGROUND
In this paper, without a loss of generality, we target ACQs

installed on the same data stream. Specifically, we scale the
WeaveShare algorithm that has been shown to produce high
quality execution plans of multiple ACQs by intelligently
sharing partial aggregations.

Partial aggregation was proposed to improve the pro-
cessing of ACQs [6, 11, 12, 13]. The idea behind partial ag-
gregation is that we assemble the final answer from partial
aggregates by performing a final aggregation over partials.
For example, if an ACQ needs to calculate the maximum
value over a specific time period, it can compute the maxi-
mum on each separate partition of streaming data, and then
perform the final maximum operation on all obtained partial
answers in order to get the result. Therefore, if the data set
for the operation is split into n partitions, the system needs
to perform n partial aggregations and one final aggregation
to obtain the answer.

The question that immediately arises is how many par-
tial aggregations are beneficial to perform before each final
aggregation for a specific ACQ . This depends on the time
properties of the ACQ .

• The ACQ slide is greater or equal to the ACQ range. In
this case, partial aggregations are not beneficial. Only
one aggregation is performed.

• The ACQ slide is less than the ACQ range, and it divides
the range evenly. In this case it is beneficial to perform a
partial aggregation every time period equal to the length
of the slide.

• The ACQ slide is less than the ACQ range, and it does
not divide the range evenly. In this case, it is benefi-
cial to use the Paired Window Technique [11]. As can
be seen from Figure 1, to use this approach one needs
to calculate two fragment lengths f1 and f2. The sec-
ond fragment can be found by performing range mod
slide, and the first fragment by subtracting the second
fragment from the slide. Partial aggregations should be
computed at periods of fragment one and fragment two
interchangeably.

Shared Processing of ACQs Several shared processing
schemes as well as multiple ACQs optimizers utilize the
Paired Window Technique [11, 8]. To show the benefits of
sharing partial aggregations consider the following example:

Example 1 There are two ACQs that perform the count
aggregate operation on the same data stream. The first ACQ
has a slide of 2 sec and a range of 6 sec, the second one has a
slide of 4 sec and a range of 8 sec. Therefore, the first ACQ is
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Figure 2: Marking edges produced by five different ACQs with NO fragments in the composite slide, represented by a Bit Set

computing partial aggregates every 2 sec, and the second is
computing the same partial aggregates every 4 sec. Clearly,
the calculation producing partial aggregates only needs to
be performed once every 2 sec, and both ACQs can use these
partial aggregates for their corresponding final aggregations.
The first ACQ then will run each final aggregation over the
last three partial aggregates, and the second ACQ will run
each final aggregation over the last 4 partial aggregates.

The procedure to determine how many partial aggrega-
tions is needed after combining n ACQs using a Bit Set is
formalized as follows:

• Find the length of the new combined (composite) slide,
which is the Least Common Multiple (LCM) of all the
slides of the combined ACQs.

• Each slide is then repeated LCM/slide times to fit the
length of the new composite slide. All partial aggrega-
tions happening within each slide are also repeated and
marked in the composite slide as edges.

• If the location is already marked, it cannot be marked
again. If two ACQs mark the same location, it means
that location is a common edge.

Weavability is a metric that measures the benefit of shar-
ing partial aggregations between any number of ACQs. If
it is beneficial to share computations between these ACQs,
then these ACQs are known to weave well together. In-
tuitively, two ACQs weave perfectly when their combined
LCM contains only common edges. The following formula
can be used to calculate the cost (C) of the execution plan
before and after combining ACQs from their own trees into
shared trees. The difference between these costs tells us if
the combination was a good choice or not.

C = mλ+

m∑
i=1

EiΩi (1)

Note that m is the number of the trees in the plan, λ is input
rate in tuples per second, Ei is edge rate of tree i, and Ωi

is the overlap factor of tree i. Edge rate is the number of
partial aggregations performed per second, and the overlap
factor is the total number of final-aggregation operations
performed on each fragment.

The WeaveShare optimizer utilizes the concept of Weav-
ability to produce an execution plan for a number of ACQs.
It selectively partitions the ACQs into multiple disjoint ex-
ecution trees (i.e., groups), resulting in a dramatic reduc-
tion in the total processing costs of the query plan. Weave-
Share starts with a no share plan where each ACQ has its
own individual execution tree. Then, it iteratively consid-
ers all possible pairs of execution trees, and combines those
which reduce the total plan cost the most, into a single tree.

WeaveShare produces a final execution plan when it cannot
find a pair that would reduce the total plan cost further.

The most complex part of the calculation occurs when
the system is scheduling each partial aggregation operation
(edge) and is tracking these operations using a Bit Set as
mentioned above. The size of the Bit Set increases rapidly
if the ACQs’ time properties differ. For each ACQ added to
the execution tree, WeaveShare needs to traverse the whole
Bit Set to make sure that all partial aggregations necessary
for this ACQ are marked in a Bit Set for future execution.
Since the size of a Bit Set increases exponentially with the
increase of the input size, traversing it becomes prohibitively
time-consuming as we show in Section 4. Additionally, the
exponential increase of the size of the Bit Set puts a hard
limit on a system’s capabilities, based on the amount of
memory available.

