IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO.2, FEBRUARY 2014

Balancing Performance, Accuracy, and
Precision for Secure Cloud Transactions

Marian K. Iskander, Tucker Trainor, Dave W. Wilkinson,
Adam J. Lee, Member, IEEE, and Panos K. Chrysanthis, Senior Member, IEEE

Abstract—In distributed transactional database systems deployed over cloud servers, entities cooperate to form proofs of
authorizations that are justified by collections of certified credentials. These proofs and credentials may be evaluated and collected
over extended time periods under the risk of having the underlying authorization policies or the user credentials being in
inconsistent states. It therefore becomes possible for policy-based authorization systems to make unsafe decisions that might
threaten sensitive resources. In this paper, we highlight the criticality of the problem. We then define the notion of trusted
transactions when dealing with proofs of authorization. Accordingly, we propose several increasingly stringent levels of policy
consistency constraints, and present different enforcement approaches to guarantee the trustworthiness of transactions executing
on cloud servers. We propose a Two-Phase Validation Commit protocol as a solution, which is a modified version of the basic
Two-Phase Validation Commit protocols. We finally analyze the different approaches presented using both analytical evaluation of

417

the overheads and simulations to guide the decision makers to which approach to use.

Index Terms—Cloud databases, authorization policies, consistency, distributed transactions, atomic commit protocol

1 INTRODUCTION

CLOUD computing has recently emerged as a computing
paradigm in which storage and computation can be
outsourced from organizations to next generation data
centers hosted by companies such as Amazon, Google,
Yahoo, and Microsoft. Such companies help free organiza-
tions from requiring expensive infrastructure and expertise
in-house, and instead make use of the cloud providers to
maintain, support, and broker access to high-end resources.
From an economic perspective, cloud consumers can save
huge IT capital investments and be charged on the basis of a
pay-only-for-what-you-use pricing model.

One of the most appealing aspects of cloud computing is
its elasticity, which provides an illusion of infinite, on-
demand resources [1] making it an attractive environment
for highly scalable, multitiered applications. However, this
can create additional challenges for back-end, transactional
database systems, which were designed without elasticity
in mind. Despite the efforts of key-value stores like
Amazon’s SimpleDB, Dynamo, and Google’s Bigtable to
provide scalable access to huge amounts of data, transac-
tional guarantees remain a bottleneck [2].

To provide scalability and elasticity, cloud services often
make heavy use of replication to ensure consistent
performance and availability. As a result, many cloud
services rely on the notion of eventual consistency when

o The authors are with the Department of Computer Science, University of
Pittsburgh, Sennott Square, Pittsburgh, PA 15260.
E-mail: {marianky, tmt33, dwilk, adamlee, panos|@cs.pitt.edu.

Manuscript received 1 Oct. 2012; revised 21 May 2013; accepted 17 June
2013; published online 28 June 2013.

Recommended for acceptance by X. Li, P. McDaniel, R. Poovendran, and
G. Wang.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2012-10-1028.

Digital Object Identifier no. 10.1109/TPDS.2013.169.

propagating data throughout the system. This consistency
model is a variant of weak consistency that allows data to
be inconsistent among some replicas during the update
process, but ensures that updates will eventually be
propagated to all replicas. This makes it difficult to strictly
maintain the ACID guarantees, as the “C” (consistency) part
of ACID is sacrificed to provide reasonable availability [3].

In systems that host sensitive resources, accesses are
protected via authorization policies that describe the
conditions under which users should be permitted access
to resources. These policies describe relationships between
the system principles, as well as the certified credentials
that users must provide to attest to their attributes. In
a transactional database system that is deployed in a highly
distributed and elastic system such as the cloud, policies
would typically be replicated—very much like data—
among multiple sites, often following the same weak or
eventual consistency model. It therefore becomes possible
for a policy-based authorization system to make unsafe
decisions using stale policies.

Interesting consistency problems can arise as transac-
tional database systems are deployed in cloud environ-
ments and use policy-based authorization systems to
protect sensitive resources. In addition to handling con-
sistency issues among database replicas, we must also
handle two types of security inconsistency conditions. First,
the system may suffer from policy inconsistencies during
policy updates due to the relaxed consistency model
underlying most cloud services. For example, it is possible
for several versions of the policy to be observed at multiple
sites within a single transaction, leading to inconsistent (and
likely unsafe) access decisions during the transaction.
Second, it is possible for external factors to cause user
credential inconsistencies over the lifetime of a transaction [4].
For instance, a user’s login credentials could be invalidated

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:34:43 UTC from |IEEE Xplore. Restrictions apply.

1045-9219/14/$31.00 © 2014 IEEE

Published by the IEEE Computer Society

418 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

&’ﬁansaclions

&=
DBs and Policies

& B -
\ / DBs and Policies X

-
Verifiable Trusted Third
Parties (CAs)

Fig. 1. Interaction among the system components.

or revoked after collection by the authorization server, but
before the completion of the transaction. In this paper, we
address this confluence of data, policy, and credential incon-
sistency problems that can emerge as transactional database
systems are deployed to the cloud. In doing so, we make the
following contributions:

e We formalize the concept of trusted transactions.
Trusted transactions are those transactions that do
not violate credential or policy inconsistencies over
the lifetime of the transaction. We then present a
more general term, safe transactions, that identifies
transactions that are both trusted and conform to the
ACID properties of distributed database systems
(Section 2).

e We define several different levels of policy consis-
tency constraints and corresponding enforcement
approaches that guarantee the trustworthiness of
transactions executing on cloud servers (Section 3).

e We propose a Two-Phase Validation Commit (2PVC)
protocol that ensures that a transaction is safe by
checking policy, credential, and data consistency
during transaction execution (Section 4).

e We carry out an experimental evaluation of our
proposed approaches (Section 5), and present a
tradeoff discussion to guide decision makers as to
which approach is most suitable in various situa-
tions (Section 6).

Finally, Section 7 describes previous related work, while

Section 8 presents our conclusions.

2 SYSTEM ASSUMPTIONS AND PROBLEM
DEFINITION

2.1 System Model

Fig. 1 illustrates the interaction among the components in
our system. We assume a cloud infrastructure consisting of
a set of S servers, where each server is responsible for
hosting a subset D of all data items D belonging to a
specific application domain (D C D). Users interact with
the system by submitting queries or update requests
encapsulated in ACID transactions. A transaction is
submitted to a Transaction Manager (TM) that coordinates
its execution. Multiple TMs could be invoked as the system
workload increases for load balancing, but each transaction
is handled by only one TM.

