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Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity.
In order to collect the data generated by these tiny-scale devices, the data management community has
proposed the utilization of declarative data-acquisition frameworks. While these frameworks have
facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the
underlying network topology and also did not support advanced query processing semantics. In this
paper we present KSpot™, a distributed network-aware framework that optimizes network efficiency by
combining three components: (i) the tree balancing module, which balances the workload of each sensor
node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes
data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query
processing module, which supports advanced query processing semantics. In order to validate the
efficiency of our approach, we have developed a prototype implementation of KSpot™ in nesC and JAVA.
In our experimental evaluation, we thoroughly assess the performance of KSpot™ using real datasets and
show that KSpot* provides significant energy reductions under a variety of conditions, thus significantly

prolonging the longevity of a WSN.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Technological advances in embedded systems, sensor compo-
nents and low power wireless communication units have made it
feasible to produce small-scale wireless sensor devices that can be
utilized for ad hoc monitoring infrastructures. Large-scale deploy-
ments of wireless sensor networks (WSNs) have already emerged in
environmental and habitant monitoring (Szewczyk et al., 2004;
Sadler et al., 2004), structural monitoring (Kim et al., 2007) and
urban monitoring (Rose and Welsh, 2010; Campbell et al., 2008).
To simplify deployment, these systems often employ middleware
frameworks that allow users to disseminate queries and collect
runtime measurements of sensor data. Since sensor devices
feature a limited energy budget (typically powered using 2xAA
batteries, Madden et al., 2003; Szewczyk et al., 2004; Sadler et al.,
2004), one of the key design goals of any middleware system is
power efficiency (Stojmenovic, 2005).

* Corresponding author. Tel./fax: +357 22 892755 01.
E-mail addresses: panic@cs.ucy.ac.cy (P.G. Andreou),
dzeina@cs.ucy.ac.cy (D. Zeinalipour-Yazti), cssamara@cs.ucy.ac.cy (G.S. Samaras),
panos@cs.pitt.edu (PK. Chrysanthis).

http://dx.doi.org/10.1016/j.jnca.2014.08.010
1084-8045/© 2014 Elsevier Ltd. All rights reserved.

This study shows that although predominant data acquisition
middleware frameworks (Madden et al., 2003; Yao and Gehrke,
2004; Yu et al., 2003; Shen et al., 2001; Hitha et al., 2008; Diallo
et al.,, 2012; Heinzelman et al., 2004; Ollero et al., 2007; Virmani
et al,, 2013; Luu and Tang, 2014; Chao and Hsiao, 2014) have
succeeded in decreasing the overall energy consumption of the
network by introducing power-aware in-network processing algo-
rithms, they have overlooked the important parameter of the
underlying network topology. In particular, most of the approaches
establish query dissemination and data acquisition on the premise
of Query Routing Trees (QRTs) constructed in an ad hoc manner
(Madden et al., 2003; Yao and Gehrke, 2004; Sharaf et al., 2003)
where each sensor selects as its parent the first node from which a
query was received. Although this approach generates an effective
routing scheme between sensor nodes, it may prove highly
inefficient as it does not provide any performance guarantees
(e.g., for the workload incurred on each sensor node).

More specifically, ad hoc QRTs present two major sources of
inefficiencies: (i) data transmission inefficiencies: QRTs do not
provide any guarantee that the query workload will be distributed
equally among all sensors. This leads to collisions during data
transmissions that represent a major source of energy waste.
Consequently, unbalanced trees can severely degrade the network
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health and efficiency; and (ii) data reception inefficiencies: QRTs do
not define the waking window (7) of a sensing device (i.e., the
continuous interval during which a sensor node has to enable its
transceiver, collect and aggregate the results from its children, and
then forward these results to its own parent). Consequently, in
many cases it is an over-estimate that leads to significant
energy waste.

Addressing the aforementioned inefficiencies enables the gen-
eration of energy-efficient network topologies that rapidly decrease
data reception and transmission inefficiencies. However, additional
energy savings can be achieved by closely investigating the query
execution process that takes place after generating an efficient
topology. Current data acquisition middleware framework systems
(Madden et al., 2003; Yao and Gehrke, 2004; Hitha et al., 2008;
Diallo et al., 2012; Heinzelman et al., 2004; Ollero et al., 2007; Souto
et al., 2005; Virmani et al., 2013) focus on producing a complete
result set for a query. Conversely, a number of studies (Fagin, 1999;
Zeinalipour-Yazti et al., 2006) model the retrieval of data on the
presumption that the user is only interested in the k highest-ranked
answers rather than all of them. A Top-k query (Fagin, 1999) focuses
on the subset of most relevant answers for two reasons: (i) to
minimize the cost metric that is associated with the retrieval of all
answers, and (ii) to improve the quality of the answer set such that
the user is not overwhelmed with irrelevant results.

In this paper we present KSpot™, a data-centric distributed
middleware framework that advances the state-of-the-art by
incorporating network-awareness to the data acquisition process.
To accomplish this, KSpot* combines three basic components:

1. the workload balancing module, whose objective is to decrease
data reception inefficiencies by automatically tuning the wak-
ing window, locally at each sensor without any a priori knowl-
edge or user intervention;

2. the tree balancing module, whose objective is to decrease data
transmission inefficiencies by transforming the initial QRT into
a more balanced tree in a distributed manner; and

3. the query processing module, whose objective is to decrease the
number and size of packets transmitted to the network by
facilitating advanced query semantics (e.g., Top-k, Group-By
queries).

KSpot* is an open-source middleware framework' for WSNs
that can be utilized in numerous application domains including
environmental monitoring (Szewczyk et al., 2004; Sadler et al.,
2004), big ephemeral events (Yang et al., 2003; Paradiso et al.,
2002), structural monitoring (Kim et al., 2007), urban monitoring
(Rose and Welsh, 2010; Campbell et al., 2008), military/security
applications (MemSic Technology Inc.; SELEX Galileo Inc.; Gupta et
al., 2014), health monitoring (Lorincz et al., 2009; Roantree et al.,
2012), etc. We now describe how KSpot™ has been deployed in the
context of two projects:

Environmental monitoring and emergency management: Dynamic
monitoring of forests and rivers as well as emergency management
require the existence of large sensor network deployments that can
provide realtime results. They involve hundreds of sensors and
actuators deployed to cover thousands of square kilometers of forest
areas thus producing huge amounts of data that require ample time to
process. An important factor in sustaining such large sensor network
deployments is the cost of maintenance associated with battery
replacement. There are solutions today that can rapidly reduce this
maintenance cost by utilizing alternative means for energy replenish-
ment including solar panels, bio-harvesting (Voltree Power Inc.), etc.
However, in order for these solutions to succeed effectively, the ratio of

1 The KSpot project, http://kspot.cs.ucy.ac.cy/

energy replenishment over energy consumption must be encouraging.
KSpot™ decreases energy consumption by minimizing both the size
and the number of packets, which increases the network's lifespan
and reduces maintenance costs.

KSpot™ is currently deployed as part of the forest fire monitor-
ing system of the FireWatch project? (see Fig. 1), sponsored by the
Cyprus Research Promotion foundation and supervised by the
Cyprus Department of Forests. The current network deployed at
Lythrodontas forest, which is one of the high risk forest areas in
Cyprus, consists of 20 MemsSic IRIS nodes and is scheduled to
gradually grow each year.

Big ephemeral events: International events (e.g., FIFA World Cup,
World Expo) usually attract millions of participants during a very
limited period of time. The deployment of smart sensor networks
(i.e., sensors, actuators, RFID) in buildings can contribute to
improve the visitor's experience by providing the means to easily
interact with its surroundings. For example, during these ephem-
eral big events, affluence-measuring sensors (e.g., sound, proxi-
mity) can form logical groups in order to build a compound
resource that provides a real-time map of visitors' arrivals at the
different pavilions and places and propose visitors an ideal tour, so
as to maximize their experience and satisfaction. Additionally, if a
crisis situation happens, these compound resources can also help
to localize people to rescue. Furthermore, these deployments can
be utilized in conjunction with smartphone networks in order to
generate opportunistic social networks that form spontaneously
according to relationships, which are explicit (e.g., friendship) and/
or implicit (e.g., location, energy).