3. FORMULA 1 (F1)
In this section, we describe our new formula F1 that sig-

nificantly speeds up the edge rate calculation in a composite
slide. We target two scenarios for ACQs with matching or
compatible aggregate operations: 1) when all ACQ slides
are factors of their corresponding ranges, and 2) when some
of the ranges are not multiples of their corresponding slides.

3.1 Case with NO Fragments
In the case when all of the ranges of the ACQs that are

being installed onto the DSMS are divisible by their cor-
responding slides, we can store partial aggregates at every
slide. For example, if we have an ACQ with a slide of 3 sec
and a range of 9 sec, we can store partial results every 3
sec, and perform the final aggregations on the 3 last saved
partial aggregations to get the answer for the last 9 sec. In
order to calculate the edge rate in WeaveShare after weaving
together n ACQs, we need a Bit Set of the length equal to
the LCM of all n slides. At first, the Bit Set is populated
with zeros. For each one of n ACQs we traverse the whole
Bit Set and mark all bits whose indexes are divisible by the
corresponding ACQ ’s slide with ones. If the bit was already
marked, the algorithm does nothing and just moves to the
next bit.

Example 2 Consider five stock monitoring ACQs with the
following slides: 2, 3, 4, 5, and 6. Their LCM is 60, therefore
we need a Bit Set of size 60. First, we traverse the Bit Set
and mark all indexes divisible by 2 (all even numbers up to
60). Now the Bit Set has 30 bits marked. Next we mark
all indexes that are divisible by 3. The Bit Set already has
40 bits marked (10 overlapped with already marked ones).
Next we mark all indexes that are divisible by 4. The Bit Set
still has 40 bits marked since all of the bits we were trying to
mark were already marked by a slide of 2. After repeating
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the same for slides of 5 and 6, we calculate how many bits
we have in our Bit Set, and the answer is 44. This method
is illustrated in the Figure 2.

To accelerate this calculation process we propose the For-
mula 1 (or F1):

LCMn

n∑
i=1

[(−1)i+1G1(n, i)] (2)

Where LCMn = LCM(s1, s2, . . . , sn), and function G1(n, i)
is a sum of the inversed LCMs of all possible groups of slides
of size i from a set of size n. For example:

G1(3, 2) =
1

LCM(s1, s2)
+

1

LCM(s1, s3)
+

1

LCM(s2, s3)

F1 can be expanded as follows:

LCMn[G1(n, 1)−G1(n, 2)+. . .±G1(n, n−1)∓G1(n, n)] (3)

Equation 3 is composed of an alternating series of function
G1 multiplied by the LCMn. LCMn·G1(n, 1) and represents
the number of all edges produced by all ACQs and therefore
includes all overlapping edges. The goal of the calculation
is to count every edge only once, even if it overlaps multiple
times in different ACQs. Therefore, the rest of the elements
of the series will eliminate all of the overlapping edges from
the current result. LCMn · G1(n, 2) represents the number
of edges that overlap in all different pairs of slides and after
subtracting it, we get a smaller number than the number
we are looking for, because there are potentially some edges
where more than two slides overlap at the same time. For
example, if slides a, b, and c overlap at some specific edge e,
we add it three times: for pairs (a, b), (a, c), and (b, c). The
following element LCMn · G1(n, 3) compensates for these
cases by adding back all edges that overlap in each set of
three slides. After adding it, we have again a larger num-
ber than the sought-after number, because we might have
four or more slides overlapping at the same edge. Therefore,
each element compensates for the previous ones’ inaccura-
cies up to the point when we add/subtract the final edge
of the composite slide, which clearly occurs only once, since
LCMn · G1(n, n) = LCMn

LCMn
= 1. The last added/subtracted

edge has an index equal to the LCMn.
Equation 3 is an alternating series and we know in advance

that the number of elements is always equal to the number
of ACQs in the execution tree and is a finite number. There-
fore, by definition, the sequence always converges.

The following is an example of using F1 to calculate the
number of edges:

Example 3 Consider the same set of stock monitoring
ACQs as we had in Example 1: slides are 2, 3, 4, 5, and 6.
As a first step of our algorithm we calculate the LCMn of
the whole set of slides. LCMn = LCM(2, 3, 4, 5, 6) = 60.
Next we substitute our values into Equation 11:

60 ·G1(5, 1)− 60 ·G1(5, 2) + 60 ·G1(5, 3)− 60 ·G1(5, 4) + 1

Every element is expanded as shown above. For example,
the expansion of element 60 · G1(5, 2) is as follows. (Note

Figure 3: F1 converging to the solution for 20 ACQs in 20
steps

that LCMab denotes LCM(a, b)).

60 ·G1(5, 2) =
60

LCM23
+

60

LCM24
+

60

LCM25
+

+
60

LCM26
+

60

LCM34
+

60

LCM35
+

60

LCM36
+

+
60

LCM45
+

60

LCM46
+

60

LCM56
= 70

Finally we have: 87− 70 + 36− 10 + 1 = 44
This answer matches the solution from Example 1.