NO. 2, FEBRUARY 2014

We denote each transaction as T' = ¢1, ¢, - .., q,, Where
¢; € Q is a single query/update belonging to the set of all
queries @. The start time of each transaction is denoted by
a(T), and the time at which the transaction finishes
execution and is ready to commit is denoted by w(T'). We
assume that queries belonging to a transaction execute
sequentially, and that a transaction does not fork subtran-
sactions. These assumptions simplify our presentation, but
do not affect the correctness or the validity of our
consistency definitions.

Let P denote the set of all authorization policies, and let
P, (D) denote the policy that server s; uses to protect data
item D. We represent a policy P as a mapping P : S x 2P —
2% x A x IN that associates a server and a set of data items
with a set of inference rules from the set R, a policy
administrator from the set A, and a version number. We
denote by C the set of all credentials, which are issued by
the Certificate Authorities (CAs) within the system. We
assume that each CA offers an online method that allows
any server to check the current status of credentials that it
has issued [5]. Given a credential ¢; € C, a(c;) and w(cy)
denote issue and expiration times of ¢, respectively. Given
a function m:Q — 2P that identifies the data items
accessed by a particular query, a proof of authorization for
query g¢; evaluated at server s; at time ¢, is a tuple
(G, 85, Ps;(m(qi)), tr, C), where C' is the set of credentials
presented by the querier to satisfy P; (m(g;)). In this paper,
we use the function eval : F x T'S — IB to denote whether a
proof f € F is valid at time ¢ € T'S.

To enhance the general applicability of the consistency
models developed in this paper, the above formalism is
intentionally opaque with respect to the policy and
credential formats used to implement the system. For
instance, this formalism could easily be used to model the
use of XACML policies [6] as the set of inference rules R,
and traditional (e.g., X.509 [7]) credentials for the set C. On
the other hand, it can also model the use of more advanced
trust management policies (e.g., [8], [9]) for the inference
rules R, and the use of privacy-friendly credentials (e.g.,
[10], [11]) for the set C.

2.2 Problem Definition

Since transactions are executed over time, the state
information of the credentials and the policies enforced by
different servers are subject to changes at any time instance,
therefore it becomes important to introduce precise defini-
tions for the different consistency levels that could be
achieved within a transaction’s lifetime. These consistency
models strengthen the trusted transaction definition by
defining the environment in which policy versions are
consistent relative to the rest of the system. Before we do
that, we define a transaction’s view in terms of the different
proofs of authorization evaluated during the lifetime of a
particular transaction.

Definition 1 (View). A transaction’s view VT is the set of
proofs of authorizations observed during the lifetime of a
transaction [o(T),w(T)] and defined as VI = {f | fs, =
(Gissi5 Ps,(m(q;)), ti,C) N g € T}

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:34:43 UTC from |IEEE Xplore. Restrictions apply.

ISKANDER ET AL.: BALANCING PERFORMANCE, ACCURACY, AND PRECISION FOR SECURE CLOUD TRANSACTIONS

@ : query start time

% : proof of authorization

@ : query start time
% : proof of authorization

@ : query start time
+% : proof of authorization

419

S ! St | 8 | i
| | | |
|
$2 o | S ° i | S o &
S3 ° | 83 ° ke e | 8 ° %
| I !
time —— time ——> time ——>
(a) Deferred (b) Punctual (c) View Incremental Punc-
tual
@ : query start time @ : query start time @ : query start time
% : proof of authorization % : proof of authorization +% : proof of authorization
$1 | i ! $1 ! | $1 ! i !
| : 4 % e I
$2 S * | S S ; ‘ S S # 3 e
| |
S3 ° i i* S3 ° & S3 ° % i*
time —> time —> time ——>
(d) Global Incremental (e) View Continuous (f) Global Continuous
Punctual

Fig. 2. Different variants of proofs of authorizations.

Following from Definition 1, a transaction’s view is built
incrementally as more proofs of authorizations are being
evaluated by servers during the transaction execution. We
now present two increasingly more powerful definitions of
consistencies within transactions.

Definition 2 (View Consistency). A view V7T = {(g;,s;,
P,,(m(g:)),ti, C)y - .y {qny S, Ps, (M(qn)), tn, C)} is view
consistent, or ¢-consistent, if V1 satisfies a predicate ¢-
consistent that places constraints on the versioning of the
policies such that ¢-consistent(VT) < V;;:ver(P;,) =
ver(Ps;) for all policies belonging to the same administrator
A, where function ver is defined as ver : P — IN.

With a view consistency model, the policy versions
should be internally consistent across all servers executing
the transaction. The view consistency model is weak in that
the policy version agreed upon by the subset of servers
within the transaction may not be the latest policy version v.
It may be the case that a server outside of the S servers has a
policy that belongs to the same administrative domain and
with a version v’ > v. A more strict consistency model is the
global consistency and is defined as follows:

Definition 3 (Global Consistency). A view VT = {{g;, s;,
P (m(qi)), ti, C), - -+, (@, S0, Ps, (m(qn)), £, C)} is global
consistent, or i-consistent, if VI satisfies a predicate -
consistent that places constraints on the versioning of the
policies such that 1-consistent(VT) < V; : ver(Py,) = ver(P)
for all policies belonging to the same administrator A, and
function ver follows the same aforementioned definition, while
ver(P) refers to the latest policy version.

With a global consistency model, policies used to
evaluate the proofs of authorizations during a transaction
execution among S servers should match the latest policy
version among the entire policy set P, for all policies
enforced by the same administrator A.

Given the above definitions, we now have a precise
vocabulary for defining the conditions necessary for a
transaction to be asserted as “trusted.”

Definition 4 (Trusted Transaction). Given a transaction T =
{q1,q,-..,q,} and its corresponding view VT, T is trusted
iff Vi evr - eval(fs,,t), at some time instance t : a(T) <t <
w(T) A (¢-consistent(VT) v y-consistent(V7)).

Finally, we say that a transaction is safe if it is a trusted
transaction that also satisfies all data integrity constraints
imposed by the database management system. A safe
transaction is allowed to commit, while an unsafe transac-
tion is forced to rollback.

3 TRUSTED TRANSACTION ENFORCEMENT

In this section, we present several increasingly stringent
approaches for enforcing trusted transactions. We show
that each approach offers different guarantees during the
course of a transaction. Fig. 2 is a graphical depiction of
how these approaches could be applied to a transaction
running across three server, and will be referenced
throughout this section. In this figure, dots represent the
arrival time of a query to some server, stars indicate the
times at which a server validates a proof of authorization,
and dashed lines represent view- or globally consistency
policy synchronization among servers.