In this context, we have deployed the KSpot™ framework
prototype implementation during the event “Researcher's Evening”
at the Cyprus International Fair in 2009. Figure 2 shows two
pictures of our deployment. Our objective was to create an acoustic
map of the pavilions participating in the exhibition and direct the
visitors towards the most popular ones (i.e., the most noisy). This
was accomplished by forming logical clusters of the sensor nodes at
each pavilion and then measuring the average sound level using the
microphone sensor. KSpot ™ successfully monitored the pavilions by
periodically visualizing the most popular locations (i.e., Top-3
highest ranked logical groups) every 4 s. Additionally, in order to
demonstrate the interoperability of the KSpot* middleware, all
acquired results were also recorded in a local database. Noteworthy
was that at the end, the organizing committee of the event
requested the data trace for further analysis.

This work is found upon our previous work in Andreou et al.
(2011c), where we have presented the outline of our network-
aware architecture. In this paper, we present a thorough descrip-
tion of the KSpot™ framework, its features as well as a description
of its basic components. KSpot™ features a highly modular design
that allows components to function individually or in cooperation
according to the requirements of the application, thus allowing
application designers to easily integrate new features into the
design as well as to experiment under different settings. Addi-
tionally, KSpot* provides an extended SQL query syntax and
mechanisms for logical clustering of sensor nodes through
attribute-based naming. Finally, through our experiments we have
shown that KSpot* is resilient in the presence of failures and
scales linearly with the number of sensors in the network.

Our contributions: More specifically, we make the following
contributions:

® We present a detailed description of the KSpot* framework

architecture including insight information on all its compo-
nents and internal procedures.

2 The FireWatch project, http://firewatch.cs.ucy.ac.cy/
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Fig. 1. KSpot™ is currently deployed as part of the forest fire monitoring system of the FireWatch project at the Lythrodontas forest in Nicosia, Cyprus.

Fig. 2. KSpot™'s prototype implementation deployment during the event “Researcher's Evening” at the Cyprus International Fair in 2009. (Left) Sensor nodes were placed
over the pavilions using helium balloons. (Right) Sink station was connected with a laptop computer that projected the pavilions with the highest noise level.

® We experimentally validate the efficiency of KSpot™ with an
extensive experimental study that utilizes real sensor readings
and real datasets from the Department of Atmospheric Sciences
at the University of Washington, Intel Research Berkeley and
University of California-Berkeley.

® We qualitatively explain the differences and similarities of
existing WSN middleware frameworks compared to the
KSpot™ framework. To accomplish this, we provide a taxonomy
of WSN middleware frameworks along four different dimen-
sions: power efficiency, topology optimization, workload optimi-
zation and top-k query support.

The remainder of the paper is organized as follows: Section 2
presents the architecture of the KSpot™ framework and Sections

3-5 provide a description of its basic components. In Section 6 we
present our experimental methodology and in Section 7 the
results of our evaluation. Finally, Section 8 performs a qualitative
comparison of related middleware system research works with
KSpot™ and Section 9 concludes our paper.

2. The KSpot™ framework

KSpot™ is a network-aware framework for WSNs built on top of
a diverse set of energy-conscious algorithms. It inserts a profiling
layer between the server and the sensor network that discovers
structural and workload inefficiencies and exploits them in
order to generate balanced topologies that can be queried in an
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energy-efficient manner. It has three basic operations: (i) to
construct balanced network topologies; (ii) to tune the waking
windows of sensor nodes; and (iii) to enable tuple ranking through
Top-k queries.

In this section, we provide an overview of the KSpot™ frame-
work, its design principles and its basic components.

2.1. Design goals

In order to build a practical system, we have taken into
consideration the following desired properties:

® Modularity: Decomposing systems into a number of compo-
nents that may be mixed and matched in a variety of config-
urations ensures a high degree of openness and usability. Our
framework's architecture design consists of modular compo-
nents that operate in an energy efficient manner both in
isolation and in combination with each other as well as with
other protocols.

® FEnergy-efficiency: Battery-powered WSNs are expected to mini-
mize maintenance cost by lasting for large periods of time
without requiring battery replacements (Madden et al., 2002,
2003; Andreou et al, 2011ab; Szewczyk et al, 2004). To
accomplish this, any software that runs on a sensor device
must be designed to operate in an energy-efficient manner. In
the KSpot™ framework, each module is found on the premise of
energy-conscious algorithms that minimize energy consump-
tion and increase network longevity.

® Distributed and autonomous behavior: We focus on fully auton-
omous and decentralized behavior of KSpot™ client-side com-
ponents. More specifically, we minimize the maintenance of
any global state or data structures at a centralized location and
use only local knowledge. In the cases where global informa-
tion is necessary for completing an operation it is acquired
using specialized coordinator components. Note that this
occurs only at the initialization of the network topology upon
a balancing request or in case of node failures.

® Scalability: The network sizes of WSNs are expected to grow
substantially in the next few years as the cost for manufactur-
ing sensor devices continuously decreases (Akyildiz et al.,
2007). Consequently, we consider scalability an extremely
desirable property of our framework as it ensures that the
performance of the system will maintain acceptable QoS
standards regardless of the increasing network size. In our
experiments, we show that the KSpot™* framework is scalable
by utilizing a number of datasets that vary from small-scale to
large-scale sensor networks.

® Failure resilience: WSNs are typically prone to imminent node
failures triggered by temporary power-downs, malfunctions,
environmental causes, etc. Maintaining resilience in such
environments is vital for applications (e.g., fire detection/
prediction) that require real-time results.

2.2. KSpot* framework architecture design

The KSpot™ framework lies between the server-tier and the
data-tier as illustrated in Fig. 3. Applications can post queries to
the sensor network through the server-side query manager using
the query API or request a balancing operation (tree balancing
and/or workload balancing request) through the respective server-
side coordinator components. Queries are forwarded to the client-
side query processing module, which in turn decides the best
execution plan for the query and communicates with the schema
layer in order to retrieve the actual data residing on local storage.
As soon as the query results are ready, they are forwarded back to
the application through the data server-side listener component.
Applications can then share the data with online databases and
web portals.

Balancing requests require global information, which is stored
in the meta-data repository. The coordinator components recur-
sively forward specialized messages to the sensor network
requesting the local values. In the next step, these values are
propagated in the opposite order until they reach the sink node.
The sink node then calculates the critical path () and the optimal

Server Tier Middle Tier Data Tier
Kspot* Framework
Query Manager Query Processing 0:)
Module
Web Database Query APl _ || Top-k Processing < » 8
Top-k API L ~ }k MINT g
INT S
Internet Data Listener E3 L=
Group . — £
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[
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\ sink : < > B o
L I + I QA\RT ® ‘é’ &
Applications Metadata S |l
Repository @ E
T I Tree Balancing Client 8
o eSelt
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Tree Balancing Module <

Fig. 3. KSpot™ framework architecture. The KSpot™ client combines three components: the tree balancing module, which balances the sensor network topology; the
workload balancing module, which balances the workload of each sensor node; and the query processing module, which handles query execution and facilitates Top-k query

processing.
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network branching factor () values and forwards them back to
the coordinator components that proceed with balancing the
network topology and each sensor node's workload locally.

We now describe in more detail the components of the KSpot™
framework:

® The workload balancing module (described in detail in Section
3) investigates data reception/transmission inefficiencies that
occur from unbalanced assignment of the query workload
among sensor nodes. It utilizes the Workload-Aware Routing
Tree (WART) algorithm for the dynamic adaptation of the
waking windows locally at each sensor node.

® The tree balancing module (described in detail in Section 4)
identifies structural inefficiencies in the initial QRT that occur
from its ad hoc construction nature. It utilizes the Energy-driven
Tree Construction (ETC) algorithm in order to remove these
inefficiencies by reconstructing the tree in a balanced manner,
which minimizes data collisions during communication.

® The query manager is responsible for disseminating queries to
the network and translating the network results into a tuple-
format using the data listener component. It supports an SQL-
like query syntax, which supports standard queries through the
query API. Additionally, it extends the traditional SQL syntax of
predominant data-centric middleware systems (Madden et al.,
2003; Yao and Gehrke, 2004; Shen et al., 2001; Yu et al., 2003)
by introducing top-k query execution in the form of aggregates
through the top-k query API. More details on the query syntax
will be presented in Section 2.4.

® The query processing module (described in detail in Section 5) is
responsible for query execution as well as a number of services
including group management (see Section 2.5) and caching. It
utilizes the INT algorithm for the execution of top-k queries.
Additionally, it incorporates a data caching mechanism that, in
cooperation with INT, exploits temporal coherency between
results of consecutive time instances (MINT).