Notice that the elements of the alternating series are in-
terchangeably increasing and decreasing the solution as we
approach the end of the calculation. For 20 different ACQs,
the calculation of overlapping edges using F1 consists of 20
addition operations, causing the total number to change as
depicted in Figure 3.

3.2 Case WITH Fragments
In case some of the ranges of the ACQs that are being

installed onto the DSMS are not divisible by their corre-
sponding slides, according to the Paired Window approach,
the slides should be broken into fragments. This enables us
to store partial aggregates for every fragment. For example,
if we have an ACQ with slide 5 sec and range 7 sec, the
slide is split into two fragments: f2 = 7 (mod 5) = 2 and
f1 = 5 − 2 = 3. Now we can store partial results for first 3
sec, then for following 2 sec, then again for the following 3
sec and so on.

In the original WeaveShare [8], in order to calculate the
edge rate after weaving together n ACQs with fragments,
we again need to work with a Bit Set of the length equal
to the LCM of all n slides. The Bit Set is pre-populated
with zeros again. For each ACQ we traverse the whole Bit
Set and mark bits corresponding to the times when partial
aggregations will happen with ones. If the bit was already
marked, the algorithm does nothing and just moves to the
next location.

Example 4 Consider four stock monitoring ACQs with the
following slides: 3, 4, 6, and 9. ACQs with slides of 4 and
6 consist of fragments (3, 1) and (2, 4) respectively. ACQs
3 and 9 do not have fragments. The overall LCM of all
slides together is 36, therefore we need a Bit Set of size 36.
First, we traverse the Bit Set and mark all indexes that are
divisible by 3 for the ACQ with a slide of 3 and no fragments.
Now the Bit Set has 12 bits marked. Next consider an ACQ
with a slide of 4 and fragments (3, 1). We traverse the Bit
Set by starting from 0 and adding fragment 3 followed by
fragment 1 repeatedly. Thus, the Bit Set will be marked at
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Figure 4: Marking edges produced by four different ACQs WITH fragments in the composite slide, represented by a Bit Set

Figure 5: (slide 3, shift 0) and (slide 6, shift 3) DO overlap,
but (slide 3, shift 0) and (slide 6, shift 2) DO NOT

indexes 3, 4, 7, 8, 11, 12, etc. Now there are 24 marked bits.
Next we continue to an ACQ with a slide of 6 and fragments
(2, 4). Again, we start at 0 and by adding 2 and 4 repeatedly
we mark the following bits: 2, 6, 8, 12, 14, etc., marking 27
bits in total. For the last ACQ with a slide of 9 and no
fragments, we traverse the Bit Set at increments of size 9
and mark each 9th bit with one. The total number of set
bits stays 27, because the last ACQ did not add any new
bits, therefore our answer is 27. This method is illustrated
in Figure 4.

To generalize F1 for both cases (if we do have ACQs
with fragments and if we do not) we introduce the notion
of shifts. Each ACQ that does not have fragments has a
shift of zero. Each ACQ that does have fragments must be
presented as two ACQs with the same slides, but different
shifts. First one has a shift of zero, and the second one has
a shift equal to the first fragment of the original ACQ .

When counting overlapping edges of ACQs, and when at
least one of their shifts is not zero, we can encounter two
different cases:

• ACQs overlap, and the number of common edges is the
same, as it would be if all of the ACQs’ shifts were zeros.

• ACQs do not overlap at all. Since the shifts are not
compatible, the number of common edges is zero.

Example 5 Assume two ACQs with slides of 3 and 6. If
their corresponding shifts are 0 and 3, there is an overlap-
ping edge every 6 time units. However, if the corresponding
shifts are 0 and 2, there are no overlapping edges. This is
illustrated in Figure 5.

To decide whether two ACQs q1 and q2 (if at least one
of them has non-zero shift) will overlap, we propose the fol-
lowing Overlap Check Formula based on GCD (Greatest
Common Divisor):

|q1.shift− q2.shift| mod GCD(q1.slide, q2.slide) (4)