3.1 Deferred Proofs of Authorization

Definition 5 (Deferred Proofs of Authorization). Given a
transaction T and its corresponding view VT, T is trusted
under the Deferred proofs of authorization approach, iff at
commit time w(T), V; cyr :eval(fs,w(T)) A (¢-consis-
tent(V7") V y-consistent(V7)).

Deferred proofs present an optimistic approach with
relatively weak authorization guarantees. The proofs of
authorizations are evaluated simultaneously only at commit

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:34:43 UTC from |IEEE Xplore. Restrictions apply.

420

time (using either view or global consistency from Defini-
tions 2 and 3) to decide whether the transaction is trusted.

3.2 Punctual Proofs of Authorization

Definition 6 (Punctual Proofs of Authorization). Given a
transaction T and its corresponding view VT, T is trusted
under the Punctual proofs of authorization approach, iff at any
time instance t; : o(T) < t; < w(T) Yy, eyr = eval(fs,, ti) A
eval(fs,,w(T)) A (¢-consistent(VT) v y-consistent(V7)).

Punctual proofs present a more proactive approach in
which the proofs of authorizations are evaluated instanta-
neously whenever a query is being handled by a server. This
facilitates early detections of unsafe transactions which can
save the system from going into expensive undo operations.
All the proofs of authorizations are then reevaluated at
commit time to ensure that policies were not updated
during the transaction in a way that would invalidate a
previous proof, and that credentials were not invalidated.

Punctual proofs do not impose any restrictions on the
freshness of the policies used by the servers during the
transaction execution. Consequently, servers might falsely
deny or allow access to data. Thus, we propose two more
restrictive approaches that enforce some degree of con-
sistency among the participating servers each time a proof
is evaluated.

3.3 Incremental Punctual Proofs of Authorization
Before we define the Incremental Punctual proofs of
authorization approach, we define a view instance, which
is a view snapshot at a specific time instance.

Definition 7 (View Instance). A view instance VtT cVvT is
defined as V' = {f. | fo = (a, s, P (m(@:)),t,C) € VI A
t<t), Vit o(T) <t <t; <w(T)

Informally, a view instance V;! is the subset of all proofs
of authorization evaluated by servers involved in transac-
tion T" up till the time instance ¢;.

Definition 8 (Incremental Punctual Proofs of Authoriza-
tion). Given a transaction T and its corresponding view V7,
T is trusted under the Incremental Pumctual proofs of
authorization approach, iff at any time instance t; : o(T) <
ti <w(T), Yy cyr:eval(fs,,ti) A (¢-consistent-(V,[) v ¢~
consistent(V,")).

Incremental Punctual proofs develop a stronger notion of
trusted transactions, as a transaction is not allowed to
proceed unless each server achieves the desired level of the
policy consistency with all previous servers. This implies
that all participating servers will be forced to have a
consistent view with the first executing server unless a
newer policy version shows up at a later server, in which
case the transaction aborts.

For view consistency, no consistency check at commit
time is required, since all participating servers will be view
consistent by commit time. On the other hand, the global
consistency condition necessitates another consistency check
at commit time to confirm that the policies used have not
become stale during the window of execution between the
last proofs of authorization and commit time.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

NO. 2, FEBRUARY 2014

3.4 Continuous Proofs of Authorization

We now present the least permissive approach which we
call Continuous proofs of authorization.

Definition 9 (Continuous Proofs of Authorization). A
transaction T is trusted under the Continuous approach, iff
Vlgignvlgjgj : eval(fgl,t,;) A eval(fsj,ti) A (qﬁ-consistent
(VI) V ¢-consistent(V;")) at any time instance t : o(T) <
t; < w(T). '

In Continuous proofs, whenever a proof is evaluated, all
previous proofs have to be reevaluated if a newer version of
the policy is found at any of the participating servers.
At commit time, Continuous proofs behave similarly to
Incremental Punctual proofs. In contrast with the Incre-
mental Punctual proofs, if later executing servers are using
newer policy versions, all previous servers must 1) update
their policies to be consistent with the newest one, and
2) reevaluate their proofs of authorization using the newer
policies. In the case of global consistency, all servers will be
forced to use the latest policy version at all times. Therefore,
we consider this variant of our approaches to be the most
strict approach of all giving the best privacy and consis-
tency guarantees.

The decision of which approach to adopt is likely to be a
strategic choice made independently by each application.
As with any tradeoff, the stronger the security and accuracy
given by an approach, the more the system has to pay in
terms of implementation and messages exchange over-
heads. Further discussion of these tradeoffs will be
presented in Section 6.

4 IMPLEMENTING SAFE TRANSACTIONS

A safe transaction is a transaction that is both trusted (i.e.,
satisfies the correctness properties of proofs of authoriza-
tion) and database correct (i.e., satisfies the data integrity
constraints). We first describe an algorithm that enforces
trusted transactions, and then expand this algorithm to
enforce safe transactions. Finally, we show how these
algorithms can be used to implement the approaches
discussed in Section 3.

4.1 Two-Phase Validation (2PV) Algorithm

A common characteristic of most of our proposed
approaches to achieve trusted transactions is the need for
policy consistency validation at the end of a transaction.
That is, in order for a trusted transaction to commit, its TM
has to enforce either view or global consistency among the
servers participating in the transaction. Toward this, we
propose a new algorithm called Two-Phase Validation.

As the name implies, 2PV operates in two phases:
collection and wvalidation. During collection, the TM first
sends a Prepare-to-Validate message to each participant
server. In response to this message, each participant
1) evaluates the proofs for each query of the transaction
using the latest policies it has available and 2) sends a reply
back to the TM containing the truth value (TRUE/FALSE)
of those proofs along with the version number and policy
identifier for each policy used. Further, each participant
keeps track of its reply (i.e., the state of each query) which
includes the id of the TM (T'M;y), the id of the transaction

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:34:43 UTC from |IEEE Xplore. Restrictions apply.

ISKANDER ET AL.: BALANCING PERFORMANCE, ACCURACY, AND PRECISION FOR SECURE CLOUD TRANSACTIONS 421

(T34) to which the query belongs, and a set of policy versions
used in the query’s authorization (v;, p;).