® The data caching component exploits the temporal coherency
in order to suppress updates that do not change between
consecutive time instances. At each epoch, the query results
are stored in main memory before they are transmitted so that
they can be compared with the results of the next epoch. We
have chosen to store the results in main memory instead of
flash storage because it increases the response time perfor-
mance of the system.

® The group management (described in detail in Section 2.5)
component is responsible for forming clusters of sensors by
arranging them in logical groups. This is accomplished by
attribute-based naming of the sensors based on specific query
semantics.

We now present selected features of the KSpot™ framework.
2.3. Modular design

The KSpot™ framework is composed of loosely coupled mod-
ules that communicate with message-passing. In Fig. 3, the server-
side components communicate with their client-side accomplices
using different communication messages (different arrows depart-
ing from each server-side component). The reason we have not
opted for a unified communication mechanism is that this gen-
erates a tightly coupled system, which would have compromised
the modularity of the system as tightly coupled systems tend to
exhibit a number of disadvantages including: (i) decreased reusa-
bility, because dependent modules must be bundled together in
order to be reused or tested; (ii) increased deployment effort,
because module bundles will require more time to test and
deploy; and (iii) increased maintenance, as updates on one module

may require re-testing of the whole bundle. Nevertheless, under a
unified communication setting, we could have performed addi-
tional packet-level optimizations that could have decreased the
energy requirements for transmission/reception.

The modular design of the KSpot™ architecture allows applica-
tion designers to easily integrate new features into the design as
well as experiment under different settings. Furthermore,
KSpot*'s modules can function individually or in cooperation®
according to the requirements of the application.

2.4. Query syntax

The KSpot™ framework supports an SQL-like query syntax,
which supports standard queries through the query API and Top-k
queries through the Top-k API In particular, the KSpot* frame-
work utilizes the following query syntax:

SELECT Top k attribute [,aggregate]

FROM sensors

[WHERE fil ter]

[GROUP BY attribute]

[ORDER BY [attribute|laggregate] [ASC|DESC]]
[SAMPLE PERIOD time (ms)]

The attribute parameter in the SELECT statement refers to
all measurements that can be acquired from the sensor board as
well as variables stored locally at each sensor node. The attri-
bute parameter in the GROUP BY statement may additionally refer
to a logical group assignment (see Section 2.5). The aggregate
parameter refers to all duplicate-insensitive aggregates supported.
Roughly, these aggregates can be distinguished into (i) distributive
aggregates, where records can be aggregated in-network without
compromising correctness (e.g., duplicate-insensitive (MAX, MIN),
duplicate-sensitive (suM, counT)), and (ii) holistic aggregates,
where in-network aggregation might compromise the result
correctness (e.g., MEDIAN), thus all tuples have to be transmitted
to the sink before the query can be executed. The benefits of the
KSpot™ framework are more evident in the case of single-relation
queries with distributive aggregate functions. In contrast with
other frameworks, we optimize queries with multi-tuple answers.
Such answers can be generated by a GROUP BY clause, or by a non-
aggregate query. Note that for single-tuple answers, such as those
generated by an aggregate query without a GROUP BY clause, there
is no notion of a top-k result. Furthermore, when a Top-k attribute
query is executed over the network, we only return the k-highest
results for that attribute, if no ORDER BY clause is used.

2.5. Logical group management

The group management component realizes clustering of the
sensor nodes by arranging them into logical groups. This is
necessary in the case of Group-By queries, where grouping may
be achieved not only on predefined attributes (e.g., nodeid) but
also on context-based attributes (e.g., building name, room num-
ber). To facilitate our description, consider an indoor deployment
of four sensor nodes s;_4 in a building with two offices, A and B,
such that s;_, is located in office A and s3_4 in B. In order to
inform each sensor node on its actual location (e.g., longitude,
latitude) and then derive its logical location (i.e., office A or B), we
could have utilized absolute localization techniques (e.g., Global

3 When operating in cooperation, the operation of the tree balancing module
logically precedes the operation of the workload balancing module, as the former
reconstructs the network topology which may result in different workload
assignments.



232 P.G. Andreou et al. / Journal of Network and Computer Applications 46 (2014) 227-240

© KSpot Configuration Panel (S (@[] | @ Kspot Display Panel

Conf.Room B s
|
Sensors Configuration

Select Cluster

Sensors Per Cluster

=a s

Cluster [Lab](4): $1,52,83,84
Cluster [Reception](2): 85,56
Cluster [Administration](3): 57,8,59
Cluster [Toilets](1): s10
Cluster [Conf.Room AJ(2): 511,812

@ KSpot Query Panel

{ ¥ Select Query Type (Current/Historic) |

=N =N
‘ ¥ Select Topk |
‘Select number of significant events: 3

[ ¥ Select Attributes and Aggregates |
Attribute  SELECT  AVG MIN MAX
cluster [vi

‘sound = v = =
temperature [ | 5 (] =

light (] 5 (]} [

| > createFiters |
| v show query Text |
SELECT TOP 3 cluster, AVG(sound)

FROM sensors

GROUP BY cluster

WITH HISTORY

Start Stop

Fig. 4. KSpot™'s graphical user interface (GUI) allows users to administer the execution of standard and top-k Queries through an intuitive and declarative graphical user
interface. The above scenario conducts a Top-3 query over a 14-node sensor network organized in six logical clusters. The display panel (on the right) illustrates the three

KSpot*-bullets for the three highest-ranked sensor clusters.

Positioning System (GPS)) or relative localization techniques (e.g.,
RSSI indicators) and then perform the logical mapping on the
server. However, this requires specialized hardware (e.g., GPS
receiver), which may not be always available and also increases
the overall message complexity. To overcome this, the KSpot™ API
supports commands for creating and deleting logical groups that
are injected to the network and processed locally at the
sensor nodes.

2.6. Proof of concept application

In order to assess the practicality and usability of the proposed
KSpot™* framework, we have developed a proof of concept appli-
cation (KSpot™ POCA) that demonstrates the full potential of
KSpot™ (see Fig. 4). KSpot™ POCA components are implemented
in JAVA (server-side) and in nesC (client-side). We have selected
nesC for the implementation of the client-side components for
practical reasons as it provides a kernel of declarative data
acquisition functionalities (i.e., SQL query syntax). However, we
could have similarly applied our ideas on other sensor network
operating systems (e.g., LiteOS Cao et al., 2008).

3. Workload balancing module

The workload balancing module investigates data reception/
transmission inefficiencies that occur from unbalanced assignment
of the query workload among sensor nodes. It utilizes the
Workload-Aware Routing Tree (WART) algorithm for the dynamic
adaptation of the waking windows of each sensor node. In
particular, the workload balancing process consists of three
phases: (i) construction phase, where the sink node constructs a
new QRT or utilizes an established one and then queries the

network for the total critical path value y; (ii) dissemination phase,
where the sink node disseminates the critical path value y to the
network and each sensor node tunes its waking window accord-
ingly; and (iii) adaptation phase, where each sensor node adapts its
waking window according to new workload variations.

Construction phase: The first phase of the WART algorithm
starts out by having each node select one node as its parent. This
results in a waiting list similar to Cougar (Yao and Gehrke, 2004).
To accomplish this task, the parent is notified through an explicit
acknowledgment or becomes aware of the child's decision by
snooping the radio.

In the next step, each sensor profiles the activity of the
incoming and outgoing links and propagates this information to
the sink. In particular, each sensor s; executes one round of data
acquisition by maintaining one counter for its parent connection
(s?“") and one counter per child s; connection (sfg). These counters
account for the workload between the respective sensors (i.e., the
time required to propagate the query results between them) and
are utilized to identify the critical path cost in the subsequent
epochs. Note that these counters account for more time than what
is required had we assumed a collision-free MAC channel. By
projecting the time costs obtained for each edge to a virtual
spanning tree creates a distributed QRT similar to the one depicted
in Fig. 5.

The final step is to percolate these local edge costs to the sink
by recursively executing the following in-network function f at
each sensor s;:

0 if s; is a leaf,

max  (f(s)+s") otherwise.
Vj e children(s;) J

fsp)=

The critical path cost is then f(sp) (denoted for brevity as y).
Using our working example of Fig. 5, we will end up with the
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Fig. 5. Nine sensing devices and the respective workload between them (shown as
edges). The WART algorithm utilizes this information in order to locally adapt the
waking window of each device using the Critical Path Method.

following values: f(Ss<i<9)=0, f(s4)=4, f(s3)=29, f(s2)=11,
f(s1)=59 and y =f(so) = 99.