• If the Overlap Check Formula resolves to zero then the
ACQs DO overlap

• Otherwise the ACQs DO NOT overlap

Proof of the Overlap Check Formula (by contradiction)
Assume that we have two ACQs q1 and q2, with correspond-
ing slides s1 and s2, and shift difference h. Assume further
that h mod GCD(s1, s2) 6= 0 and (for the sake of contra-
diction) the ACQs DO overlap. Let us denote all edges
produced by q1 as {e1−1, e1−2, . . . , e1−n}, and edges of q2 as
{e2−1, e2−2, . . . , e2−n}. Let us first look at the two ACQs
separately. Since every edge produced by q1 is divisible by
s1, and every edge produced by q2 is divisible by s2, and
both s1 and s2 are divisible by GCD(s1, s2) (by definition
of GCD), every edge produced by q1 and q2 is divisible by
GCD(s1, s2). Therefore, all edges that are not divisible by
GCD(s1, s2) cannot possibly overlap any of the edges pro-
duced by either q1 or q2. Without loss of generality, let us
consider q2 from the standpoint of q1. Then, all edges of q2
are shifted by h with respect to edges of q1, and they can
be written as follows: {e2−1 + h, e2−2 + h, . . . , e2−n + h}.
These edges should be divisible by GCD(s1, s2) in order for
them to overlap the edges of q1: {e1−1, e1−2, . . . , e1−n}. We
know that the edges {e2−1, e2−2, . . . , e2−n} are divisible by
GCD(s1, s2). However, by the initial assumption, the shift h
that is being added to them is not divisible by GCD(s1, s2).
Thus, edges {e2−1 + h, e2−2 + h, . . . , e2−n + h} cannot pos-
sibly be divisible by GCD(s1, s2). Therefore, none of the
edges of q2 can possibly overlap with the edges of q1. In
the case that h would actually be divisible by GCD(s1, s2),
all shifted edges of q2 that are divisible by s1 would overlap
with the edges of q1. However, the initial assumption states
that h is not divisible by GCD(s1, s2), which leads us to the
conclusion that the ACQs q1 and q2 do not overlap, which
is a contradiction. Hence, the initial formula is correct. �

Next we generalize our formula F1 for use in cases when
ACQs have fragments, and cases when none of the ACQs
have fragments. The general F1 is:

LCMn

n∑
i=1

[(−1)i+1G2(n, i)] (5)

Where again LCMn = LCM(s1, s2, . . . , sn), and function
G2 is the same as function G1, however all elements pro-
duced by G2 have to be checked with the Overlap Check
Formula for redundancy as described below. Prior to using
this formula, for each ACQ that has fragments, we create
two new ACQs: one of them has a shift of zero, another
one has a shift equal to the first fragment of the original
ACQ . All new ACQs are added back to the set of the origi-
nal ACQs replacing the originals. To calculate each G2 we
find all possible groups of size x from the new set of ACQs
just like in the case with no fragments. Some of these groups
are redundant because they do not have overlapping edges
(because of the shifts). To remove all redundant groups, we
check all possible pairs within each group using the Overlap
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Check Formula, and if any of the pairs return a non-zero
value, then the whole group is discarded. Otherwise, G2

is calculated and used the same way as in the case with
NO fragments. The generalized formula F1 still converges,
which can be proven using the same strategy as in the case
with no fragments.

Equation 5 expands into an alternating series likewise:

LCMn[G2(n, 1) −G2(n, 2) + . . .±G2(n, n− 1) ∓G2(n, n)] (6)

We show how Equation 6 works with the following example.

Example 6 Assume the same set of stock monitoring
ACQs as in Example 4: slides are 3, 4, 6, and 9, and
ACQs with slides of 4 and 6 consist of fragments (3, 1)
and (2, 4) respectively. As a first step of our algorithm we
calculate the LCMn of the whole set of slides. LCMn =
LCM(3, 4, 6, 9) = 36. Next we replace the ACQs that have
fragments with the ACQs that have corresponding shifts. In
our set we now have two ACQs with a slide of 4 (shifts 0
and 3), and two ACQs with a slide of 6 (shift 0 and shift 2).
The rest of the ACQs stay the same. We can substitute our
values into the generalized formula F1:

36 ·G2(6, 1) − 36 ·G1(6, 2) + 36 ·G1(6, 3) − 36 ·G1(6, 4)

The calculation is almost identical to the case with no frag-
ments, except every group produced by G2 has to be checked
with the Overlap Check Formula to see if it is redundant
or not. For example, the expansion of the second group is
shown below. Note that 3043 denotes a group of ACQs with
slides of 3 and 4 and shifts of 0 and 3, respectively. The
fractions that have been crossed out did not pass the test
with the Overlap Check Formula.

36 ·G1(6, 2) =
36

LCM3043

+
��

���36

LCM3062

+
36

LCM3090

+

36

LCM3040

+
36

LCM3060

+
�����36

LCM4362

+
36

LCM4390

+

��
���36

LCM4340

+
��

���36

LCM4360

+
��

���36

LCM6290

+
36

LCM6240

+

�
����36

LCM6260

+
36

LCM9040

+
36

LCM9060

+
36

LCM4060

= 26

Finally we have: 46− 26 + 8− 1 = 27
This solution matches the solution from Example 4.

3.3 F1 Optimization
Since we are using the Euclidean GCD algorithm for all

of our LCM calculations, we found that we can achieve a
significant additional speed up by utilizing the technique
of memorization. We adopted this technique by preloading
a table of GCDs into main memory before the execution
begins. If the user is willing to allocate b bytes of memory
to store the GCD table and each GCD takes g bytes of
memory, we can store in memory GCDs of all the possible
pairs of numbers up to

√
2b/g. In our implementation we

are using 8 byte numbers of the Long type for calculations,
so if we want to allocate 4 GB of main memory to store
GCDs, we can fit GCDs of all the pairs of numbers up
to 32, 768. If we calculate the GCD for numbers that are
larger than the above limit, the GCD table still save us
some time by taking advantage of the recursive nature of
the Euclidean algorithm. The effects of the optimization
are shown in Section 5.