Once the TM receives the replies from all the partici-
pants, it moves on to the validation phase. If all polices are
consistent, then the protocol honors the truth value where
any FALSE causes an ABORT decision and all TRUE cause
a CONTINUE decision. In the case of inconsistent policies,
the TM identifies the latest policy and sends an Update
message to each out-of-date participant with a policy
identifier and returns to the collection phase. In this case,
the participants 1) update their policies, 2) reevaluate the
proofs and, 3) send a new reply to the TM. Algorithm 1
shows the process for the TM.

Algorithm 1. Two-Phase Validation - 2PV(TM).
1 Send “Prepare-to-Validate” to all participants
2 Wait for all replies (a True/False, and a set of policy
versions for each unique policy)
3 Identify the largest version for all unique policies
If all participants utilize the largest version for each
unique policy
If any responded False
ABORT
Otherwise
CONTINUE
Otherwise, for all participants with old versions of
policies
10 Send “Update” with the largest version number of
each policy
11 Goto 2

In the case of view consistency (Definition 2), there will
be at most two rounds of the collection phase. A participant
may only be asked to reevaluate a query using a newer
policy by an Update message from the TM after one
collection phase.

For the global consistency case (Definition 3), the TM
retrieves the latest policy version from a master policies
server (Step 2) and uses it to compare against the version
numbers of each participant (Step 3). This master version
may be retrieved only once or each time Step 3 is invoked.
For the former case, collection may only be executed twice
as in the case of view consistency. In the latter case, if the
TM retrieves the latest version every round, global con-
sistency may execute the collection many times. This is the
case if the policy is updated during the round. While the
number of rounds are theoretically infinite, in a practical
setting, this should occur infrequently.

I

O 00 N3 O U1

4.2 Two-Phase Validate Commit Algorithm

The 2PV protocol enforces trusted transactions, but does not
enforce safe transactions because it does not validate any
integrity constraints. Since the Two-Phase Commit atomic
protocol commonly used to enforce integrity constraints has
similar structure as 2PV, we propose integrating these
protocols into a Two-Phase Validation Commit protocol. 2PVC
can be used to ensure the data and policy consistency
requirements of safe transactions.

Specifically, 2PVC will evaluate the policies and
authorizations within the first, voting phase. That is, when
the TM sends out a Prepare-to-Commit message for a
transaction, the participant server has three values to report

1) the YES or NO reply for the satisfaction of integrity
constraints as in 2PC, 2) the TRUE or FALSE reply for the
satisfaction of the proofs of authorizations as in 2PV, and
3) the version number of the policies used to build the
proofs (v;,p;) as in 2PV.

The process given in Algorithm 2 is for the TM under
view consistency. It is similar to that of 2PV with the
exception of handling the YES or NO reply for integrity
constraint validation and having a decision of COMMIT
rather than CONTINUE. The TM enforces the same
behavior as 2PV in identifying policies inconsistencies
and sending the Update messages. The same changes to
2PV can be made here to provide global consistency by
consulting the master policies server for the latest policy
version (Step 5).

Algorithm 2. Two-Phase Validation Commit - 2PVC (TM).

1 Send “Prepare-to-Commit” to all participants

2 Wait for all replies (Yes/No, True/False, and a set of
policy versions for each unique policy)

3 If any participant replied No for integrity check

4 ABORT

5 Identify the largest version for all unique policies

6 If all participants utilize the largest version for each
unique policy

7 If any responded False

8 ABORT

9 Otherwise

0 COMMIT

1 Otherwise, for participants with old policies

2 Send “Update” with the largest version number of

each policy
13 Wait for all replies
14 Goto 5

The resilience of 2PVC to system and communication
failures can be achieved in the same manner as 2PC by
recording the progress of the protocol in the logs of the TM
and participants. In the case of 2PVC, a participant must
forcibly log the set of (v;, p;) tuples along with its vote and
truth value. Similarly to 2PC, the cost of 2PVC can be
measured in terms of log complexity (i.e., the number of
times the protocol forcibly logs for recovery) and message
complexity (ie., the number of messages sent). The log
complexity of 2PVC is no different than basic 2PC and can be
improved by using any of log-based optimizations of 2PC
such as Presumed-Abort (PrA) and Presumed-Commit (PrC)
[12]. The message complexity of 2PVC was analyzed in [13].

4.3 Using 2PV and 2PVC in Safe Transactions

2PV and 2PVC can be used to enforce each of the
consistency levels defined in Section 3. Deferred and
Punctual (Definitions 5 and 6) proofs are roughly the same.
The only difference is that Punctual will return proof
evaluations upon executing each query. Yet, this is done on
a single server, and therefore, does not need 2PVC or 2PV to
distribute the decision. To provide for trusted transactions,
both require at commit time evaluation at all participants
using 2PVC.

Incremental Punctual (Definition 8) proofs are slightly
different. As queries are executed, the TM must also check
for consistency within the participating servers. Hence,

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:34:43 UTC from IEEE Xplore. Restrictions apply.

422 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

TABLE 1
Simulation Parameters

Parameter
Times of policies update

Value(s)
once during operations, once per
participant join, or once at com-

mit time
Disk read latency 1-3 ms
Disk write latency 12-20 ms
Authorization check delay 1-3 ms
Data integrity constraint verification 1-3 ms

Transaction size Short: 8-15 operations, Medium:
16-30 operations, or Long: 31-50

operations

a variant of the basic 2PV protocol is used during the
transaction execution. For view consistency, the TM needs
to check the version number it receives from each server
with that of the very first participating server. If they are
different, the transaction aborts due to a consistency
violation. At commit time, all the proofs will have been
generated with consistent policies and only 2PC is invoked.
In the global consistency case, the TM needs to validate the
policy versions used against the latest policy version known
by the master policies server to decide whether to abort or
not. At commit time, 2PVC is invoked by the TM to check
the data integrity constraints and verify that the master
policies server has not received any newer policy versions.

Finally, Continuous proofs (Definition 9) are the most
involved. Unlike the case of Incremental Punctual in a view
consistency, Continuous proofs invoke 2PV at the execu-
tion of each query, which will update the older policies
with the new policy and reevaluate. When a query is
requested, its TM will 1) execute 2PV to validate author-
izations of all queries up to this point, and 2) upon
CONTINUE being the decision of 2PV, submit the next
query to be executed at the appropriate server, otherwise
the transaction aborts. The same actions occur under global
consistency with the exception that the latest policy version
is used as identified by the master policy server.

