®

Check for
updates

Processing of Aggregate Continuous Queries
in a Distributed Environment

Anatoli U. Shein®®, Panos K. Chrysanthis, and Alexandros Labrinidis

Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA 15260, USA
{aus,panos,labrinid}@cs.pitt.edu

Abstract. Data Stream Management Systems (DSMSs) performing online ana-
Iytics rely on the efficient execution of large numbers of Aggregate Continuous
Queries (ACQs). In this paper, we study the problem of generating high qual-
ity execution plans of ACQs in DSMSs deployed on multi-node (multi-core and
multi-processor) distributed environments. Towards this goal, we classify opti-
mizers based on how they partition the workload among computing nodes and
on their usage of the concept of Weavability, which is utilized by the state-of-
the-art WeaveShare optimizer to selectively combine ACQs and produce low cost
execution plans for single-node environments. For each category, we propose an
optimizer, which either adopts an existing strategy or develops a new one for
assigning and grouping ACQs to computing nodes. We implement and exper-
imentally compare all of our proposed optimizers in terms of (1) keeping the
total cost of the ACQs execution plan low and (2) balancing the load among the
computing nodes. Our extensive experimental evaluation shows that our newly
developed Weave-Group to Nodes (WGry) and Weave-Group Inserted (WGy)
optimizers produce plans of significantly higher quality than the rest of the opti-
mizers. WGry minimizes the total cost, making it more suitable from a client
perspective, and WGy achieves load balancing, making it more suitable from a
system perspective.

1 Introduction

Nowadays, more and more applications are becoming available to wider audiences,
resulting in an increasing amount of data being produced. A large volume of this gen-
erated data often takes the form of high velocity streams. At the same time, online data
analytics have gained momentum in many applications that need to ingest data fast and
apply some form of computation, such as predicting outcomes and trends for timely
decision making.

In order to meet the near-real-time requirements of these applications, Data Stream
Management Systems (DSMS) [4,5,18,24,25] have been developed to efficiently pro-
cess large amounts of data arriving with high velocities in the form of streams. In
DSMSs, clients register their analytics queries, which consist of one or more Aggre-
gate Continuous Queries (ACQs). ACQs continuously aggregate streaming data and
periodically produce results such as max, count, sum, and average.

(© Springer Nature Switzerland AG 2019
M. Castellanos et al. (Eds.): BIRTE 2015/2016/2017, LNBIP 337, pp. 45-62, 2019.
https://doi.org/10.1007/978-3-030-24124-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24124-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-24124-7_4

46 A. U. Shein et al.

A representative example of online analytics can be found in stock market web
applications where multiple clients monitor price fluctuations of stocks. In this setting, a
system needs to be able to answer analytical queries (i.e., average stock revenue or profit
margin per stock) for different clients, each one with potentially different relaxation
requirements in terms of accuracy.

Another example is the monitoring of personal health data (e.g., heart beats per
minute) and physical activity data (e.g., number of steps walked, number of miles ran)
of individuals, along with location and environmental data (e.g., barometric pressure),
generated by devices such as Fitbit, Apple iWatch, etc. This data serves as input to a set
of monitoring applications, which are implemented as ACQs that may execute for a user
or on behalf of a user such as by the user’s primary care physician or health insurance
companies to which the user may have only allowed aggregate-level queries.

The accuracy of an ACQ can be thought of as the window in which the aggregation
takes place and the period at which the answer is recalculated. Periodic properties that
are used to describe ACQs are range (r) and slide (s) (sometimes also referred to as
window and shift [13], respectively). A slide denotes the interval at which an ACQ
updates its result; a range is the time window for which the statistics are calculated. For
example, if a stock monitoring application has a slide of 3 s and a range of 5 s, it means
that the application needs an updated result every 3 s, and the result should be derived
from data accumulated over the past 5s.

DSMSs are required to maintain ACQs’ state over time, while performing aggrega-
tions. ACQs with a larger range will have a higher cost to maintain its state (memory)
and compute its results (CPU). The most space and time efficient method to compute
aggregations is to run partial aggregations on the data while accumulating it, and then
produce the answer by performing the final aggregation over the partial results (Sect. 2).

In order to cope with the sheer volume of information, enterprises move to dis-
tributed processing infrastructures such as local clusters or the Cloud. The deployment
of DSMSs to Cloud results in multi-tenant settings, where multiple ACQs with even
more diverse periodic properties are executed on the same hardware.

Problem Statement. It is safe to say that the efficiency of DSMSs deployed on multiple
multi-core computing nodes depends on the intelligent collocation of ACQs operating
on the same data streams and calculating similar aggregate operations. If such ACQs
have similarities in their periodic properties, the opportunity to share final and partial
results arises, which can reduce the overall processing costs.

Typically, the number of ACQs with similar aggregation types for a given data
stream can be overwhelming in online systems [5]. Therefore, it is crucial for the system
to be able to make decisions quickly on combining different ACQs in such a way that
would benefit the system. Unfortunately, this has been proven to be NP-hard [27], and,
currently, only approximation algorithms can produce acceptable execution plans. For
instance, the state-of-the-art WeaveShare optimizer [12], which selectively combines
ACQs and produces high quality plans, is theoretically guaranteed to approximate the
optimal cost-savings to within a factor of four for practical variants of the problem [8].

Under these circumstances, it is vital to develop efficient data sharing schemes
among ACQs that lead to an effective assignment of ACQs to computing nodes.

Our Approach. The state-of-the-art WeaveShare optimizer is a cost-based ACQ
optimizer that produces low cost execution plans by utilizing the concept of

Processing of Aggregate Continuous Queries in a Distributed Environment 47

Weavability [12]. Since WeaveShare is targeting single-node DSMSs, it is oblivious to
distributed processing capabilities, and as our experiments have revealed, WeaveShare
cannot produce ACQ execution plans of equivalent cost that can be assigned to the var-
ious computing nodes. This motivated us to address the problem of generating high
quality execution plans of ACQs in DSMSs deployed on multi-node (multi-core and
multi-processor) distributed environments with a Weavability-based optimizer.