4. COMPLEXITY ANALYSIS
In this section, we calculate the difference between the

complexities of Bit Set calculation and our F1 method.

Time Complexities To compare the time complexities we
start by identifying the initial calculations needed by both
algorithms. We denote the number of ACQs as n, and the
max slide as max. The following steps need to be done at
the beginning of both algorithms.

• Remove all duplicate slides, since the same slides produce
the same edges, and we do not want to repeat the same
calculation for every duplicate. This is done by sorting
slides with duplicate removal in n · logn time.

• Precalculate the LCMn, which is the LCM of all slides
and store it in the main memory. This operation takes
(n − 1) · log(max) at worst, since we need to perform
LCM operation pairwise n−1 times, and each LCM(a, b)
needs at worst log(min(a, b)) operations [21].

• Remove all slides that are multiples of other slides in-
cluded in the set. We do this because all edges produced
by such slides are already produced by their factors. This
can be done in n · (n−1)/2 operations since our slide set
is sorted, and for each subsequent slide we need to do a
number of comparisons that equals the number of com-
parisons performed by the previous slide minus one.

Therefore, precalculation takes n·logn+(n−1)·log(max)+
n·(n−1)/2 operations, however since it is performed by both
algorithms, we can ignore it for the matter of comparison.

After completing the initial computation, we now have
LCMn stored in main memory, and a set of slides which
does not contain any duplicates or multiples. Therefore, the
set can now only have either prime numbers or numbers for
which their multiples do not appear in the set.

To better illustrate differences in complexity we utilize
two different sets of slides:

• Working Set (Sw) is a set of slides that includes only
prime numbers and numbers that do not have their mul-
tiples in this set. This is a set produced after the initial
preparation and it is used in real working scenarios. An
example of a valid working set: Sw = 3, 5, 8, 14, . . . ,max.
|Sw| = n, and the maximum element is denoted as max.

• Auxiliary set (Sa) is a set of slides, that consists of se-
quential numbers. Sa = 1, 2, . . . , n. |Sa| = n, and the
maximum value max equals n. Note that this set con-
tains all natural numbers from one to n, including multi-
ples of other numbers from this set. It is still a valid set
for our computation, and can be obtained by skipping
the preliminary optimization that removes all multiples.

Next we show that the lower bound of the Bit Set calcula-
tion is higher than the upper bound of the F1 computation.

The complexity of the Bit Set calculation is:

n∑
i=1

LCMn

si
(7)

Where LCMn = LCM(s1, s2, . . . , sn). The complexity
holds since for each of n ACQs we would need to traverse
the whole Bit Set, whose length is equal to the LCM of all
slides of all ACQs, with a step equal to each ACQ ’s slide.
We can expand the Equation 7 to the following:

LCMn · (
1

s1
+

1

s2
+ . . .+

1

sn
) (8)
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First, we perform complexity analysis using the Auxiliary
set Sa. Let us focus on the first part of the product in Equa-
tion 8: LCMn. We know that the LCM of all numbers in
this set is the product of the highest prime powers occurring
in the set. The log of the LCM is therefore the sum of the
logs of the prime powers in the set:

log(LCMn) =

n∑
i=2

f(i) (9)

wheref(i) =

{
log(p) if i = pm, wherem ≥ 1 & p is prime

0 Otherwise

This sum has significance in the Prime Number Theorem
and it is well known to be asymptotically equal to en [23].

Next we focus on the second part of the product in Equa-
tion 8: ( 1

s1
+ 1

s2
+ . . . + 1

sn
). Since our set only has se-

quential numbers from one to n, this part will look like:
( 1
1

+ 1
2

+ . . .+ 1
n

), which is a classic example of a diverging

harmonic series
∑∞

n=1
1
n

. For any n, this series can be cal-

culated as follows:
∑∞

n=1
1
n

= ln(k) + γ + εk, where γ is the

Euler-Mascheroni constant (γ ≈ 0.577) and εk ∼ 1
2k

, which
approaches zero as k goes to infinity[22]. For our purposes,
since γ is a constant and εk is negligible, they are ignored.
Also, we can say that time complexity en · ln(n) is asymp-
totically equal to en, therefore we can assume asymptotical
time complexity of the Bit Set computation for set Sa is en.

When we use set Sw, the time complexity for LCMn is
larger than when using set Sa. This is true because we
replace n sequential numbers that start from 1 with n non-
duplicate primes and non-multiples, which are larger and
have a larger total LCM . The time complexity for the part∑n

i=1
1
si

becomes smaller, because we are increasing num-

bers in the denominator, however it is still insignificant, be-
cause even in the worst case we can lower bound it with
ln(max) − ln(max − n). Thus, the time complexity of the
Bit Set computation for the working set Sw is at least en.

To calculate the complexity of F1, we need to determine
the number of operations that need to be performed based
on the size of the input. First, we know that the number of
elements in our alternating series is equal to the number of
ACQs in the set. Let us take Equation 3 and expand LCMn

into the parentheses:

LCMn ·G1(n, 1)− LCMn ·G1(n, 2) + . . .