Dissemination phase: In this phase, the critical path cost y is
propagated top-down, from the sink to the leaf sensors, with a
message complexity of O(n). Each sensor s; locally defines three
parameters using y that enable it to derive: (i) the time instance
during which it should wake up (i.e., w;); (ii) the interval during
which it should listen for readings and to transmit results (i.e., 7;);
and (iii) the workload increases tolerance of the parent of s; (i.e., 1;)
which signifies when the synchrony of the QRT might be
disrupted.

In the first step, a query is aborted when the critical path is
larger than the epoch, which signifies an error in the user query. In
the second step the wake up time instance w; is calculated, such
that s; has enough time to collect the tuples from all its children s;.
In practice, this is defined by the child of s; with the largest
workload (i.e., si" . ,4)- The second step also defines the waking
window of 7;, which is the complete window during which s; will
enable its transceiver. In the third step, the children of s; are
notified with the adjusted critical path cost (i.e., w—sj‘?“t). Further-
more, s; also notifies its children s; with the workload increase
tolerance of s; (i.e., 4;) and a flag which signifies whether these
nodes belong to the critical path. Thus, s; can intelligently schedule
its transmissions in cases of local workload deviations.

Adaptation phase: The adaptation phase adapts the WART QRT
in cases of workload changes. In the first step, the workload
indicators of the current epoch and the previous epoch are
calculated. If the workload has changed by more than a user-
defined threshold, we consider this change as significant and
proceed with the adaptation of the routing tree otherwise, the
procedure aborts. A significant deviation has to request the re-
construction of the routing tree using the construction and
dissemination phases. For instance, if the workload of s3 changes
from 30 time instances to 35 time instances (see Fig. 5) then this
will trigger the re-construction of the WART QRT and this change
should be propagated to all nodes in the network. Although this
case is possible, our experimental study in Andreou et al. (2011b)
has shown that it is not frequent. Finally, the algorithm handles
the more common case where the change does not occur on the
critical path. In such a case, if the workload is decreased by x then a
sensor locally delays its wake up variable by x (i.e., to w;+x). For
instance, if the workload of s, drops from 13 to 11 (thus, x=2),
then wij* =w,+x=46+2=48. Similar adjustments are per-
formed in the case where the workload is increased. However,
when the change affects the critical path (e.g., s»'s workload
increased from 13 to 32 thus, x=19 that is larger than A, =17),
this yields the re-construction of the tree as such an increase
might potentially create a new critical path.

Critical path reconstruction frequency: One important question that
arises is how often to expect changes to the critical path as this might
severely degrade the longevity of the network. In Andreou et al.
(2011b), we have observed that queries yielding approximately the
same amount of results (e.g., single-tuple queries or multi-tuple
queries with fixed size) benefit the most from WART's optimization
phase. This is expected as the critical path value is only calculated at
the start of the execution and continues to be valid until a node or
communication failure becomes present. In the event of a node
failure, the results of the path rooted at the failed node are not
transmitted and therefore the critical path is not affected as the
parent node of the failed node will wait for the results for the same
amount of time as it would if the node was active. However, in the
case of a communication failure, which results in the retransmission
of the results by the failed sensor node, the efficiency of the network
may be affected especially if the failed node lies on the critical path.
This can also lead to data loss if the node misses the waking window
of its parent node. In the case of event-based queries or queries with
multi-tuple results of arbitrary size (e.g., filter queries) the critical
path reconstruction frequency is increased. This happens because the
workload incurred on each sensor node may change rapidly between
subsequent epochs. However, even in these cases, the workload
balancing module still manages to conserve energy as can be seen by
the results of Andreou et al. (2011b).

4. Tree balancing module

Although the workload balancing module significantly reduces
the energy consumption of the sensors by scheduling commu-
nication activities based on the workload, it still does not take into
account the fact that the QRT topology might be unbalanced. The
tree balancing module identifies structural inefficiencies in the
initial QRT that occur from its ad hoc construction nature. It
utilizes the Energy-driven Tree Construction (ETC) algorithm in
order to remove these inefficiencies by reconstructing the tree in
a balanced manner, which minimizes data collisions during com-
munication. The ETC algorithm consists of a discovery and dis-
tributed balancing step which are described next.

Discovery phase: The first phase of the ETC algorithm starts out
by having each node select one node as its parent. During this
phase, each node also records its local depth (i.e., depth(s;)) from
the sink. Notice that depth(s;) can be determined based on a hops
parameter that is included inside the tree construction request
message. A node s; also maintains a child node list (children) and
an alternate parent list (APL). The APL list is constructed locally at
each sensor by snooping (i.e., monitoring the radio channel while
other nodes transmit and recording neighboring nodes) and
comes at no extra cost. This list is utilized by the ETC algorithm
for parent reassignment during the reconstruction of the QRT, but
it can also be used for selecting alternate parents in cases of
failures. The sink then queries the network for the total number of
sensors n and the maximum depth of the routing tree d. Such a
query can be completed with a message complexity of O(n). When
variables n and d are received, the sink calculates, the optimal
branching factor (ff = ¥/n).

Balancing phase: The balancing phase of the ETC algorithm
involves the top-down reorganization of the QRT such that this
tree becomes near-balanced. In particular, the sink disseminates
the f value to the n nodes using the reverse acquisition tree. When
a node s; receives the f value from its parent s, it initiates parent
re-assignments for its children. The balancing phase is divided into
two steps: (i) s;'s connection to its newly assigned parent new-
Parent, and (ii) the transmission of parent reassignment messages
to children nodes, in which the given nodes are instructed to
change their parent. When such a message has arrived, s; obtains
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the S value and the identifier of its newParent. If newParent has a
specific node identifier then s; will attempt to connect to that
given node. Notice that if newParent cannot accommodate the
connect request from s; then the procedure has to be repeated
until completion or until the alternative parents are exhausted.

Note that we have chosen to do parent reassignments at s;
rather than at the individual child s; because s; can more
efficiently eliminate duplicate parent assignments (i.e., two arbi-
trary children of s; will both not choose newParent). If the number
of children is less than f then the procedure halts. In the contrary
case, we have to eliminate |children(s;)|— f children from s;. Thus,
we iterate through the child list of s; and attempt to identify a child
s; that has at least one alternate parent. If an alternative parent
cannot be determined for node s; then it is not meaningful to
request a change of s;'s parent.

Extending the optimal branching factor: ETC assumes that all
sensors feature the same workload and that the workload of a
parent sensor is directly proportional to the number of its child
nodes. The rationale behind this assumption is that the majority of
queries typically incur the same workload (i.e., the same number
of tuples) on each sensor node. However, there are queries (e.g.,
filter queries, event-based queries) that may impose significantly
different workloads on each sensor node. In order to tackle this
problem, we could have easily extended the definition of the
optimal branching factor (Andreou et al, 2011b)* to take into
account the workload of each sensor node rather than the global
number of sensor nodes (1) and the depth (d) of the QRT. One way
to accomplish this would be to first execute the WART algorithm of
the workload balancing module (described in Section 3), which
discovers the workload incurred on each sensor node by profiling
recent data acquisition activity and then to execute the ETC
algorithm in order to create a more workload-balanced topology.

Balancing based on network vs. query semantics: Although we
have shown in our experiments (Andreou et al.,, 2011b) that
balancing based on network semantics (i.e., d, n) offers signifi-
cant energy savings, there are occasions where it may present
conflicts with the optimizations proposed by the query proces-
sing module (presented in Section 5) where optimization is
achieved by taking into account query-based semantics. A work
that incorporates query-based semantics in the network opti-
mization phase is presented in Sharaf et al. (2004) where the
authors configure the network in order to benefit the execution
of Group-By queries using the Group-Aware Network Configura-
tion (GANC) framework. However, one drawback that may arise
is that this approach can limit the efficiency of other types of
queries that could have benefited from the network-based
semantics optimization. Since, in the KSpot* framework, each
module can be enabled or disabled according to the require-
ments of the application, we could have easily substituted the
tree balancing module with GANC in order to support query-
based semantics in the network optimization phase. Recall from
Section 2.3 that this is also one of the reasons we have not opted
for a unified communication scheme as it would decrease the
modularity of our framework.