5 EVALUATIONS

5.1 Environment and Setup

We used Java to implement each proof approach described
in Section 3 with support for both view and global
consistency. Although the approaches were implemented
in their entirety, the underlying database and policy
enforcement systems were simulated with parameters
chosen according to Table 1. To understand the performance
implications of the different approaches, we varied the

protocol used,

level of consistency desired,
frequency of master policy updates,
transaction length, and

number of servers available.

R

Our experimentation framework consists of three main
components: a randomized transaction generator, a master
policy server that controls the propagation of policy
updates, and an array of transaction processing servers.

Our experiments were run within a research lab
consisting of 38 Apple Mac Mini computers. These

NO. 2, FEBRUARY 2014

machines were running OS X 10.6.8 and had 1.83-GHz
Intel Core Duo processors coupled with 2 GB of RAM. All
machines were connected to a gigabit ethernet LAN with
average round trip times of 0.35 ms. All WAN experiments
were also conducted within this testbed by artificially
delaying packet transmission by an additional 75 ms.

For each simulation and each possible combination of
parameters, 1,000 transactions were run to gather average
statistics on transaction processing delays induced by the
particular protocol and system parameter choices. The
randomized transactions were randomly composed of
database reads and writes with equal probability. To simulate
policy updates at different servers, the master policy server
picks a random participating server to receive the updates.

Given that our interest in this paper lies in exploring the
average performance of each of the different approaches,
we made few assumptions to simplify the experimenta-
tions and help limit the influence of other factors on
transaction execution time. Specifically, we assumed the
existence of a single master policy server that has to
be consulted for the latest policy version belonging to a
specific policy administrator. This simplifies the 2PV
protocol and reduces the number of exchanged messages
to realize the latest version among all policy servers. We
further assumed that all proofs of authorizations evaluate
to true (i.e., only authorized individuals attempted to run
transactions in the system) and that no data integrity
violations were encountered during any transactions
execution. Therefore, transactions would only abort due
to policy inconsistency. This means that Deferred, Punctu-
al, and Continuous proofs will always produce successful
commits, whether or not a policy change is detected.

We measure the average execution time of the shortest
successfully committed transactions (denoted t;), which
occurs when there are no policy changes, and the average
execution time of the longest successfully committed
transactions (denoted t;), which occurs when policy
changes force reevaluations of the proofs of authorizations
or multiple rounds of 2PV are invoked (e.g., in Continuous
proofs). Essentially, ¢; captures the cost of recovering from a
conflict. In the case of Continuous proofs, the worst case is
when a policy change is detected each time a new server
joins the execution of a transaction. The average transaction
execution time to terminate (abort or commit) for Deferred,
Punctual, and Continuous proofs can be computed using
the following equation, where P, represents the probability
of a policy update:

t=t,(1—P)+1P,. (1)

As opposed to the other proofs of authorization, in
Incremental Punctual proofs, if a policy change is detected
during the execution of a transaction, the transaction will
abort regardless it is using view or global consistency.
Therefore, to compute the average execution time, we
assume that each aborted transaction is re-executed once to
successful commit, with all servers using consistent policies.
This assumption approximates the cost for rolling back the
aborted transactions. We use the following equation to
compute the average transaction execution time:

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:34:43 UTC from |IEEE Xplore. Restrictions apply.

ISKANDER ET AL.: BALANCING PERFORMANCE, ACCURACY, AND PRECISION FOR SECURE CLOUD TRANSACTIONS 423
200 700
o
o
180 > 630
5
o
160 e 560 [g
<=0 GUEN I R R S G B N .) B G s __. o G S B N e P P S
5 o S i S
190 g ey e B S i G Py = e A
—
120 240 420
2 100 2 200 2 350
E E E
= = =
80 160 280
O Deferred (view consistency) O Deferred (view consistency) O Deferred (view consistency)
60 7 Punctual (view consistency) 120 2 Punctual (view consistency) 210 2 Punctual (view consistency)
<O Incremental Punctual (view consistency) <O Incremental Punctual (view consistency) <O Incremental Punctual (view consistency)
< Continuous (view consistency) < Continuous (view consistency) < Continuous (view consistency)
40 B Deferred (global consistency) 80 B Deferred (global consistency) 140 B Deferred (global consistency)
4 Punctual (global consistency) 4 Punctual (global consistency) 4 Punctual (global consistency)
- & Incremental Punctual (global consistency) w© & Incremental Punctual (global consistency) o - Incremental Punctual (global consistency)
-+ Continuous (global consistency) -+ Continuous (global consistency) -+ Continuous (global consistency)
— Deferred (2PC only) — Deferred (2PC only) — Deferred (2PC only)
0 0 0
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 0% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Policy Update Probability

(a) Short Transactions (8—15 operations)

Policy Update Probability

(b) Medium Transactions (16—30 operations)

Policy Update Probability

(c) Long Transactions (31-50 operations)

Fig. 3. Results for LAN experiments.

where ¢; denotes the measured average time of the quickest
aborted transactions among the simulation runs, and ¢
denote the average time of the successfully committed
transactions.

5.2 Simulation Results

Using (1) and (2), we plot Figs. 3 and 4 to show our
simulation results for both the LAN arrangement and the
simulated WAN, respectively. Each figure shows the
execution time of the committed transaction (y-axis) as
the probability of the policy update changes (z-axis). The
figures contrast between the four different approaches for
proofs of authorizations each with the two validation
modes, namely, view and global consistency. The figures
show different transactions length: 1) short transactions
involve 8-15 operations running on up to five servers,
2) medium transactions involve 16-30 operations running
on up to 15 servers, and 3) long transactions involve 31-
50 operations running on up to 25 servers. For each case,
and as a baseline, we measured the transaction execution
time when transactions execute without any proof of
authorization and are terminated using the basic 2PC
(shown in figures as a solid line referring to Deferred 2PC
only). In all cases, the average transaction execution time of
Deferred proofs with 2PVC was effectively the same as the

5,000 11,000
4,500

9,900

4,000 8,800

3,500

7,700

3,000 6,600

2,500 5,500

Time (ms)
Time (ms)

2,000 4,400

baseline indicating that 2PVC has negligible overhead over
the basic 2PC.

The relative performance of the different proofs of
authorizations is consistent throughout the different experi-
ments. From the figures, we can conclude that the Deferred
proofs have the best performance of all, as the transaction
operations are allowed to proceed without interruption
until commit time. Of course, proofs of authorizations
failing at commit time will force the transaction to go into a
potentially expensive rollback. That will not be the case
with the other schemes, as the proofs are evaluated earlier
during the execution of the transactions and the rollback
process of aborted transactions involves fewer operations.