±LCMn ·G1(n, n− 1)∓ LCMn ·G1(n, n)
(10)

As we previously mentioned, LCMn·G1(n, n) = 1, therefore:

LCMn ·G1(n, 1)− LCMn ·G1(n, 2) + . . .

± LCMn ·G1(n, n− 1)∓ 1
(11)

To determine how many groups will be produced by each
one of these elements we use binomial coefficients. Each el-
ement of type LCMn · G1(n, k) therefore produces

(
n
k

)
of

distinct k-element groups of type LCMn
LCMk

, where LCMk =

LCM(s1, s2, . . . sk). Therefore, the total number of all of
these groups is:

(
n
1

)
+
(
n
2

)
+
(
n
3

)
+ . . .+

(
n

n−1

)
+
(
n
n

)
. By the

additive property of binomial coefficients, this sum equals
2n − 1. Next we determine how many calculations are per-
formed in each group. The numerator of all groups is LCMn

and since it is kept in main memory, we do not need to re-
calculate it every time. The denominator is LCMk, and it

Figure 6: Number of operations needed by Bit Set and F1
for plan generation. Top labels show BitSet/F1 ratio

is determined by calculating the LCM of the first two el-
ements, and then iteratively calculating the LCMs of the
resulting number with the rest of the elements in the group.
Therefore, for each group we need to perform k−1 LCM cal-
culations, and one calculation to add the group to the total
number, which makes k calculations total. Since each group
with k elements needs k calculations, the total number of
calculations needed for all groups becomes: 1

(
n
1

)
+ 2
(
n
2

)
+

3
(
n
3

)
+ . . .+ (n− 1)

(
n

n−1

)
+ n

(
n
n

)
. This resolves to 2n−1· n,

which can be calculated by taking the generalization of bi-
nomial series: (1+x)a =

∑∞
k=0

(
a
k

)
·xk and differentiating it

with respect to x and then substituting x = 1 [20]. Due to
the use of the Euclidean algorithm to calculate the LCM ,
the complexity of each LCM calculation is log(min(a, b)) at
most [21]. Therefore, at worst F1 has a time complexity of
2n−1 · n · log(max), which asymptotically equals 2n.

Thus, we have determined that the Bit Set calculation
has a time complexity of at least en, and F1 has a time
complexity of at worst 2n. Clearly, when n goes to infinity,
it is increasingly beneficial to use F1 versus Bit Set.

Additionally, since we have calculated the formulas for
determining the exact number of operations done by both
Bit Set and F1, we can compare the increase in the amount
of operations performed by Bit Set and F1 with the increase
of the number of input ACQs. The comparison is shown
in Figure 6. ACQs for this comparison were sequentially
drawn from the Auxiliary set (Sa) introduced above. Note
that since the difference between Bit Set and F1 operation
numbers is drastic and grows exponentially we had to use
a logarithmic scale to still see the operations of F1. This
comparison shows that F1 is much more scalable than Bit
Set in terms of the number of operations required.

Space Complexities The space complexity of the Bit Set
calculation is LCMn, since we have already shown that the
Bit Set grows at the rate of en. The space complexity of the
F1 calculation is O(1) (constant) since it does not require
storing edges. Edge overlaps are calculated strictly math-
ematically. Since F1 expands into a sum, we only need to
keep one number in memory, which is increased or decreased
by the elements of the alternating series sequentially. The
improvement in space complexity is extremely important for
the WeaveShare algorithm, since the leading cause of its fail-
ures with large workloads is “out of memory” errors.
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5. EXPERIMENTAL EVALUATION
In this section, we summarize the results of our experi-

mental evaluation of the scalability of F1 in terms of the
size of the input set of the ACQs, the diversity of their time
properties, and the input rate of the data stream.

5.1 Experimental Testbed
In order to show the significance of our Weavability cal-

culation optimization we built an experimental platform in
Java. Specifically, we implemented the WeaveShare opti-
mizer as described in [8] with different options for calculat-
ing Weavability. Our workload is composed of a number of
ACQs with different characteristics. We are generating our
workload synthetically in order to be able to fine-tune sys-
tem parameters and get a more detailed sensitivity analysis
of the optimizer’s performance. Moreover, it allows us to
target possible real-life scenarios and analyze them.

Our system’s experimental parameters are:
[Algorithm] specifies which technique is used for Weav-
ability calculations. The available techniques are: (a) Bit
Set (BS), (b) Formula 1 (F1), and (c) Formula 1 + Opti-
mization (F1 +Opt). The F1 +Opt technique uses a 4 GB
table for keeping GCDs in main memory.
[Qnum] Number of ACQs. We assume that all ACQs are
installed on the same data stream and their aggregate func-
tions allow them to share partial aggregations among them.
The actual function does not have any effect on performance
other than the ability to share partial aggregations.
[Smax] Maximum slide length, which provides an upper
bound on how large slides of our ACQs can be. The mini-
mum slide allowed by the system always equals one.
[λ] The input rate, which describes how fast tuples arrive
through the input stream in our system.
[Zskew] Zipf distribution skew, which depicts the popularity
of each slide length in the final set of ACQs. A Zipf skew of
zero produces uniform distribution, and a greater Zipf skew
is skewed towards large slides (for more realistic examples).
[Ωmax] Maximum overlap factor, which defines the upper
bound for the overlap factor. The overlap factor of each
ACQ is drawn from a uniform distribution between one and
the maximum overlap factor.
[Gen] Generator type, which defines whether our workload
is normal (Nrm) and includes any slides, or diverse (Div)
and includes only prime slides.