5. Query processing module

The query processing module is responsible for query execution
as well as a number of services including group management and
caching. The procedure starts by propagating a query Q to the
network. Next, each sensor node acquires its local sensor readings,

4 The optimal branching factor takes into account network semantics (e.g.,
number of child nodes, depth of the query routing tree, workload of each sensor
node).
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Fig. 6. Sensor network deployment of nine sensors assigned in four rooms
{A,B,C,D} measuring temperature. A recursively defined in-network view (V)
maintaining the local average temperature for each room.

merges them with all values acquired from its child nodes and
process them using the INT/MINT algorithms. Finally, each sensor
node recursively transmits its results until they reach the sink
node. The INT/MINT Views algorithms consist of three phases: (i)
the creation phase, executed during the first acquisition of readings
from the distributed sensors. This phase results in n distributed
views V; (i < n); (ii) the pruning phase, during which each sensor s;
locally prunes V; and generates V; (< V;). V; contains only the
tuples that might be located among the final Top-k results; and
(iii) the update phase, executed once per epoch, during which s;
updates its parent node with V.

Creation phase: In the first step of this phase, each sensor
retains the tuples that satisfy some query Q (e.g., temp > 60). We
only project the attributes related to Q prior to storing the result in
the in-memory buffer V;. The next step of the algorithm merges
the tuples that arrive from the children of s; into V;. This yields an
in-network view similar to Fig. 6. If the various values at each node
of the depicted tree do not change across consecutive timestamps,
then V can efficiently provide the answer to the subsequent re-
execution of Q. On the contrary, whenever we have a deviation, or
a change, in a parameter at s;, this change has to cascade all the
way up to the sink. A change at all sensors has a worst-case
message complexity of O(n) for every single timestamp of the
epoch duration, thus we seek to optimize this process through the
proposition of the pruning phase.

Pruning phase: The pruning phase constructs a hierarchy of
views, where ancestor nodes in the routing hierarchy maintain a
superset view of their descendants. Consider a query Q which
returns the k rooms with the highest average temperature. If s;
could locally define the k-highest answers to Q (at sg), then s;
could use this information to prune its local view V;. However, this
is a recursively defined problem that can only be solved once all
tuples percolate up to the sink sq. In order to avoid this, we utilize
a set of descriptors y which are utilized to bound above the
attributes in Vy and subsequently enable a powerful pruning
framework.

Consider the example of Fig. 7 (left), where we illustrate the V; for a
given sensor. Prior to the execution of Q, assume that we established
that ;1 =“maximum possible temperature value” =120 and y, = “number
of sensors in each room”=>5. The figure indicates the sum and count for
several room numbers. By observing column 3 (i.e., count), it becomes
evident that the sum for the rooms {2, 5, 11, 12, 15} is a partial value of
the sum returned at the sink (since y, = 5). On the contrary, the tuple
of room 6 is already in its final form (i.e., 500). In this example the sum
of each row is bounded above using the following formula
sum’ = sum+-(y, —count)#y, and bounded below using the actual
attribute sum. This creates six lower-bound (Ib) and upper-bound (ub)
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room sum count sum'
2 200 4 320
5 270 4 390
6 500 5 500
11 460 4 580
12 290 3 530
15 130 2 490
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Fig. 7. (Left) A materialized in-network view V; of sensor s; and the lower-bound (Ib) and upper-bound (ub) ranges utilized for generating the k-covered bound set V. (Right)
The (Ib,ub) ranges for the various returned tuples at some arbitrary node and the k-covered bound set V. We only propagate a tuple u to the parent of s;, if u e V;.

pairs which precisely show the range of possible values for the sum
attribute at the sink. This enables us to prune (lb,ub) pairs which will
not be in the final Top-k result. The intuition behind our algorithm is
to identify the kth highest lower bound (i.e., vi’) and then eliminate all
the tuples that have an upper bound (ie., v*?) below v Figure 7
(right) visually depicts this idea.

Update phase: In the previous step, we transformed V; into a
pruned subset V;. The update phase incrementally and recursively
updates V;. Let T" denote the V; taken at the last execution of Q.
Since our objective is to identify the correct results at the sink, we
utilize an immediate view maintenance mechanism: “As soon as a
new tuple is generated at s;, this update is reflected in V;". In order to
minimize communication, s; only re-transmits V; to its parent, if V;
has changed (temporal coherence filter as in TINA, Sharaf et al.,
2003). Additionally, in order to minimize energy consumption
even further, we seek to minimize processing consumption as
well. Therefore, our objective is to construct V; by avoiding the re-
execution of the Pruning Phase.

In particular, any tuple update x with an upper bound (denoted
as x“?) less than the v{ can be ignored. In the opposite case, we add
the tuple x to the set of candidates V;. Now the remaining question
is whether v{? has changed by this addition of x. If x < v is true
then vi? has not changed. Consequently, s; only propagates the
update x towards its parent rather than a complete view update. In
the implementation we buffer these updates until all children
send their updates to their parents. If on the contrary v’ < x, then
vip might have changed. As a result s; has to reconstruct V; and
transmits the complete V; to its parent. This re-construction
procedure is necessary to guarantee the correctness of our algo-
rithm. Note that the reconstruction only happens for |V;| elements
rather than all the elements (i.e., |V;]).

Deferred view updates: In order to minimize communication
even more in the MINT/INT Views, we could have opted for a
deferred view maintenance mechanism, rather than a immediate
one. A deferred mechanism could propagate changes periodically,
after a certain number updates or even randomly. In all cases this
would produce probabilistic answers at the sink, as the sink would
not have at its disposal the most up-to-date view. Although these
mechanisms are extremely interesting in the context of WSNs, as
they allow us to trade accuracy versus energy consumption, in
KSpot™* we only focus on exact answers.

In-memory buffering: The materialized views and temporary
results of all algorithms can either reside in an SRAM-based or a
flash-based buffer. For instance, a typical MICA mote with a 2KB
SRAM might need to exploit the 512KB on-chip flash memory,
while Intel's iMote might easily store these results in the 64KB
SRAM. There is a growing trend for more available local storage in
sensor devices (Polastre et al., 2005) and therefore local buffering
of results is not a threat to our model.

Impact of the k parameter: Similar to traditional DQP systems,
the value of k is typically user-defined and is closely related to the
application requirements. Selecting an extremely low value for k
(e.g., in a Top-1 query) might cause the INT/MINT algorithms to
omit important results that are vital to the application. For
example, in a forest fire monitoring system where alerts are
caused by high temperature values, there may be two regions
that present identical temperature readings. In our current imple-
mentation, the query processing module will randomly return one
of the extreme values if a Top-1 query has been injected to the
network. However, our approach can be easily adapted not to
suppress identical readings by updating only a minor fraction (two
lines) of the implementation code. Selecting an extremely large
value for k (e.g., in a Top-90% query) might cause the pruning of
the INT/MINT algorithms to rapidly decrease as the in-network
pruning filters will not be able to omit tuples from the k-covered
bound-set.

6. Experimental methodology

In this section, we describe our experimental methodology
which involves a set of trace-driven simulations with real datasets
from Intel Research Berkeley and UC-Berkeley. We shall next
describe the sensing device and testbed parameters used in our
experiments.

Datasets: We utilize the following real datasets in our trace-
driven experiments in order to simulate wireless sensor networks
of various sizes.

(i) Great Duck Island (GDI14): This is a real dataset from the
habitat monitoring project deployed in 2002 on the Great Duck
Island, which is 15 km off the coast of Maine (Szewczyk et al.,
2004), USA. We utilize readings from the 14 sensors that had the
largest amount of local readings. The GDI dataset includes readings
such as light, temperature, thermopile, thermistor, humidity and
voltage.

(ii) Washington State Climate (AtmoMon32): This is a real
dataset of atmospheric data collected at 32 sensors in the
Washington and Oregon states, by the Department of Atmospheric
Sciences at the University of Washington (Earth Climate and
Weather,). More specifically, each of the 32 sensors maintains
the average temperature and wind-speed on an hourly basis for
208 days between June 2003 and June 2004 (i.e., 4990 time
instances).

(iii) Intel Research Berkeley (Intel54): This is a real dataset that is
collected from 58 sensors deployed at the premises of the Intel
Research in Berkeley (Intel Lab Data,) between February 28th and
April 5th, 2004. The sensors were equipped with weather board
and collected time-stamped topology information along with
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humidity, temperature, light and voltage values once every 31 s.
The dataset includes 2.3 million readings collected from these
sensors. We use readings from the 54 sensors that had the largest
amount of local readings.

(iv) FireWatch (FW12): This is a real dataset from the FireWatch
monitoring system deployed at the Lythrodontas forest, which is
one of the high risk forest areas in Cyprus, in 2012. We utilize
readings from 12 out of 20 sensors as eight sensors were utilized
solely for ensuring multipath routing in case of destroyed nodes.
The FW12 dataset includes readings such as light, temperature,
humidity, wind, rainfall (%) and voltage.