Formally, given a set 2 of all ACQs submitted by all clients and a set .4 of all
available computing nodes in the distributed DSMS, our goal is to find an execution
plan 2(2, .4,) that maps 2 to A" (£ — A4") and generates a set .7 of local ACQ
execution trees per node, such that the total cost of the ACQs execution is low and the
load among the computing nodes is balanced.

The rationale behind these two optimization criteria is (Sect. 3):

e Minimizing the total cost of the execution plan allows the system to support more
ACQEs. In the case of the Cloud, since Cloud providers charge money for the com-
putation resources, satisfying more client requests using the same resources results
in less costly client requests.

e Balancing the workload among computation nodes saves energy while still meeting
the requirements of the installed ACQs, which directly translates to monetary savings
for the distributed infrastructure providers. Additionally, it is advantageous for the
providers to maintain load balancing, because it prevents the need to over-provision
in order to cope with unbalanced workloads.

Contributions. We make the following contributions:

e We explore the challenges of producing high quality execution plans for distributed
processing environments and categorize possible ACQ optimizers for these environ-
ments based on how they utilize the concept of Weavability for cost-based optimiza-
tion as shown in Table 1 (Sect. 4).

e We propose an ACQ optimizer for each category. These optimizers either adopt an
existing strategy or develop a new one for assigning and grouping ACQs to comput-
ing nodes. (Sects. 5 and 6)

e We experimentally evaluate our optimizers and show that our newly developed
Weave-Group to Nodes optimizer is the most effective in terms of minimizing the
total cost of the execution plan, making it more suitable from the clients’ perspective,
and our Weave-Group Inserted optimizer is the most effective in terms of achieving
load balance, making it more suitable from a system perspective. Both produce qual-
ity plans that are orders of magnitude better than the other optimizers (Sect. 7).

2 Background

In this section we briefly review the underlying concepts of our work, namely partial
aggregation and Weavability.

Partial aggregation was proposed to improve the processing of ACQs [10,15-17].
The idea behind partial aggregation is to calculate partial aggregates over a number of
partitions, then assemble the final answer by performing the final aggregation over these

48 A. U. Shein et al.

aggregates. As opposed to partial aggregation in traditional database systems where
partitioning is value-based, partial aggregation in DSMSs uses time-based (or tuple-
based) partitioning.

Partial aggregations, as shown in Fig. 1, are implemented as two-level operator
trees, consisting of the partial- or sub-aggregator and the final-aggregator. The Paired
Window technique, [15], also shown in Fig. 1, is the most efficient implementation of
partial aggregations. This technique does not assume any relation between range and
slide and uses two fragment lengths, g; and g, where g = range%slide and g, =
slide — g, . Partial aggregations are computed at periods of fragment g; and fragment g»
interchangeably.

Aggregate Result F(S(g,),5(2,).5(g1)
Range (r)

: Range (r) Final-aggregate F()

Slide (s) Slide (s) s

[IRNRRNRRRARERRRARERERD
i Y Y

g & g & & & &

g1 =(r%s) 8=(-g)

Fig. 1. Paired Window technique

Shared Processing of ACQs. Several processing schemes, as well as multiple ACQ
optimizers, utilize the Paired Windows technique [12,15]. To show the benefits of shar-
ing partial aggregations, consider the following example:

Example 1. Assume two ACQs that perform count on the same data stream. The first
ACQ has a slide of 2s and a range of 65, the second one has a slide of 4s and a range
of 8 sec. That is, the first ACQ is computing partial aggregates every 2 s, and the second
is computing the same partial aggregates every 4 s. Clearly, the calculation producing
partial aggregates only needs to be performed once every 2 s, and both ACQs can use
these partial aggregates for their corresponding final aggregations. The first ACQ will
then run each final aggregation over the last three partial aggregates, and the second
ACQ will run each final aggregation over the last 4 partial aggregates.

To determine how many partial aggregations are needed after combining n ACQs,
we need to first find the length of the new combined (composite) slide, which is the
Least Common Multiple (LCM) of all the slides of combined ACQs. Each slide is then
repeated LCM /slide times to fit the length of the new composite slide. All partial aggre-
gations happening within each slide are also repeated and marked in the composite slide
as edges (to mark the times at which partial aggregations will be happening). If two
ACQs mark the same location, it means that location is a common edge.

To count how many partial aggregations (edges) are scheduled within the composite
slide we can use either the Bit Set technique [12] or the Formula F1 technique [23].

Processing of Aggregate Continuous Queries in a Distributed Environment 49

Weavability. [12] is a metric that measures the benefit of sharing partial aggregations
between any number of ACQs. If it is beneficial to share computations between these
ACQs, then these ACQs are known to weave well together and are combined into the
same shared execution tree. Intuitively, two ACQs weave perfectly when their LCM
contains only common edges.

The following formula can be used to calculate the cost (C) of the execution plan
before and after combining ACQs from their own trees into shared trees. The difference
between these costs tells us if the combination is a good choice.

m
C=mi+ Y EL; (1)
i=1
Where m is the number of the trees in the plan, A is input rate in tuples per second, E;
is Edge rate of tree i, and £; is the overlap factor of tree i. Edge rate is the number of
partial aggregations performed per second, and the overlap factor is the total number of
final-aggregation operations performed on each fragment.

The WeaveShare optimizer utilizes the concept of Weavability to produce an execu-
tion plan for a number of ACQs. It selectively partitions the ACQs into multiple disjoint
execution trees (i.e., groups), resulting in a dramatic reduction in total query plan pro-
cessing cost. WeaveShare starts with a no-share plan, where each ACQ has its own
execution tree. Then, it iteratively considers all possible pairs of execution trees and
combines those that reduce the total plan cost the most into a single tree. WeaveShare
produces a final execution plan consisting of multiple disjoint execution trees when it
cannot find a pair that would reduce the total plan cost further.