5.2 Experimental Results
To test the scalability of our approaches F1 and F1+Opt

versus BS in terms of the parameters Qnum, Smax, λ, Zskew,
and Ωmax, we ran five experiments, where we varied each one
of these parameters while keeping the rest of them fixed. The
parameters were selected separately for each experiment in a
way that would highlight the differences in the scalabilities of
the three approaches the best. The experimental parameters
are specified in the Table 1.

All results are taken as averages of running each experi-
ment five times. Please note that since F1 and F1 + Opt
showed to have significantly smaller runtimes compared to
BS, we had to use logarithmic scale to be able to display
all techniques’ performances in the same graphs.

We ran all our experiments on a dual Intel(R) Xeon(R)
CPU E5-2650 v2 @ 2.60GHz server with 96 GB of RAM.

Exp 1: Number of ACQs Scalability (Figure 7)
In this test we varied the Qnum from 100 to 1,000,000.

Table 1: Experiment Parameters

# Qnum Smax λ Zskew Ω Gen

1 100 - 1M 1K 0.002 0.5 10 Nrm
2 1K 100-10K 1 3 100 Div
3 1K 100 100-1M 1 1K Nrm
4 50 500 0.1 0-100 100 Nrm
5 1K 600 1 3 100-1 Div

Figure 7: Exp 1 Scalability of the number of ACQs

Figure 8: Exp 2 Scalability of the maximum slide length

Clearly, increasing the Qnum also increases the amount of
required calculations, causing higher runtimes for all three
algorithms. The results are depicted in Figure 7. The Bit Set
approach did not finish execution, because after we crossed
Qnum of 550 it started running out of memory (on a 96GB
RAM machine) and eventually crashed (on all runs). Oth-
erwise, the growth rates of these techniques are similar to
what we expected from the theoretical analysis of the time
complexities of their underlying algorithms. The statistics
show that our techniques’ runtimes are on average 350 times
faster than runtimes of BS with a maximum of 790 times,
and our techniques are able to scale up to 1,000,000 ACQs
on this setting without running out of memory. Also, the
F1 +Opt plan outperformed the F1 plan by approximately
28% on average, validating our optimization expectations.

Exp 2: Max Slide Scalability (Figure 8)
In this test we varied the Smax from 100 to 10,000. Similarly
to Exp 1, increasing the Smax also increases the amount of
required calculations. This happens because with a higher
max slide parameter, the generated ACQs have longer slides,
which results in higher LCMs and fewer overlapping edges.
In Figure 8 we see that the BS approach did not finish
execution again after we crossed Smax of 800 because of the
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Figure 9: Exp 3 Scalability of the input rate

Figure 10: Exp 4 Sensitivity to the zipf distribution skew

Figure 11: Exp 5 Sensitivity to the maximum overlap factor

“out of memory” error. The growth rates of our techniques
however are again similar to what we expected from our
theoretical analysis of their time complexities. Our proposed
techniques’ runtimes in this experiment are on average 2,200
times faster than runtimes of BS with a maximum of 10,000
times, and our techniques are able to scale up to the Smax of
10,000 ACQs on this setting and finish the plan generation
successfully. The F1 + Opt plan outperformed the F1 plan
by an average of 18%.

Exp 3: Input Rate Scalability (Figure 9)
In this test we varied λ from 100 to 100,000. Increasing λ
also increases the amount of required calculations because
with higher input rates, according to the Equation 1, it be-
comes more beneficial to combine more execution trees. This
forces WeaveShare to combine some trees with different time
properties that would not have been combined if the input
rate was lower. Thus, increasing λ leads to higher LCMs

and higher runtimes. The average number of execution trees
formed at the end of the plan generation is 71 when λ = 100,
29 when λ = 400, 15 when λ = 900, 4 when λ = 10, 000
and 1 when λ = 100, 000 or 1,000,000. The fact that at
some λ all trees get merged into one explains why runtimes
stop increasing after this λ. In this setting it happened at
λ = 100, 000 (see Figure 9). In this experiment the BS ap-
proach crashed when λ reached 900, and the average number
of trees at that point was 15. Our approaches demonstrated
good scalability again and were able to increase input rate
to the point where all trees are Weaved into one. On aver-
age our techniques ran 3,800 times faster than BS with a
maximum of 16,000. The F1 + Opt plan outperformed the
F1 plan by the average of 19%.