Sensing device: We use the energy model of Crossbow's TelosB
(Polastre et al., 2005) research sensor device to validate our ideas.
TelosB is an ultra-low power wireless sensor equipped with an
8 MHz MSP430 core, 1 MB of external flash storage, and a 250 kbps
Chipcon (now Texas Instruments) CC2420 RF Transceiver that con-
sumes 23 mA in receive mode (Rx), 19.5 mA in transmit mode (Tx),
7.8 mA in active mode (MCU active) with the radio off and 5.1 pA in
sleep mode. Our performance measure is Energy, in Joules, that is
required at each discrete time instance to resolve the query.

Failures: We utilize a failure rate of 20% in our trace-driven
experiments in order to simulate failures. Consequently, certain
nodes do not participate (i.e., communication or node failure) in a
given epoch. In the cases where node failures affect the critical
path this is automatically translated into a chain of delayed waking
windows that force the re-execution of the WART algorithm
(workload balancing module). The required energy is measured
in the experiments.

Evaluation parameters: We emphasize in energy consumption
and network longevity in our experiments. We refer the reader to
Andreou et al. (2011a,b) for additional evaluation parameters such
as k, group cardinality, tuple pruning and balancing efficiency that
were used in the evaluation of each individual module.

Our simulation experiments were performed on a Lenovo
Thinkpad T61p PC with an Intel Core 2 Duo CPU running at
2.4 GHz and 4.0 GB of RAM. In order for us to collect realistic
results for a large period of time, we collect statistics for 1000
epochs in each experiment. To increase the fidelity of our mea-
surements we repeated each experiment five times and present
the average energy consumption for each type of plot.

7. Experimental results

Our experimental section focuses on two aspects. In the first
experiment, we study the effect of incorporating network-
awareness into the data acquisition process. To accomplish this,
we compare two modes of the KSpot™* framework: (i) KSpot™* with
only the query processing module enabled, KSpot* (MINT)®; and (ii)
KSpot™ incorporating network-awareness (i.e., all KSpot™ modules
are enabled, KSpot* (ETC+WART+MINT)). Notice that the latter
firstly utilizes the ETC algorithm to balance the QRT, then utilizes
the WART algorithm to optimize the waking windows of the sensor
nodes and finally executes a Top-k query using the MINT algorithm.
The energy overhead related to the tree construction process and
workload balancing scheme are taken into account in the total
energy consumption of KSpot™ (ETC+ WART+ MINT).

We have selected the MINT algorithm for both versions as it
presents the higher energy savings in our framework.

Secondly, we evaluate the performance of the full KSpot™*
framework in comparison with two predominant data acquisition
frameworks TinyDB (TAG) and TINA.

> We refer the reader to Andreou et al. (2011a,b) for the evaluation of each
component of KSpot™ in isolation.

Energy consumption: In the first experiment, we evaluate the
energy consumption of KSpot®™ (MINT) and KSpot™
(ETC+WART+MINT). We execute a continuous Top-k query, on
the GDI14, AtmoMon32, Intel54 and FW12 datasets and measure
the energy consumption for each dataset separately.

In Fig. 8 (top-left), we plot the results using the GDI14 dataset.
We observe that the KSpot™ framework using only the MINT
algorithm consumes on average 19 + 1]. On the other hand, when
the KSpot™ framework operates with all modules, we observe a
decrease ~ 6% on average energy 18 + 1]. However, we also observe
that the standard deviation has negatively increased which proves
that there are fluctuations in energy consumption caused by the
workload and tree balancing modules. This is expected as under our
experimental setting both node and communication failures occur
that trigger the reconstruction and adaptation phases of the Tree
and workload balancing modules respectively. This results in
additional packets to be transmitted to the network.

The same observations also apply for the FW12, AtmoMon32
and Intel54 datasets, with the complete KSpot™ framework
maintaining a competitive advantage over KSpot™t (MINT). In
particular, we observe that the complete KSpot* framework
consumes 16 + 1] in the FW12 dataset, 105 + 8] in the AtmoMon32
dataset, and 118 + 10J in the Intel54 dataset, which translates in
8%, 9% and 15% decrease in energy consumption respectively. The
results for all experiments are summarized in Table 1.

In conclusion, the complete KSpot* framework demonstrates
large energy gains when operating both with isolated components
and full-fledged. It is important to note that the query processing
module demonstrates much larger gains (in the order of Joules)
compared to the other two modules (in the order of milliJoules) of
the KSpot* framework. This shows that in-network pruning
combined with exploiting temporal coherence can be of higher
benefit in cases where applications require monitoring of the k
most important events.

Network lifetime: In the second experiment, we evaluate the
network lifetime. We define network lifetime, similar to Thomas
et al. (2004) and Andreou et al., 2011a,b, as the time instance t’ at
which energy(t') = 0. This definition adopts a universal perspective
of the sensor network (i.e., measures the energy depletion across
the whole spectrum of participating sensors) as opposed to
existential energy depletion metrics (i.e., measure when the
energy is depleted on a single node) utilized in other works
(Sharaf et al,, 2003, 2004). This is because we are particularly
interested in decreasing the overall energy consumption of the
sensor network and not a single node. Note that this applies only
to the case where sensors operate using batteries. Double batteries
(AA) used in many current sensor designs (including the TelosB
sensor) operate at 3V voltage and supply a current of 2500 mAh
(milliAmpere per hour). Assuming similar to Szewczyk et al.
(2004) that only 2200 mAh is available and that all current is
used for communication, we can calculate that AA batteries offer
23,760] (2200 mAh x 60 min x 60 s x 3V). We terminate this
iteration when the termination condition is satisfied.

Figure 9 illustrates the average energy status of the sensor
network, at each epoch, during the execution of a query using the
GDI14 dataset. We notice that the available energy of sensors
under TAG is consumed faster than all algorithms, leading to a
lifetime of just 5793 epochs (i.e., 193 min). TINA ranks fourth by
offering 6949 epochs (i.e., 231 min). The KSpot™ framework with
only the INT algorithm enabled ranks third with 9768 epochs (i.e.,
325 min). Next, the KSpot™ framework with only the MINT
algorithm consumes its available energy budget far later at epoch
16,965 (i.e., 565 min). Finally, the full KSpot™ framework, which
includes all modules enabled, ranks first at epoch 18,371 (i.e.,
612 min), and this is translated into a ~317% increase of the
network lifetime compared to TAG.



P.G. Andreou et al. / Journal of Network and Computer Applications 46 (2014) 227-240

Energy Consumption (Average for all n sensors)
(Algorithm(s)=All Dataset=GDI14,

25 : i i
| K\?\})ot’ (MIN'I_'[) ——
KSpot+ (ETCHWART+MINT) ————
g e
< R s Tttt
2 AR A
=
3
5
3
5
S 10
>
S
Q
2
Yos
0
0 200 400 600 800 1000

Time Instance

Energy Consumption (Average for all n sensors)
(Algorithm(s)=All Dataset=Intel54,

160

p———
I

— Ropol (MINT)
| kspots (ETcSRART NG

140

120

100 [

80

Energy Consumption (mJ)

60

40

200 400 600

Time Instance

800 1000

n=14, network=250Kbps)(Algorithm(s)=All Dataset=AtmoMon32,

Energy Consumption (mJ)

n=54, network=250Kbps) (Algorithm(s)=All Dataset=FW12,

Energy Consumption (mJ)

237

Energy Consumption (Average for all n sensors)
n=32, network=250Kbps)

140 . Repor (MiNT) —— ]
| KSpot" (ETC+WART+MINT) -+
120 | X
] et
Y A *W
100 kAo ek L A A L R A
W T A L R A
80
60
40
20
0
0 200 400 600 800 1000

Time Instance

Energy Consumption (Average for all n sensors)
n=12, network=250Kbps)

25 _ i i
| KSpot (MINT) —<—
KSpot+ (ETC+WART+MINT) ---+---
20
b
R WA
15
10
5
0

200 400 600

Time Instance

800 1000

Fig. 8. Energy consumption for KSpot™ (MINT) and KSpot™ (ETC+WART+MINT) using the TelosB energy model.

Table 1
Average energy consumption for the TAG, TINA, and KSpot* framework under
different datasets.