3 System Model and Execution Plan Quality

In this paper, we assume a typical DSMS deployed over a set of servers (i.e., computing
nodes). These servers can be a local cluster or on the Cloud and are capable of executing
any ACQs using partial aggregation. Submitted ACQs are assumed to be independent of
each other and have no affinity to any server. Furthermore, without a loss of generality,
we target ACQs that perform similar aggregations on the same data stream.

In a single node system, the main metric defining the quality of an execution plan is
the Cost of the plan. The Cost of the plan is measured in operations per second. That is,
if the plan cost is X, then we would need a server that can perform at least X operations
per second in order to execute this plan and satisfy all users by returning the results of
their ACQs according to their specified range and slide.

In the context of the distributed environment, we have to split our workload between
the available nodes. Since our workload consists of ACQs, we can assign them to the
available computing nodes in the system and group them into execution trees within
these nodes. Thus, in any distributed environment, the Total Cost of a plan P is calcu-
lated as a sum of all costs C; (according to the Eq. 1) of all n nodes in the system:

n
TotalCost(P) = Y C;
i=1

50 A. U. Shein et al.

Table 1. Optimizer categories

Optimizers
Non-Cost-based Cost-based
Random |Round Robin|to Lowest|to Nodes|inserted
Group Only | Granp GRr GrL - -
Categories| Weave Only | Wranp Wgr Wrr Wry Wi
Weave + Group|W Granp WGRrr WGrr | WGrny | WGt

This metric is important for the Cloud environment, because lowering the total cost T
allows DSMSs to handle larger numbers of different ACQs on the same hardware, which
in turn can potentially lower the monetary cost of each ACQ for the clients.

Another important metric in a distributed environment is the Maximum node cost of
all computational nodes. The maximum node cost of a plan P is calculated by finding
the highest cost C; of all n nodes in the system:

MaxCost(P) = Max}C;

Minimizing the Max Cost is vital for distributed DSMSs with heavy workloads. In such
a case, if we optimize our execution plans purely for the Total Cost, due to the heavy
workload, the Max Cost can become higher than the computational capacity of the
highest capacity node in the system, and the system will not be able to accommodate
this execution plan. Furthermore, it is advantageous for the providers to maintain load
balancing, because it prevents the need for over-provisioning in order to cope with
unbalanced workloads.

Additionally, good load balancing could enable power management that executes
ACQs at lower CPU frequency. This could lead to significant energy savings, ergo mon-
etary savings, given that the energy consumption is at least a quadratic function of CPU
frequency [26].

4 Taxonomy of Optimizers

As mentioned in the Introduction, in order to structure our search for a suitable multi-
ACQ optimizer for a distributed DSMS in a systematic way, we categorize possible ACQ
optimizers based on how they utilize the concept of Weavability for both non-cost-based
and cost-based optimization. This taxonomy is shown in Table 1. Below, we highlight
the underlying strategy of each category.

Group Only. This category allows for the grouping of ACQs on different computation
nodes. No sharing of final or partial aggregations between ACQs is allowed. Optimiz-
ers in this category are expected to be effective in environments where sharing partial
aggregates is counter productive, for example, when there are no similarities between
periodic properties of ACQs. Even though there is no sharing between ACQs in this cat-
egory, it is still essential to maintain the load balance between computation nodes in a
distributed environment. Since node costs in this case are calculated trivially by adding
together separate costs of ACQs running on this node, there can be many analogies
(such as CPU scheduling in OS) to optimizers from this category.

Processing of Aggregate Continuous Queries in a Distributed Environment 51

Weave Only. This category allows the sharing of final and partial aggregations between
ACQs. The Weavability concept is used in this category to generate the number of exe-
cution trees matching the number of available nodes. As a result, only one execution
tree can be present on each computation node in the resulting plan. Optimizers in this
category are expected to be effective in the environments where partial result sharing
is highly advantageous, for example, if the submitted ACQs all have similar periodic
properties (ACQ slides are the same or multiples of each other).

Weave and Group. This category allows both the sharing of aggregations between
ACQs within execution trees and the grouping of them on different computation nodes.
Thus, multiple execution trees can be present on any node. Optimizers in this category
are attempting to be adaptive to any environment and produce high quality execution
plans in different settings by collocating and grouping ACQs in an intelligent way.

5 Non-Cost-Based Optimizers

In this section, we provide the details on the Non-Cost-based optimizers, which we
further classified as Random and Round Robin optimizers. Random and Round Robin
optimizers iterate through a set of input ACQs, selecting a node for each ACQ in a
random or round robin fashion respectively.

Depending on the way ACQs on a node are woven,

o Granp & Ggg (GroupOnly) add the ACQs to the selected node as a separate tree.

o Wranp & Wrr (WeaveOnly) weave the ACQs into a single, shared tree on the node.

o WGranp & WGgrr (WeaveandGroup) choose (in random or round robin fashion)
whether to add this ACQ as a separate tree, or to weave it with one of the available
trees on this node.

6 Cost-Based Optimizers

In this section, we provide the details on the second class of optimizers: Cost-based
optimizers (Table 1), which includes three categories: “To Lowest”, “To Nodes”, and
“Inserted”. Note that no representatives for the “Group Only — Insert” and “Group Only
— To Nodes” categories are listed in Table 1 because in both cases the representative is
effectively G, without weaving. In all optimizers, we consider the initial cost of each
node to be zero.

6.1 Category “To Lowest”

Optimizers in this category follow the “To Lowest” algorithm shown in Algorithm 1.

Group to Lowest (Gr.). This optimizer is a balanced version of a No Share generator,
which assigns each ACQ to run as a separate tree and that are then assigned to available
nodes in a cost-balanced fashion.

Algorithm: The trees are first sorted by their costs, then, starting from the most expen-
sive one, each tree is assigned to the node that currently has the lowest total cost.