Exp 4: Slide Skew Sensitivity (Figure 10)
In this test we varied the Zskew from 0 to 100. This ex-
periment is similar to the max slide scalability experiment,
because in both experiments we are gradually increasing the
amount of ACQs with large slides and therefore increasing
the amount of required calculations. The difference is that,
when skewing all slides drawn from the same set to the larger
side, at some point they start repeating, which then reduces
the amount of the required calculations. In our experiment
(see Figure 10) we first observe the initial increase in the
amount of computation, which leads the BS approach to
crash with an “out of memory” error (at Zskew = 2.25), and
then we see gradual decrease in computation, because there
are many repeating slides in the input set. In this setting our
proposed techniques’ runtimes are on average 14,000 times
faster than runtimes of BS with a maximum of 60,000 times,
and our techniques are able to scale up to the Zskew of 100
and finish the plan generation successfully. The F1 + Opt
plan outperformed the F1 plan by the average of 18% again.

Exp 5: Overlap Factor Sensitivity (Figure 11)
In this test we varied the Ω from 100 to 1. We did it in
reverse order since its value is inversely proportional to the
amount of computation required to generate an execution
plan using WeaveShare. Based on Equation 1 we can see
that smaller Ωs benefit the total cost if their corresponding
ACQs are combined to fewer execution trees, which causes
WeaveShare to Weave more trees with different time prop-
erties together. In our experiment (see Figure 11) the BS
approach crashed when Ω reached 40. Our approaches again
demonstrated good scalability and were able to finish the
plan generation successfully even with the minimum value
of Ω = 1. On average our techniques ran 5,600 times faster
than BS with a maximum of 16,000. The F1 + Opt plan
outperformed the F1 plan by the average of 26%.

Experimental Results Summary Clearly, the above ex-
perimental results show that our techniques F1 and F1+Opt
deliver the best performance in terms of plan generation
runtimes and scalability, while producing same high quality
execution plans as the original WeaveShare optimizer. The
results of our experiments are summarized in Table 2.

6. RELATED WORK
Techniques for the efficient processing of ACQs could be

broadly classified into techniques for: 1) the implementation
of the continuous aggregation operator, and 2) the multi-
query optimization of multiple continuous aggregate queries.

Under the operator implementation techniques, partial ag-
gregation has been proposed to minimize the repeated pro-
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Table 2: Experimental Results

Experiment Best Achieved Runtime: BS/F1 F1 vs
# Param BS F1 Avg Max F1 +Opt

1 Qnum 550* 1M 350 790 28%
2 Smax 800* 10K 2,200 10,000 18%
3 λ 900* 1M 3,800 16,000 19%
4 Zskew 2.25* 100 14,000 60,000 18%
5 Ω 40* 1 5,600 16,000 26%

*Execution stopped with “out of memory” exception

cessing of overlapping data windows within a single aggre-
gate (e.g., [12, 13, 6, 11, 24, 25, 18]) by processing each input
tuple only once. As discussed in Section 2, ACQ process-
ing is typically modeled as a two-level (i.e., two-operator)
query execution plan. In order to minimize the cost of final
aggregation, TriOps [7] uses intermediate function levels to
pipeline partial aggregates to final-aggregate functions.

Under the multi-query optimization techniques, the gen-
eral principle is to minimize the repeated processing of over-
lapping operations across multiple aggregate queries. This
repetition occurs when queries exhibit an overlap in at least
one of the following specifications: 1) predicate conditions,
2) group-by attributes, or 3) window settings.

Techniques leveraging overlaps in predicates and group-by
attributes across ACQs are similar to classical multi-query
optimization [16] that detects common subexpressions.

Techniques leveraging shared processing of overlapping
windows across ACQs emerged with the paradigm shift for
continuous queries. Shared time slices (SLS) [11] is one such
a technique, which was also extended into shared data shards
in order to share the processing of varying predicates, in ad-
dition to varying windows. Orthogonally, [15] extends classi-
cal subsumption-based multi-query optimization techniques
towards sharing the processing of multiple ACQs with vary-
ing group-by attributes and similar windows.

Like SLS, WeaveShare [8] optimizes the shared processing
of ACQs with varying windows by selectively partitioning
them into execution trees resulting in a dramatic reduction
in total processing costs. WeaveShare was also applied in
distributed environments [17].

In [5], a demonstration of implementing event monitor-
ing applications using the modified Hadoop framework was
presented. Along the same lines are schemes for scaling op-
erators/queries out when nodes get overloaded [9, 10].

7. CONCLUSIONS
The main contribution of this paper is a novel closed for-

mula, F1, for accelerating Weavability calculations required
for determining the best execution plans for sharing partial
aggregations of ACQs. Our approach replaces the counting
of the edges within a Bit Set with mathematical compu-
tation. We proved theoretically that F1 significantly de-
creases the number of operations required for the execution
plan generation while reducing the algorithm’s space con-
sumption to the bare minimum. We showed experimentally
that the F1 approach achieves up to 60,000 times faster plan
generation times compared to the current state of the art,
and is able to achieve much better scalability in terms of
the number of input ACQs, their diversity, and the input
rate of the data stream. It should be noted that F1 can
reduce the computation time of any optimization technique
that requires scheduling partial aggregations within compos-
ite slides of multiple ACQs.
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