Punctual proofs come next in terms of performance.
The minor difference between Punctual and Deferred
proofs is because Punctual proofs incur the cost for the
local authorization checks each of which is in the range of
3-5 ms. Both Deferred and Punctual proofs are on average
insensitive to the probability of policy updates (as realized
from the graph slope). This is due to the fact that both
schemes only enforce consistency at commit time.

Incremental Punctual proofs show the worst perfor-
mance of all schemes and are the most sensitive to the
probability of policy updates. This is due to the fact that
Incremental Punctual proofs using either view or global

18,000
16,200

14,400

12,600

10,800

9,000

Time (ms)

7,200

Deferred (view consistency)
Punctual (view consistency)

1,500 -
Incremental Punctual (view consistency)

3,300

Deferred (view consistency)
Punctual (view consistency)
Incremental Punctual (view consistency)

Deferred (view consistency)
Punctual (view consistency)

5,400 .
Incremental Punctual (view consistency)

Continuous (view consistency)

Deferred (global consistency)

Punctual (global consistency)
Incremental Punctual (global consistency)
Continuous (global consistency)

Deferred (2PC only)

1,000

500

[¢ormionn

0
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Policy Update Probability

(a) Short Transactions (8—15 operations)

Fig. 4. Results for WAN experiments.

100%

Continuous (view consistency)

Deferred (global consistency)

Punctual (global consistency)
Incremental Punctual (global consistency)
Continuous (global consistency)

Deferred (2PC only)

2,200

1,100

[¢ormionn

0
0% 10% 20%

@
g

% 40% 50% 60% 70% 80% 90% 100%

Policy Update Probability

(b) Medium Transactions (16—30 operations)

Continuous (view consistency)

Deferred (global consistency)

Punctual (global consistency)
Incremental Punctual (global consistency)
Continuous (global consistency)

Deferred (2PC only)

3,600

1,800

[+onméonD

0
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Policy Update Probability

(c) Long Transactions (31-50 operations)

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:34:43 UTC from |IEEE Xplore. Restrictions apply.

424 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO.2, FEBRUARY 2014
TABLE 2
Contrasting the Various Proofs of Authorization
Deferred Punctual Incremental Continuous
View | Global | View | Global | View | Global | View | Global
Performance — infrequent updates [] [] [] [] H =] H H
Performance — frequent updates | | | | O O H =)
Precision [] [] [] [] [] [] [] []
Accuracy O H O =) H | H |
W - high H — moderate H - low L1 — poor

consistency have the risk of aborting and re-executing each
time a policy update is encountered. As the policy update
probability increases, the performance of Incremental
Punctual is severely penalized.

Continuous proofs show better performance than the
Incremental Punctual approach, but are worse than the
Deferred and Punctual approaches. Just as with Incremental
Punctual, the performance of Continuous proofs suffers as
the probability of policy update increases, as with each
policy update all previously evaluated proofs will go
through a reevaluation phase using the 2PV protocol.

A final observation is that in most cases, global
consistency proofs are slightly slower than view consis-
tency. This extra latency comes from the additional
communication round between TM and the master policy
server to retrieve the latest policy version. Global consis-
tency proofs were faster than view consistency ones in the
few cases when the latest policy happens to match the
policy used by all participating servers and as a result all
servers skip the reevaluation step of 2PVC.

6 TRADEOFF DISCUSSION

In this section, we briefly discuss the strengths and
weaknesses of each of our protocol variants relative to
three metrics: performance, accuracy, and precision. Since
choosing a scheme for data and policy consistency enforce-
ment is a strategic decision that has to consider many
tradeoffs, we also discuss the impact of application level
requirements on this decision.

6.1 Absolute Comparison

Table 2 represents a comparison between each of our eight
approaches for consistency enforcement. In this chart, all
approaches are assessed relative to one another using the
metrics described above. Note that the rankings used in the
chart (high, moderate, low, and poor) are not absolute;
rather each approach is assessed comparatively.

From the table, we can see that scoring “high” in all the
metrics is not possible, indicating a tradeoff between
performance and the other metrics. By design, all our
approaches are highly precise, as all participants internally
agree on the policy version to be used during the transaction,
although the accuracy of this policy can vary. In the general
case, view consistency is less accurate than global consis-
tency, since the view of the servers executing the transaction
might not account for recent updates to the policy in use.
Precision and accuracy together define the security of the
system. Deferred proofs are less accurate and, thus, less
secure than the other approaches—as policies remain
unchecked until the end of a transaction—but have the best

performance overall. The Punctual approach has similar
performance to Deferred, but is slightly more accurate than
Deferred, since authorizations are at least checked locally
throughout the transaction. Incremental Punctual has
the worst performance—especially when frequent policy
updates occur—but is more accurate and secure than the
previous approaches. Finally, Continuous has moderate to
low performance, which is the penalty that must be paid for
the high accuracy afforded by this approach.

6.2 Impact of Application Requirements

Choosing a consistency enforcement scheme is not some-
thing that can be done in isolation, as application require-
ments may limit the schemes available for use within a
particular application. We now investigate two cloud-based
applications that are representative of larger classes of
interesting applications to show how requirements can
impact the choice of the consistency enforcement scheme.
In particular, we consider three orthogonal axes of require-
ments: code complexity (which is directly related to trusted
computing base size), transaction mix (i.e., write-only, read/
write with internal reads, and read /write with materialized
reads), and policy/credential update frequency.

Application: Event Scheduling. Consider an Event Mon-
itoring Service (EMS) used by a multicampus university to
track events within the university and to allow staff,
faculty members, and student organizations to make online
event registrations. The university is using a cloud
infrastructure to host the various EMS databases and
execute the different transactions. Users have varying
access privileges that are governed by authorization
policies and credentials issued by a university-wide
credentialing system. In this system, read requests must
be externalized to users during the transaction execution so
that intermediate decisions can be made. Furthermore, the
university system in general has infrequent policy and
credentials updates, and requires lower code complexity to
minimize code verification overheads.

Recommendation. In this case, the use of Punctual proofs
makes the most sense. Note that this approach has low
code complexity, performs fast, and is suitable for systems
with infrequent updates. Read externalization is also
permissible, as policies are checked prior to each operation
in the transaction.

Application: Sales Database. This example is derived from
the traveling salesperson example in [13]. According to
company requirements, a customer’s data should only be
read by the representatives in the operations region of that
customer, while any other data should not be materialized
until commit time. The company also experiences very
frequent policy and credential updates, as representatives

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:34:43 UTC from |IEEE Xplore. Restrictions apply.