52 A. U. Shein et al.

Algorithm 1. The “To Lowest” Algorithm
Input: A set of O Aggregate Continuous Queries, N computation nodes, and Category
Output: Execution plan P
Create an execution tree (¢1,12,...,p) for each query

Calculate costs for all execution trees (cq,¢3,...,¢0)
Sort all execution trees from expensive to cheap
Assign N most expensive trees to N nodes (ny,na,...,ny) > assign one tree per node
T—Q—-N > T is the number of remaining trees to be grouped/weaved
fori=0t T do > iterate over the trees until all are grouped/weaved to nodes
MinNode — findMinNode() > determine the node with the current smallest cost
switch Category do
case GroupOnly > each node can have multiple trees
group(t;,MinNode) > group #; as a separate tree to MinNode
case WeaveOnly > each node can have only one tree
weave(t;, MinNode) > weave t; to the tree in MinNode
case WeaveAndGroup > each node can have multiple trees

Cost) «— group(t;,MinNode) 1> new cost of MinNode if t; is grouped to MinNode
MinTree — findMinTree(MinNode) > minimal costing tree in MinNode
Costy — weave(t;,MinNode) 1> new cost of MinNode if t; is weaved to MinTree

if Cost; < Cost, then

group(t;, MinNode) > group f; as a separate tree to MinNode
else
weave(t;, MinNode) > weave f; to MinTree
end if
end switch
end for
end (Return P)

Discussion: Since this optimizer does not perform any partial result sharing, it is only
useful in cases when sharing is not beneficial (when none of the slides have any simi-
larities in their periodic features).

Weave To Lowest (Wr;). This optimizer builds on the Gry, algorithm and weaves all
ACQs on a node into a single, shared tree.

Algorithm: After sorting ACQs by cost (as in Grr), Wy, assigns each ACQ to a node
with the current lowest total cost and weaves it into the shared tree on the node.

Discussion: The Wr;, optimizer executes Weavability calculation only once per input
which makes it more expensive to run than Gry. Additionally, by limiting to a single
shared tree and not considering the compatibility of existing ACQs with new ones, it
produces plans with high Total Cost, and, consequently, high Max Cost, even though it
performs rudimentary cost balancing.

Weave-Group To Lowest (WGrp). This approach also builds on G7, but as opposed
to Wrp, it allows both selective weaving and grouping ACQs together.

Processing of Aggregate Continuous Queries in a Distributed Environment 53

Algorithm: Similar to Gr;, and Wrp, WGry, first sorts the ACQ trees, then iteratively
assigns each ACQ to the node with the current smallest cost. At a node, an ACQ is
either woven with the smallest costing tree in the node or added as a separate tree,
whichever leads to the minimum cost increase.

Discussion: The W Gry has similar runtime cost as Wry, as both optimizers use the Weav-
ability calculations only once per ACQ. Even though W Gry, attempts to take advantage
of grouping, it does not produce much better execution plans than Wrr. By focusing
only on the lowest cost tree on a node, it weaves together some poorly compatible
ACQs, leading to comparatively low quality execution plans.

6.2 Category “To Nodes”

Optimizers in this category follow the “To Nodes” algorithm depicted in Algorithm 2.

Weave to Nodes (Wry). This optimizer is directly based on the single node WeaveShare
algorithms, thus it is targeted at minimizing the Total Cost.

Algorithm: Wry starts its execution the same way as the single node WeaveShare. If it
reaches the point where the current number of trees is less than or equal to the number
of available nodes, Wry stops and assigns each tree to a different node. If, however,
WeaveShare finishes execution, and the current number of trees is still greater than
the number of available nodes, the Wry optimizer continues the WeaveShare algorithm
(merging trees pairwise), even though it is no longer beneficial for total cost. The exe-
cution stops when the number of trees becomes equal to the number of available nodes.

Discussion: Since Wry is a direct descendant of WeaveShare, it is optimized to produce
the minimum 7Zotal Cost. However, since Wry allows only one execution tree per node,
in order to match the number of nodes to number of trees, Wry forces WeaveShare
to keep merging trees with less compatible ACQs. Hence, Wry generates, in general,
more expensive plans than the basic WeaveShare. Additionally, Wry does not perform
any load balancing, hence it can generate query plans with execution trees whose com-
putational requirements exceed the capacity of the node with the most powerful CPU.

Weave-Group to Nodes (WGry). Like Wry, this optimizer is also directly based on
the single node WeaveShare algorithm and is targeted at minimizing the Total Cost.

Algorithm: The WGty optimizer starts by executing single core WeaveShare and, sim-
ilarly to Wry, stops execution if it reaches the point where the current number of trees
is equal to or less than the number of available nodes. However, if WeaveShare fin-
ishes execution and the current number of trees produced is greater than the number of
available nodes, W Gy assigns them to the available nodes, without weaving them, in a
balanced fashion by applying the Gy, optimizer. First, all trees are sorted by their costs,
and, starting from the most expensive ones, the trees are assigned to the nodes with the
smallest current total cost.

Discussion: Unlike Wry, the WGry optimizer is designed to produce the minimum
Total Cost and the minimum Max Cost. The latter is not always possible, since the
execution trees produced by WeaveShare are sometimes of significantly different costs,

54 A. U. Shein et al.

Algorithm 2. The “To Nodes” Algorithm
Input: A set of O Aggregate Continuous Queries, N computation nodes, and Category
Output: Execution plan P
Create an execution tree (¢1,12,...,p) for each query

T—Q > T is the number of remaining trees
loop
MaxReduction < —oo > maximum cost reduction is set to minimum
fori=0t0T—1do > iterate over all trees
for j=1t0T do > iterate over all trees again (to cover all pairs)
CostRed — weave(t;,t;) > cost reduction if weaving trees #; and 7;
if CostRed > MaxReduction then > find largest CostRed
MaxReduction — CostRed > and save it to MaxReduction
ToWeave — (t;,t}) > trees #; and ¢; are saved to be weaved later
end if
end for
end for
if MaxReduction > 0 then > there is a benefit in weaving
weave(ToWeave) > weave saved trees
else
switch Category do
case WeaveOnly
if 7 < N then
end (Return P)
else
weave(ToWeave) > weave saved trees
end if
case WeaveAndGroup
P — Grr(T) > run GroupToLowest optimizer on remaining 7T trees
end (Return P)
end switch
end if
T—T-1
end loop

and the used load balancing technique cannot produce the desired output. WGry can
achieve a better Total Cost than Wry by not forcing trees that do not weave well together
to merge, which would have increased the total cost of the plan. However, the penalty
of grouping execution trees on nodes without merging them is that each tuple has to be
processed as many times as the number of trees on a node. This effectively increases
the Total Cost by a factor equal to the input rate multiplied by the number of the trees
on each node. Clearly, the higher the input rate of a stream, the more costly it will be
for the system to group trees without weaving them.