Algor. Dataset

GDI14  AtmoMon32 Intel54 FW12
TAG 57+3] 23412 523 +22] 53+1]
TINA 48 +2] 183+6] 289+15] 43+1]
INT 34+1 170+7] 187+08] 31+1]
KSpot™ MINT 19+1] 115+4] 139+06] 17+1]
KSpot™ ETC+WART+MINT 18+1] 105+8] 118+10] 16+1]

Network Lifetime (Average energy consumption for all n sensors)
(Algorithm(s)=All Dataset=GDI14, n=14, network=250Kbpk
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Fig. 9. Network lifetime for all algorithms.

8. Related work

Traditional middleware frameworks such as the Common
Object Request Broker Architecture (CORBA) and Java service
oriented architecture (JINI) are considered heavyweight in terms
of processor and memory requirements, which renders them
highly inefficient for WSN deployments. In this section, we present
middleware frameworks tailored specifically for WSNs that per-
form data acquisition operations and are thus closely related to the
proposed KSpot™ framework. More specifically, we classify these
middleware frameworks according to their approach into three
categories: data-centric, application-centric and publish subscribe.
We then perform a qualitative comparison between KSpot™ and
the presented middleware approaches across four different
dimensions: energy awareness, workload optimization, topology
optimization and top-k support in order to highlight the benefits
of utilizing the KSpot™ framework. The results of our analysis are
summarized in Table 2.

Data-centric middleware frameworks are middleware frame-
works closely related to KSpot™ that view the network as a virtual
relational database and inject query messages, which are then
processed locally at each sensor node.

Cougar (Yao and Gehrke, 2004) is one of the first data-centric
approaches for wireless sensor networks. Each sensor node acts as
a database that stores the node's measurements locally and the
network acts as a distributed database. In Cougar, queries as well
as management operations are translated to query messages,
which are then injected to the network. Similar to KSpot™, Cougar
(Yao and Gehrke, 2004) employs a centralized optimizer, which
maintains status information about the network in order to
coordinate sensor nodes in an energy-efficient manner. However,
in Cougar, this centralized approach requires a massive amount of
messages to be transmitted back and forth to the sink station thus
increasing energy consumption. Furthermore, in Andreou et al.
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Table 2
Classification and comparison of middleware approaches for WSNs.

Middleware Key features Energy- Workload Topology Top-k
approach aware opt. opt. support
Data-centric

TinyDB (Madden et al., 2003) SQL syntax, lifetime/event-based queries, semantic routing trees Y Y N N
Cougar (Yao and Gehrke, 2004) SQL syntax, virtual relational database, centralized optimizer Y Y N N
TINA (Sharaf et al., 2003) temporal coherence filters, group aware network configuration Y N Y N
DsWare (Yu et al., 2003) SQL syntax, real-time semantics, event-detection Y N N N
SNEE (Galpin et al., 2008) Rich and expressive language, workload scheduling Y Y N N
SINA (Shen et al.,, 2001) Virtual spreadsheet db, attribute-based naming, hierar. clust. Y N N N
KSpot™ SQL syntax, in-network aggregation, advanced query semantics Y Y Y Y
Application-driven

Milan (Heinzelman et al., 2004) Topology adaptation Y N Y N
MidFusion (Hitha et al., 2008) Information fusion, sensor agents Y N N
Publish-subscribe

Mires (Souto et al., 2005) Aggregation service, high-level interfaces Y N N N
AWARE (Ollero et al., 2007) Sensor network & UAV coordination Y Y N N

(2011b) we have shown that node and communication failures
severely hamper the efficiency of this coordination scheme as they
cause sensor nodes, especially the ones in higher levels, to stay in
reception mode longer than required.

TinyDB (Madden et al., 2003) is one of the most popular data
acquisition frameworks developed for TinyOS. Like Cougar, it is a
data-centric middleware framework that supports SQL-syntax
queries over the sensor network. Additionally, TinyDB supports a
number of different query sets including historic, event-based and
lifetime queries. TinyDB's power-aware optimizer employs a cost-
based mechanism in order to choose the most energy-efficient
query execution plan, which may involve prioritizing data delivery,
adapting sampling rates and minimizing power consumption. This
often enforces a uniform waking window for all sensor nodes
depending on the depth of the QRT, which in the majority of cases
it is clearly an overestimate. The rationale behind this over-
estimation is to offset the limitations in the quality of the under-
lying clock synchronization algorithms of the operating system but
in reality it is too coarse (Andreou et al., 2011a). TinyDB employs
Tiny Aggregation (TAG) (Madden et al., 2002) for energy efficient
in-network aggregation of sensor results. KSpot* extends this in-
network aggregation scheme by enabling support for advanced
query semantics (e.g., top-k, group-by) that further minimize
energy consumption by reducing the size and the number of
packets transmitted to the network.

Temporal coherency-aware in-Network Aggregation (TINA)
(Sharaf et al., 2003) works on top of existing in-network aggrega-
tion like TAG and Cougar, and similar to the query processing
module, and introduces a temporal coherency filter that mini-
mizes both the size and the number of transmitted packets.
Additionally, it influences the construction of the QRT by incorpor-
ating query-based semantics using the Group-aware Network
Configuration (GANC) (Sharaf et al, 2004) component. TINA
achieves significant energy savings while maintaining specified
quality of data. The MINT algorithm of the KSpot™ query proces-
sing module utilizes a temporal coherence filter like TINA but also
incorporates in-network pruning, which introduces additional
energy savings.

Sensor Information Networking Architecture (SINA) (Shen et al.,
2001) provides a set of programming abstractions that enable
application designers to view the network as a collection of
distributed objects. SINA enables application designers to easily
query the network (either a single sensor or a group of them)
using an extended SQL syntax (SQLT) that incorporates attribute-
based naming in the filtering process. Additionally, the architec-
ture provides a set of configuration and communication primitives

that enable scalable and energy-efficient organization and query-
processing. However, in achieving energy-efficient topologies,
SINA may sacrifice the results of some sensors to avoid data
collisions. This may result in the production of inaccurate results
at the sink node thus it is not applicable for data sensitive
applications.

The Sensor NEtwork Engine (SNEE) (Galpin et al., 2008) employs
a query optimizer that receives metadata information about the
available resources (e.g., memory, energy), the WSN topology and
also predictive cost models. These are then used for computing the
worst-case upper-bounds for the output size and the time taken
for operations. SNEE combines a rich, expressive query language,
named SNEEQL, which provides extensive support on the JOIN
operators incorporating techniques found on classical DQP archi-
tectures. Unlike KSpot™, the proposed query language does not
directly address top-k queries although we assume that they can
be incorporated as an aggregate function. Furthermore, SNEE
supports workload balancing by scheduling different workloads
to different sites in the network thus effectively reducing the
energy. However, SNEE assumes that the underlying infrastructure
employs an efficient protocol for self-organization of the topology
thus neglecting to investigate the effects of an unbalanced topol-
ogy. KSpot ™ addresses the latter with the aid of the tree balancing
module.

The Data services middleWare (DsWare) (Yu et al, 2003)
provides data abstractions to applications in order to improve
the performance of real-time execution and reduce the commu-
nication cost. It inserts a layer between the applications and the
sensor network, which is composed of server and sensor-side
components. Like KSpot™, the server-side components store meta-
data about the network and additionally handle all coordination
activities and provide mechanisms for prediction. The sensor-side
components manage the state of the sensor nodes and provide a
filtering mechanism that provides approximate instead of exact
values in order to decrease communication overhead. In KSpot™,
we minimize the overall energy consumption of the network
without sacrificing the results of sensor nodes.

Application-centric middleware frameworks: The Middleware
Linking Applications and Networks (Milan) (Heinzelman et al.,
2004) consists of a high level application interface that enables
application designers to specify their QoS requirements inside the
sensor network application code. Similar to KSpot™, Milan's
architecture extends to the network protocol stack thus allowing
the middleware to perform power control on the communication
medium as well as topology changes according to heuristics.
However, unlike KSpot™, Milan does not consider the workload
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incurred on each sensor node, which may result in serious data
reception inefficiencies.

The MidFusion (Hitha et al., 2008) is a middleware architecture
that aims to facilitate information fusion in sensor networks.
MidFusion assumes that a routing strategy is provided by the
operating system of the sensor network and that failures in the
network can only occur due to communication interference.
Therefore, unlike KSpot* it does not consider data transmission/
reception inefficiencies that occur because of unbalanced routing
structures or uneven workload distributed amongst sensor nodes.
Additionally, MidFusion may omit sensor nodes from the data
acquisition process because of the QoS requirements of the
application, which may lead to inaccurate results.