ISKANDER ET AL.: BALANCING PERFORMANCE, ACCURACY, AND PRECISION FOR SECURE CLOUD TRANSACTIONS 425

are frequently assigned to different operational regions. The
company considers security to be very important as to
avoid incorrect authorization decisions that might leak
customer information. Finally, the company has enough
resources to manage complex code, but still requires
reasonable execution latency.

Recommendation. This company should use the Contin-
uous global approach for the highest accuracy to avoid any
information leakage at runtime, or Continuous view for
slightly lower accuracy. This provides a good balance
between accuracy and performance, at the cost of higher
code complexity.

7 RELATED WORK

Relaxed Consistency Models for the Cloud. Many database
solutions have been written for use within the cloud
environment. For instance, Amazon’s Dynamo database
[14]; Google’s BigTable storage system [15]; Facebook’s
Cassandra [16]; and Yahoo!’s PNUTS [17]. The common
thread between each of these custom data models is the
relaxed notion of consistency provided to support mas-
sively parallel environments.

Such a relaxed consistency model adds a new dimension
to the complexity of the design of large scale applications
and introduces a new set of consistency problems [18]. The
authors of [19] presented a model that allows queriers to
express consistency and concurrency constraints on their
queries that can be enforced by the DBMS at runtime. On
the other hand, [20] introduces a dynamic consistency
rationing mechanism that automatically adapts the level of
consistency at runtime. Both of these works focus on data
consistency, while our work focuses on attaining both data
and policy consistency.

Reliable Outsourcing. Security is considered one of the
major obstacles to a wider adoption of cloud computing.
Particular attention has been given to client security as it
relates to the proper handling of outsourced data. For
example, proofs of data possession have been proposed as
a means for clients to ensure that service providers
actually maintain copies of the data that they are
contracted to host [21]. In other works, data replication
have been combined with proofs of retrievability to
provide users with integrity and consistency guarantees
when using cloud storage [22], [23].

To protect user access patterns from a cloud data store,
Williams et al. [24] introduce a mechanism by which cloud
storage users can issue encrypted reads, writes, and inserts.
Further, Williams et al. [25] propose a mechanism that
enables untrusted service providers to support transaction
serialization, backup, and recovery with full data con-
fidentiality and correctness. This work is orthogonal to the
problem that we focus on in this paper, namely consistency
problems in policy-based database transactions.

Distributed Transactions. CloudTPS provides full ACID
properties with a scalable transaction manager designed
for a NoSQL environment [26]. However, CloudTPS is
primarily concerned with providing consistency and
isolation upon data without regard to considerations of
authorization policies.

There has also been recent work that focuses on providing
some level of guarantee to the relationship between data and

policies [27]. This work proactively ensures that data stored
at a particular site conforms to the policy stored at that site. If
the policy is updated, the server will scan the data items and
throw out any that would be denied based on the revised
policy. It is obvious that this will lead to an eventually
consistent state where data and policy conform, but this
work only concerns itself with local consistency of a single
node, not with transactions that span multiple nodes.

Distributed Authorization. The consistency of distributed
proofs of authorization has previously been studied, though
not in a dynamic cloud environment (e.g., [4]). This work
highlights the inconsistency issues that can arise in the case
where authorization policies are static, but the credentials
used to satisfy these policies may be revoked or altered. The
authors develop protocols that enable various consistency
guarantees to be enforced during the proof construction
process to minimize these types of security issues. These
consistency guarantees are similar to our notions of safe
transactions. However, our work also addresses the case in
which policies—in addition to credentials—may be altered
or modified during a transaction.

8 CONCLUSIONS

Despite the popularity of cloud services and their wide
adoption by enterprises and governments, cloud providers
still lack services that guarantee both data and access
control policy consistency across multiple data centers. In
this paper, we identified several consistency problems that
can arise during cloud-hosted transaction processing using
weak consistency models, particularly if policy-based
authorization systems are used to enforce access controls.
To this end, we developed a variety of lightweight proof
enforcement and consistency models—i.e., Deferred, Punc-
tual, Incremental, and Continuous proofs, with view or
global consistency—that can enforce increasingly strong
protections with minimal runtime overheads.

We used simulated workloads to experimentally evaluate
implementations of our proposed consistency models
relative to three core metrics: transaction processing perfor-
mance, accuracy (i.e., global versus view consistency and
recency of policies used), and precision (level of agreement
among transaction participants). We found that high
performance comes at a cost: Deferred and Punctual proofs
had minimal overheads, but failed to detect certain types of
consistency problems. On the other hand, high-accuracy
models (i.e., Incremental and Continuous) required higher
code complexity to implement correctly, and had only
moderate performance when compared to the lower
accuracy schemes. To better explore the differences between
these approaches, we also carried out a tradeoff analysis of
our schemes to illustrate how application-centric require-
ments influence the applicability of the eight protocol
variants explored in this paper.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under awards CCF-0916015, CNS-0964295,
CNS-1017229, and 11S-1050301.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:34:43 UTC from |IEEE Xplore. Restrictions apply.

426

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO.2, FEBRUARY 2014

REFERENCES

(1]
(2]

B3]

(4]

(5]

(o]

(7]

(8]

]
(10]

(11]

[12]

(13]

(14]

[15]

[10]

(17
(18]

(19]

(20]

(21]

(22]

(23]

[24]

M. Armbrust et al., “Above the Clouds: A Berkeley View of Cloud
Computing,” technical report, Univ. of California, Feb. 2009.

S. Das, D. Agrawal, and A.E. Abbadi, “Elastras: An Elastic
Transactional Data Store in the Cloud,” Proc. Conf. Hot Topics in
Cloud Computing (USENIX HotCloud '09), 2009.

D.J. Abadi, “Data Management in the Cloud: Limitations and
Opportunities,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 3-12,
Mar. 2009.

A]. Lee and M. Winslett, “Safety and Consistency in Policy-Based
Authorization Systems,” Proc. 13th ACM Conf. Computer and
Comm. Security (CCS ’06), 2006.

M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams,
“X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol - Ocsp,” RFC 2560, http://tools.ietf.org/html/rfc5280,
June 1999.

E. Rissanen, “Extensible Access Control Markup Language
(Xacml) Version 3.0,” http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-os-en.html, Jan. 2013.