6.3 Category “Inserted”

Optimizers in this category follow the “Inserted” algorithm depicted in Algorithm 3.

Processing of Aggregate Continuous Queries in a Distributed Environment 55

Algorithm 3. The “Inserted” Algorithm

Input: A set of O Aggregate Continuous Queries, N computation nodes, and Category
Output: Execution plan P

Assigning first N queries to N nodes (ny,n,,...,ny) as separate trees

Calculate node costs for all N nodes

Q—Q0—-N > Q is the number of remaining queries to be assigned
WeaveCost «— oo > weave cost is set to maximum
fori=010 Qdo > iterate over the queries until all are grouped/weaved
MinNode — findMinNode() > determine the node with the current smallest cost
for j=0to N do > iterate over all nodes
for k = 0 to NumTrees in n; do > iterate over all trees within a node
TempCost — weave(qi,ty.) > determine plan cost if weaving query g; into tree #;,
if TempCost < WeaveCost then > find smallest TempCost
WeaveCost < TempCost > and save it to WeaveCost
ToWeave «— (qi,t;) > query ¢; is saved to be weaved to tree ¢; later
end if
switch Category do
case WeaveOnly
weave(ToWeave) > weave saved trees
case WeaveAndGroup
GroupCost «— group(qi,MinNode) > cost of MinNode if g; is grouped
if GroupCost < WeaveCost then
group(qi,MinNode) > group g; to MinNode as a separate tree
else
weave(ToWeave) > weave saved trees
end if
end switch
end for
end for
end for
end (Return P)

Weave Inserted (W;). This approach is based on the Insert-then-Weave optimizer intro-
duced in [12], in which every ACQ is either weaved in an existing tree or assigned to a
new tree, whichever results in the smallest increase in the Total Cost. The difference of
the W; optimizer from the original Insert-then-Weave approach is that Wy keeps a fixed
number of trees equal to the number of nodes in the distributed system.

Algorithm: W; starts by randomly assigning an ACQ to each available node, then iter-
ating through the remaining ACQs. For each node it computes the new cost if the ACQ
under consideration is woven into the execution tree on the node and assigns the ACQ
to the node that has the smallest new cost.

Discussion: Wy is attempting to optimize for the Max Cost, as well as the Total Cost,
by taking into account both the Weavability of the inserted ACQ with every available
node and performing cost-balancing of the computation nodes. The downside of W is
that, since load balancing is the first priority of W, it sometimes assigns ACQs to nodes

56 A. U. Shein et al.

with underlying trees with which they do not weave well. This happens in cases where
the tree that weaves poorly with the incoming ACQ currently has the smallest cost.
Additionally, since W; is limited to one execution tree per node, the ACQs that do not
weave well with any of the available trees are still merged into one of these trees. This
increases the Total Costs of the generated plans.

Weave-Group Inserted (WGy). This optimizer is also a version of the Insert-then-
Weave approach and similar to W;. However, since the W G; optimizer does not have
to be limited to only one execution tree per node, it utilizes grouping to keep the Total
Cost low while maintaining load balance between nodes.

Algorithm: W Gy starts by randomly assigning an ACQ to each available node, then iter-
ating through the remaining ACQs similarly to W;. By trying to weave each ACQ under
consideration into every execution tree in every node, WGy determines each node’s
minimum new cost and the most compatible underlying tree. Finally, the ACQ is either
woven to the selected tree on the node with the minimum new cost or added as a sep-
arate tree to the tree with the minimum old cost, based on which option leads to the
minimum 7Total Cost increase.

Discussion: WGy is optimized for both Max Cost and Total Cost. However, even though
WGy allows grouping of execution trees, it does not always achieve a good Total Cost.
This happens (similarly to W) in cases when the tree that weaves poorly with the ACQ
under consideration has the smallest cost and is located in the node with the smallest
current node cost, which forces WGy to weave the non-compatible ACQs.

Note. A preprocessing step can be carried out for all optimizers by merging all ACQs
with identical slides into the same trees, since such ACQs weave together perfectly. This
reduces the workload down to a number of execution trees with multiple ACQs with the
same slides. Note that this preprocessing is always beneficial in terms of the Total Cost,
however, it is only beneficial in terms of the Max Cost if the distributed system has low
number of nodes compared to the number of input ACQs. Otherwise, since the number
of entities in the workload is decreased, it is more challenging to achieve balance among
the high number of computating nodes.

7 Experimental Evaluation

In this section, we summarize the results of our experimental evaluation of all the opti-
mizers for distributed processing environments listed in Table 1.

7.1 Experimental Testbed

In order to evaluate the quality of our proposed optimizers, we built an experimental
platform and implemented all of the optimizers discussed above using Java. Our work-
load is composed of a number of ACQs with different characteristics. We are generating
our workload synthetically in order to be able to fine-tune system parameters and per-
form a more detailed sensitivity analysis of our optimizers’ performance. Moreover, it
allows us to target many possible real-life scenarios and analyze them.