D. Cooper et al, “Internet x.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile,” RFC
5280, http://tools.ietf.org/html/rfc5280, May 2008.

J. Li, N. Li, and W.H. Winsborough, “Automated Trust Negotia-
tion Using Cryptographic Credentials,” Proc. 12th ACM Conf.
Computer and Comm. Security (CCS '05), Nov. 2005.

L. Bauer et al., “Distributed Proving in Access-Control Systems,”
Proc. IEEE Symp. Security and Privacy, May 2005.

J. Li and N. Li, “OACerts: Oblivious Attribute Based Certificates,”
IEEE Trans. Dependable and Secure Computing, vol. 3, no. 4, pp. 340-
352, Oct.-Dec. 2006.

J. Camenisch and A. Lysyanskaya, “An Efficient System for Non-
Transferable Anonymous Credentials with Optional Anonymity
Revocation,” Proc. Int’l Conf. Theory and Application of Crypto-
graphic Techniques: Advances in Cryptology (EUROCRYPT ’01),
2001.

P.K. Chrysanthis, G. Samaras, and Y.J. Al-Houmaily, “Recovery
and Performance of Atomic Commit Processing in Distributed
Database Systems,” Recovery Mechanisms in Database Systems,
Prentice Hall PTR, 1998.

M.K. Iskander, D.W. Wilkinson, A.]. Lee, and P.K. Chrysanthis,
“Enforcing Policy and Data Consistency of Cloud Transactions,”
Proc. IEEE Second Int'l Workshop Security and Privacy in Cloud
Computing (ICDCS-SPCCICDCS-SPCC), 2011.

G. DeCandia et al., “Dynamo: Amazons Highly Available Key-
Value Store,” Proc. 21st ACM SIGOPS Symp. Operating Systems
Principles (SOSP "07), 2007.

F. Chang et al., “Bigtable: A Distributed Storage System for
Structured Data,” Proc. Seventh USENIX Symp. Operating System
Design and Implementation (OSDI '06), 2006.

A. Lakshman and P. Malik, “Cassandra- A Decentralized
Structured Storage System,” ACM SIGOPS Operating Systems
Rev., vol. 44, pp. 35-40, Apr. 2010.

B.F. Cooper et al.,, “PNUTS: Yahoo!’s Hosted Data Serving
Platform,” Proc. VLDB Endowment, vol. 1, pp. 1277-1288, Aug. 2008.
W. Vogels, “Eventually Consistent,” Comm. ACM, vol. 52, pp. 40-
44, Jan. 2009.

H. Guo, P.-A. Larson, R. Ramakrishnan, and J. Goldstein, “Relaxed
Currency and Consistency: How to Say “Good Enough” in SQL,”
Proc. ACM Int’l Conf. Management of Data (SIGMOD '04), 2004.

T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Con-
sistency Rationing in the Cloud: Pay Only When It Matters,” Proc.
VLDB Endowment, vol. 2, pp. 253-264, Aug. 2009.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable Data Possession at Untrusted
Stores,” Proc. 14th ACM Conf. Computer and Comm. Security (CCS
'07), 2007.

K.D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-Availability
and Integrity Layer for Cloud Storage,” Proc. 16th ACM Conf.
Computer and Comm. Security (CCS '09), 2009.

A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and D.
Shaket, “Venus: Verification for Untrusted Cloud Storage,” Proc.
ACM Workshop Cloud Computing Security (CCSW ’10), 2010.

P. Williams, R. Sion, and B. Carbunar, “Building Castles Out of
Mud: Practical Access Pattern Privacy and Correctness on
Untrusted Storage,” Proc. 15th ACM Conf. Computer and Comm.
Security (CCS '08), 2008.

(23]

(26]

(27]

P. Williams, R. Sion, and D. Shasha, “The Blind Stone Tablet:
Outsourcing Durability to Untrusted Parties,” Proc. 16th Annual
Network and Distributed System Security Symp. (NDSS '09), 2009.
Z. Wei, G. Pierre, and C.-H. Chi, “Scalable Transactions for Web
Applications in the Cloud,” Proc. 15th Int’l Euro-Par Conf. Parallel
Processing (Euro-Par '09), Aug. 2009.

T. Wobber, T.L. Rodeheffer, and D.B. Terry, “Policy-Based Access
Control for Weakly Consistent Replication,” Proc. ACM Fifth
European Conf. Computer Systems (EuroSys '10), 2010.

4

Marian K. Iskander received the BS and MS
degrees in computer and information sciences
from the University of Ain Shams, Egypt, in 2002
and 2007, respectively. She is working toward
the PhD degree in computer science at the
University of Pittsburgh. She has previous
research work in privacy and fault-tolerance in
wireless sensor networks and currently working
on designing location privacy preserving techni-
ques in crowd sensing applications. Her re-

search interests include security and privacy in distributed systems.

Tucker Trainor received the BS degree in
computer science from the University of Pitts-
burgh, in 2012. He is a systems developer in
Branding Brand a Pittsburgh-based mobile
commerce provider. His interests include in-
formation security and its applications to
database systems.

Dave W. Wilkinson received the BS degree in
computer science from the University of
Pittsburgh in 2009. He is currently working
toward the PhD degree. His research work
relates to distributed operating system design
and participated in the design and implementa-
tion of XOmB, and Djehuty, operating systems.
His research focus is writing maintainable,
socially relevant systems to help people use
technology and not the other way around.

Adam J. Lee received the BS degree in
computer science from Cornell University in
2003. He received the MS and PhD degrees
from the University of lllinois at Urbana-Cham-
paign in 2005 and 2008, respectively. He is
an assistant professor in the Department of
Computer Science at the University of Pitts-
burgh. His research interests include the inter-
section of the distributed systems, security, and
privacy fields, and his recent work has been

funded by DARPA and the US National Science Foundation (NSF). He

isa

K ~
T
= =

i

-

member of the IEEE.

Panos K. Chrysanthis received the BS degree
from the University of Athens, Greece in 1982,
and the MS and PhD degrees from the
University of Massachusetts at Amherst in
1986 and 1991, respectively. He is a professor
of computer science and the founding director of
the Advanced Data Management Technologies
Laboratory at the University of Pittsburgh. His
lab has a broad focus on user-centric data
management for scalable network-centric and

@é .

%—w}

collaborative applications. He is an adjunct professor at the Carnegie
Mellon University and at the University of Cyprus. He received the US
National Science Foundation CAREER Award and he is an ACM
distinguished scientist and a senior member of the IEEE.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:34:43 UTC from |IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