The simulation parameters utilized in our evaluation are:

Processing of Aggregate Continuous Queries in a Distributed Environment 57

e Number of ACQs (Q,um) that are installed on the same data stream and can share
partial aggregations.

e Number of nodes in the target system (V).

e The input rate (1), which describes how fast tuples arrive through the input stream.
e Maximum slide length (S,,y), which provides an upper bound on the length of the
slides of our ACQs. The minimum slide length allowed by the system equals one.

o Zipf distribution skew (Z.,,), which depicts the popularity of each slide length in
the final set of ACQs. Zipf skew of zero produces uniform distribution, and Zipf
skew of 1 is skewed towards large slides (for a more realistic example).

e Maximum overlap factor (£2,,,,), which defines the upper bound for the overlap
factor. The overlap factor of each ACQ is drawn from a uniform distribution between
one and the maximum overlap factor.

e Generator type (Gen), which defines whether the workload is normal (Nrm), which
includes any slides or diverse (Div), which includes only slides of a length that is a
prime number. When the slides are prime, their LCM is equal to their product, which
makes it more difficult to share partial aggregations.

We measured the quality of plans in terms of the cost of the plans as the number
of aggregate operations per second (which also indicates the throughput). We chose this
metric because it provides an accurate and fair measure of the performance, regardless
of the platform used to conduct the experiments. Thus, our comparison does not include
the actual execution of the plans on a distributed environment, which is part of our future
work. All results are taken as averages of running each test three times. We ran all of
our experiments on a single-node dual processor 8 core Intel(R) Xeon(R) CPU E5-2650
v2 @ 2.60 GHz server with 96 GB of RAM available.

7.2 Experimental Results

Experiment 1: Comprehensive Evaluation of Distributed Environment Optimizers

Configuration (Table 2). To compare the quality of produced plans by the distributed
optimizers, we tried to cover as broad a range of different parameters as possible. Thus,
we ran a set of 256 experiments, which correspond to all possible combinations of the
parameters from Table 2 (i.e., our entire search space). For each one of these experi-
ments, we generated a new workload according to the current parameters and executed
all of the above mentioned optimizers on this workload.

Table 2. Experimental parameter values (total number of combinations = 256)

Parameter| O Nuum A Simax |Zskew| Lmax Gen
Values |250, 500(4, 8, 16, 32(10, 100{25, 50| 0, 1 {10, 100{Nrm, Div
options 2 4 2 2 2 2 2

58

A. U. Shein et al.

Table 3. WG, vs WGty breakdown (for 256 experiments)

Max ||Weave-Group |Weave-Group to| |7oral ||Weave-Group |Weave-Group to
Cost ||Inserted (WG;) |Nodes (WGry) Cost ||Inserted (WG;) |Nodes (WGry)
Wins ||Best in 80% of|Best in 17% of| |Wins |[Best in 5% of|Best in 90% of
cases cases cases cases
Loses |[Not best in|Not best in 83%| |Loses|[Not best in|Not best in 10%
20% of cases,|of cases, and 95% of cases,jof cases, and
and within 3% |within 48 % and within 9% |within 0.2%
from the best on|from the best on from the best on|from the best on
average average average average
0 S e 10096 e e A s
90% Non-Cost-based Cost-based 90% Non-Cost-based Cost-based
o~ 80% l = 80% l
8 70% I l - - 8 70% | |] |
o 60% [| J [7 © 60% J 1 l
S 50% 1 J = 50%
@ 40% l o 40% 1
£ 30% S 30% :
o 20% 1 a 20%
10% | 10% l I
o% 4-2-R 2 8D B4 e B 8 B 2 2 @ 0% 4-4-fL- 24 oG8 8 oo L -t
D D ALK AR RSN 6 O X X L L RXARXN R E SN G
& $‘§ PRI G R QRN A (’é\@’i@é\ ¢ ¢ IS¢ N
= = 0%: Best Execution Plan = = 0%: Best Execution Plan
Average ++++100%: Worst Execution Plan Average ++++100%: Worst Execution Plan

(a) Max Cost Comparison (b) Total Cost Comparison

Fig. 2. Average Plan Quality (from 256 experiments) where 0% and 100% are the average plan
costs of all best and worst plans, respectively, across all optimizers. The error bars show the
standard deviations Consistent with the definition of a standard deviation, about 68% of all plans
produced by these optimizers lie in this margin.

Results (Fig. 2 and Tables 3 and 4). Out of a very large number of results, we observed
that the Weave to Nodes (Wry) and Weave-Group to Nodes (W Gry) produced good
plans in terms of Total Cost, while Weave Inserted (W;) and Weave-Group Inserted
(WGjy) performed the best in terms of Max Cost (Fig. 2). However, we noticed that in
the majority of the cases where the Wry and W; optimizers produced the best plans (in
terms of Total Cost and Max Cost, respectively), their matching optimizers from the
Weave and Group category (WGry and W Gy) produced output of either equal or very
similar quality. In some other cases where Wry and Wy performed poorly, the optimizer
Group to Lowest (Grr) performed better. In such cases, our optimizers WGy and WGy
were still able to match the best plans produced by Gr;, with equal or better quality plans
in most of the cases. Thus, we concluded that the W Gy and W G; optimizers were able

Table 4. Average plan generation runtime (for 256 experiments)

Optimizer
Time (sec)

WGRand
0.02

GRrr
0.01

Wgrr
2.34

WGgp
0.01

GrL
0.01

Wrr
12.6

WGrL
9.11

WGrn
2.83

Wi
5.68

WGr
3.94

Wrn
2.95

Wrana
2.31

GRand
0.01

Processing of Aggregate Continuous Queries in a Distributed Environment 59

g 8000 Non-Cost-based Cost-based
g 7000 ¢ _6484 6484

+ 6000
o 3

» 5000
= 4000
g 3000

2 237 2287
£ 5000 21 187 2080

b I I I I 1198
0

Q> > Q> & & & N NS D Q Q N\ &
T R

O Node1 mNode?2 [—ONode3 MNode4 Average

Fig. 3. Costs per node in a 4-node system

to successfully adapt to different environments and produce the best plans in terms of
Total Cost and Max Cost, respectively.

To compare and contrast the two winning optimizers, we provide the breakdown of
their performances in Table 3. From this table, we see that in terms of Max Cost, WGy
significantly falls behind WGy, since balancing is not the first priority of WGry. In
terms of Total Cost, W Gry always either wins or is within 0.2%, and W Gy falls behind,
but not as significantly, since it is on average within 9% of the winning optimizer.

Additionally, we have recorded the runtimes of our optimizers (Table 4), and we see
that plan generation time on average does not exceed 13 s per plan for all optimizers,
which is fast considering that after an execution plan is generated and deployed to the
DSMS, it is expected to run for a significantly longer time.

Take-away. WGy and WGy produce the best execution plans in terms of Total Cost
and Max Cost, respectively. WGry falls behind WGy in terms of Max Cost more sig-
nificantly than W Gy falls behind W Gry in terms of Total Cost. All optimizers generate
plans fast (<13).

Experiment 2: Load Balancing

Configuration. To show how all proposed algorithms compare in terms of balancing
load and minimizing the total plan cost, we fix a few parameters (Qm = 250, Nyym =
4,2 =100, Spax = 25, Zggew = 1, Qpax = 100, Gen = Nrm) and run this experiment
while recording the individual node costs of produced plans for all optimizers.

Results (Fig. 3). The results depict the typical behavior of the proposed algorithms in a
4-node environment. Since algorithms Wry and WGty are optimized mostly for Toral
Cost, they produce plans with very imbalanced node loads. However, their Total Costs
(as well as their Average Costs) are low. On the other hand, W; and W G; produce plans
that are well balanced, and, at the same time, W G; produces plans that also have a low
Total Cost (practically as low as WGry).

Take-away. Algorithms that are producing execution plans with the lowest Total Cost
typically perform poorly in terms of balancing load among the different nodes.

60 A. U. Shein et al.

8 Related Work

DSMSs have become the popular solutions to meet the near-real-time requirements
of monitoring, as well as online analytics applications. As a result, the initial DSMS
prototypes [4,5,7,18,22,25] are replaced with research and commercial distributed
DSMSs [1-3,5,6,24]. In these systems, the techniques for the efficient processing of
ACQs could be broadly classified into techniques for: (1) the implementation of the
continuous aggregation operator, and (2) the multi-query optimization of multiple con-
tinuous aggregate queries. Although the focus of this paper is on the latter, we first
briefly review the former for completeness.

Under the operator implementation techniques, partial aggregation has been pro-
posed to minimize the repeated processing of overlapping data windows within a sin-
gle aggregate (e.g., [10,15-17,27,28]) by processing each input tuple only once. As
discussed in Sect. 2, ACQ processing is typically modeled as a two-level (i.e., two-
operator) query execution plan: in the first level, a sub-aggregate function is computed
over the data stream generating a stream of partial aggregates, whereas in the second
level, a final-aggregate function is computed over those partial aggregates. Recently,
in order to minimize the cost of final aggregation, TriOps [11] uses an intermediate
function between the sub-aggregation and final-aggregation levels to pipeline partial
aggregate results to final-aggregate functions.

Under the multi-query optimization techniques, the general principle is to minimize
(or eliminate) the repeated processing of overlapping operations across multiple aggre-
gate queries. This repetition occurs as a result of processing the same data by different
queries, which exhibit an overlap in at least one of the following specifications: (1)
predicate conditions, (2) group-by attributes, or (3) window settings.

Techniques leveraging the overlaps in predicate conditions and group-by attributes
across different ACQs are similar to classical multi-query optimization [21] that detects
common subexpressions. Techniques leveraging shared processing of overlapping win-
dows across different ACQs emerged with the paradigm shift for handling continu-
ous queries. The shared time slices technique [15], for example, has been proposed to
share the processing of multiple continuous aggregates with varying windows. It has
also been extended into shared data shards in order to share the processing of vary-
ing predicates, in addition to varying windows. Orthogonally, [19] extends classical
subsumption-based multi-query optimization techniques towards sharing the process-
ing of multiple ACQs with varying group-by attributes and similar windows.

Like shared time slices, WeaveShare [12] addresses the problem of shared process-
ing of aggregate queries with varying windows. WeaveShare, however, employs a novel
Weavability metric that allows selective partitioning of the ACQ workload into multiple,
disjoint execution trees resulting in a dramatic reduction in processing costs.

Weavability is also the underlying principle of our work in this paper, which we
utilize to achieve scalability in distributed environments. Unlike our work, which is
based on multiple query optimization, other work that addresses distributed processing
of ACQs is based on MapReduce [9]. In [9], a demonstration of implementing event
monitoring applications using the modified Hadoop framework was presented. Along
the same lines are schemes for scaling operators/queries out when nodes get overloaded
[13,14], but these do not focus on load balancing and combining ACQs as in this paper.

Processing of Aggregate Continuous Queries in a Distributed Environment 61

With respect to load balancing, the underlying principle of the cost-based ACQ
assignment to nodes in our work is similar to the basic greedy approach in Operating
System where a process is assigned to execute on the currently least loaded node [20].

9 Conclusions

In this paper, we explored how the sharing of partial aggregations can be done in the
environment of distributed DSMSs. We formulated the problem as a distributed multi-
ACQs optimization which combines sharing of partial aggregations and assignment to
servers to produce high quality plans that keep the total cost of the execution low and
balance the load among the computing nodes. We presented a classification of optimiz-
ers based on whether they are cost-based and how they utilize the concept of Weavabil-
ity. We implemented and experimentally compared all of our proposed optimizers.

Our evaluation showed that the Weave-Group Inserted (W Gy) optimizer delivers the
best quality in terms of load balancing, which makes it the most beneficial for Cloud
service providers, since balancing helps conserve energy and prevents the need to over-
provision systems hardware. At the same time, our evaluation showed that the Weave-
Group to Nodes (WGry) optimizer best minimizes the total plan cost, which makes
WGrn the most beneficial for clients, since the monetary cost of ACQ computation in
multi-tenant environments becomes lower.A closer look at the performance profiles of
the two winning optimizers suggests that it might be more advantageous to choose the
WGy optimizer in the case where both service providers and clients should be satisfied
“equally” — WGy falls behind in terms of Total Cost less significantly (only 9% on
average) than WGry does in terms of Max Cost (load balancing).

Currently, we are looking at extending our work in (1) heterogeneous environments,
where nodes have different computational capacities, (2) dynamic environments, where
ACQs and nodes can be added/removed on-the-fly, and (3) evolving workloads, where
the input rate fluctuates as well as the background system utilization. In the future, we
are planning to address ACQ optimization as part of general multi-query optimization
of CQs with overlapping predicate conditions and group-by attributes.

Acknowledgments. We would like to thank Cory Thoma, Nikolaos Katsipoulakis, and the
anonymous reviewers for the insightful feedback and Mark Silvis for his help with copyediting.
This work was supported in part by NSF award CBET-1250171, a gift from EMC/Greenplum
and an ACM SoCC 2015 Student Scholarship.

References

Apache samza. http://samza.apache.org

S4 distributed stream computing platform. http://incubator.apache.org/s4

Spark streaming. https://spark.apache.org/streaming

Abadi, D.J., et al.: Aurora: a new model and architecture for data stream management.
VLDBIJ 12(2), 120-139 (2003)

5. Akidau, T., et al.: Millwheel: fault-tolerant stream processing at internet scale. PVLDB 6(3),
1033-1044 (2013)

Rl e

http://samza.apache.org
http://incubator.apache.org/s4
https://spark.apache.org/streaming

62

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

217.

28.

A. U. Shein et al.

Ananthanarayanan, R., et al.: Photon: fault-tolerant and scalable joining of continuous data
streams. In: ACM SIGMOD, pp. 577-588 (2013)

Chrysanthis, PK.: AQSIOS - next generation data stream management system. CONET
Newslett. 9, 1-3 (2010)

Chung, C., Guirguis, S., Kurdia, A.: Competitive cost-savings in data stream management
systems. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591,
pp. 129-140. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08783-2_12
Condie, T.: Online aggregation and continuous query support in mapreduce. In: ACM SIG-
MOD, pp. 1115-1118 (2010)

Ghanem, T.M., Hammad, M.A., Mokbel, M.F., Aref, W.G., Elmagarmid, A.K.: Incremental
evaluation of sliding-window queries over data streams. IEEE TKDE 19(1), 57-72 (2007)
Guirguis, S., Sharaf, M., Chrysanthis, P.K., Labrinidis, A.: Three-level processing of multiple
aggregate continuous queries. In: IEEE ICDE, pp. 929-940 (2012)

Guirguis, S., Sharaf, M.A., Chrysanthis, P.K., Labrinidis, A.: Optimized processing of mul-
tiple aggregate continuous queries. In: ACM CIKM, pp. 357-368 (2011)

Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., Valduriez, P.: Stream-
cloud: an elastic and scalable data streaming system. IEEE TPDS 23(12), 2351-2365 (2012)
Katsipoulakis, N.R., Thoma, C., Gratta, E.A., Labrinidis, A., Lee, A.J., Chrysanthis, P.K.:
CE-Storm: confidential elastic processing of data streams. In: ACM SIGMOD, pp. 859-864
(2015)

Krishnamurthy, S., Wu, C., Franklin, M.: On-the-fly sharing for streamed aggregation. In:
ACM SIGMOD, pp. 623-634 (2006)

Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: efficient evaluation
of sliding-window aggregates over data streams. ACM SIGMOD Rec. 34, 39-44 (2005)

Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: Semantics and evaluation techniques
for window aggregates in data streams. In: ACM SIGMOD, pp. 311-322 (2005)

Motwani, R., et al.: Query processing, approximation, and resource management in a data
stream management system. In: CIDR (2003)

Naidu, K., Rastogi, R., Satkin, S., Srinivasan, A.: Memory-constrained aggregate computa-
tion over data streams. In: IEEE ICDE, pp. 852-863 (2011)

Romeijn, H.E., Morales, D.R.: A class of greedy algorithms for the generalized assignment
problem. Discrete Appl. Math. 103, 209-235 (2000)

Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms for multi
query optimization. In: ACM SIGMOD, pp. 249-260 (2000)

Sharaf, M.A., Chrysanthis, P.K., Labrinidis, A., Pruhs, K.: Algorithms and metrics for pro-
cessing multiple heterogeneous continuous queries. IEEE TODS 33, 1-44 (2008)

Shein, A.U., Chrysanthis, P.K., Labrinidis, A.: F1: accelerating the optimization of aggregate
continuous queries. In: ACM CIKM, pp. 1151-1160 (2015)

Toshniwal, A, et al.: Storm@ Twitter. In: ACM SIGMOD, pp. 147-156 (2014)

Xing, Y., Zdonik, S., Hwang, J.: Dynamic load distribution in the borealis stream processor.
In: IEEE ICDE, pp. 791-802 (2005)

Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: ACM
FOCS, pp. 374-382 (1995)

Zhang, R., Koudas, N., Ooi, B.C., Srivastava, D.: Multiple aggregations over data streams.
In: ACM SIGMOD, pp. 299-310 (2005)

Zhang, R., Koudas, N., Ooi, B.C., Srivastava, D., Zhou, P.: Streaming multiple aggregations
using phantoms. VLDBIJ 19(4), 557-583 (2010)

https://doi.org/10.1007/978-3-319-08783-2_12

	Processing of Aggregate Continuous Queries in a Distributed Environment
	1 Introduction
	2 Background
	3 System Model and Execution Plan Quality
	4 Taxonomy of Optimizers
	5 Non-Cost-Based Optimizers
	6 Cost-Based Optimizers
	6.1 Category ``To Lowest''
	6.2 Category ``To Nodes''
	6.3 Category ``Inserted''

	7 Experimental Evaluation
	7.1 Experimental Testbed
	7.2 Experimental Results

	8 Related Work
	9 Conclusions
	References