Publish-subscribe middleware frameworks: The Aware (Ollero et
al., 2007) middleware platform provides components to enable the
cooperation between fixed and mobile sensor nodes in addition to
Unmanned Aerial Vehicles (UAVs). It is based on the publish/
subscribe paradigm where the flow of information is coordinated
through data channels. Each device publishes its capabilities (i.e.,
data channels) and attributes to a centralized registry where other
devices can subscribe to and receive feeds. Aware supports packet-
level optimizations that focus on content rather than address; the
network acts as a global filtering mechanism, minimizing in this
way the communication overheads.

Mires (Souto et al.,, 2005) is a publish/subscribe middleware
system built on top of TinyOS. It encapsulates the low-level generic
interfaces of the operating system and provides high-level services
to the applications. In addition to the publish/subscribe layer,
Mires incorporates a routing module that facilitates multi-hop
communication. Although both Aware and Mires support a num-
ber of packet-level optimizations that can greatly decrease the
number of communication packets, additional energy savings can
be achieved by optimizing the network topology.

In summary, the majority of presented middleware approaches
employ mechanisms for reducing the overall energy consumption
of the network thus increasing the longevity of a WSN as shown in
Table 2. However, they neglect the important parameter of con-
structing an energy efficient topology and operate on top of the
initial ad hoc query routing tree. Additionally, most approaches
often assume a fixed workload distributed uniformly on all sensor
nodes. Consequently, it is not clear how efficient they will operate
under a variable workload, which occurs under the following
circumstances: (i) from a non-balanced topology, where some
nodes have many children and thus require more time to collect
the results from their dependents; and (ii) from multi-tuple
answers, which are generated because some nodes return more
tuples than other nodes (e.g., because of the query predicate).
Furthermore, none of the approaches support top-k queries, which
can significantly decrease the overall number and the size of
transmitted packets. Finally, few of the proposed middleware
approaches have been implemented and tested in real environ-
ments. Like all presented approaches, the KSpot* middleware
framework focuses on energy efficiency but additionally employs
mechanisms that generate a more efficient topology as well as
provide support for top-k queries.

9. Conclusions

Current data-centric frameworks for WSNs suffer from data
reception/transmission inefficiencies because they operate on the
presumption that the underlying network topology is efficient.
This paper advocates an alternative framework design that looks
upon the network characteristics as well as the intrinsic properties
of the data dissemination/acquisition process. In this context,
three novel techniques were developed with opportunities of

applications that go beyond the current problem settings (e.g.,
people-centric sensing, Rose and Welsh, 2010; Campbell et al,,
2008, smartphone networks). Through our experimental evalua-
tion, we have shown that incorporating network-awareness can
provide significant energy reductions and increase the longevity of
the wireless sensor network.

The KSpot™ framework presented in this paper assumes that
the routing topology is stationary. However this is not the case in
mobile environments such as Mobile Sensor Networks (MSNs) and
Vehicular Ad hoc Networks (VANETs). In the future, we plan to
extend KSpot* to support such mobile environments. Further-
more, since the operation of MSNs is severely hampered by the
fact that failures are omnipresent, fault-tolerance schemes become
of prime importance. In these settings, data acquisition needs to be
succeeded by efficient in-network storage (e.g., Liao and Yang,
2012), such that these events can later be retrieved by the user. We
plan to extend KSpot™* with fault tolerance mechanisms that will
ensure the continuous operation of data acquisition even in these
harsh environments.

Acknowledgments

This work was supported in part by the Cyprus Research
Promotion foundation under Project FireWatch (#0609-BIE/09),
the Open University of Cyprus under the Project SenseView, the
University of Cyprus under the second author's Startup Grant, the
European Commission under Projects CONET(#FP7-224053), mPo-
wer (#034707) and MiraculousLife (#FP7-ICT-2013-10), and the US
National Science Foundation under Projects S-CITI (#ANI-0325353),
AQSIOS (#11S-0534531) and Astroshelf (#0IA-1028162). Addition-
ally, we would like to thank Joe Polastre (UC Berkeley) for the Great
Duck Island data trace and Kostas Papageorgiou (Cyprus Depart-
ment of Forests) for the FireWatch dataset.

References

Akyildiz IF, Sivakumar R, Ekici E, Cavalcante de Oliveira ], McNair J. Networking
2007. Ad hoc and sensor networks, wireless networks, next generation internet.
In: Proceedings of the sixth international IFIP-TC6 networking conference,
Atlanta, GA, USA, May 14-18, vol. 4479; 2007. ISBN 978-3-540-72605-0.

Andreou P, Zeinalipour-Yazti D, Chrysanthis PK, Samaras G. Power efficiency
through tuple ranking in wireless sensor network monitoring. Distrib Parallel
Databases ] 2011a;29(1-2):113-50.

Andreou P, Zeinalipour-Yazti D, Pamboris A, Chrysanthis PK, Samaras G. Optimized
query routing trees for wireless sensor networks. Inf Syst ] 2011b;36(April
(2)):267-91.

Andreou P, Zeinalipour-Yazti D, Samaras G, Chrysanthis PK. Towards a network-
aware middleware for wireless sensor networks. In: The eighth international
workshop on data management for sensor networks, Seattle, WA, USA; August
29, 2011c.

Campbell AT, Eisenman SB, Lane ND, Miluzzo E, Peterson RA, Lu H, et al. The rise of
people-centric sensing. In: IEEE Internet computing: mesh networking; July/
August 2008. p. 30-9.

Cao Q, Abdelzaher T, Stankovic |, He T. The LiteOS operating system: towards Unix-
like abstractions for wireless sensor networks. In: Proceedings of the seventh
international conference on information processing in sensor networks
(IPSN'08), St. Louis, MO, USA; April 22-24, 2008. p. 233-44.

Chao C-M, Hsiao T-Y. Design of structure-free and energy-balanced data aggrega-
tion in wireless sensor networks. J] Netw Comput Appl (JNCA'14) 2014;37
(January):229-39.

Diallo O, Rodrigues JJPC, Sene M. Real-time data management on wireless sensor
networks: a survey. ] Netw Comput Appl (JNCA'12) 2012;35(July (3)):1013-21.

Earth Climate and Weather, University of Washington, (http://www-k12.atmos.
washington.edu/k12/grayskies/).

Fagin R. Combining fuzzy information from multiple systems. ] Comput Syst Sci
Montr Can 1999;58(February (1)):83-99.

Galpin I, Brenninkmeijer CYA, Jabeen F, Fernandes AAA, Paton NW. An architecture
for query optimization in sensor networks. In: Proceedings of the IEEE 24th
international conference on data engineering (ICDE'08), Cancun, Mexico; April
7-12, 2008. p. 1439-41.

Gupta G, Misra M, Garg K. Energy and trust aware mobile agent migration protocol
for data aggregation in wireless sensor networks. ] Netw Comput Appl


http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref2
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref2
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref2
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref3
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref3
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref3
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref7
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref7
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref7
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref8
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref8
http://www-k12.atmos.washington.edu/k12/grayskies/
http://www-k12.atmos.washington.edu/k12/grayskies/
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref10
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref10

240 P.G. Andreou et al. / Journal of Network and Computer Applications 46 (2014) 227-240

(JNCA'14); May, 2014, 300-311, ¢http://www.sciencedirect.com/science/article/
pii/S1084804514000046).

Heinzelman WB, Murphy AL, Carvalho HS, Perillo MA. Middleware to support
sensor network applications. IEEE Netw 2004;18(January/February (1)):6-14.

Hitha A, Mohan K, Behrooz S. MidFusion: an adaptive middleware for information
fusion in sensor network applications. Inf Fusion (Special Issue on Distributed
Sensor Networks) 2008;9(July (3)):332-43.

Intel Lab Data, (http://db.csail.mit.edu/labdata/labdata.html).

Kim S, Pakzad S, Culler D, Demmel J, Fenves G, Glaser S, et al. Health monitoring of
civil infrastructures using wireless sensor networks. In: Proceedings of the
sixth international conference on information processing in sensor networks
(IPSN'07). ACM Press, Cambridge, MA, USA; April 2007. p. 254-63.

Liao W-H, Yang H-C. A power-saving data storage scheme for wireless sensor
networks. ] Netw Comput Appl (JNCA'12) 2012;35(July (2)):818-25.

Lorincz K, Chen B, Challen GW, Chowdhury AR, Patel S, Bonato P, et al. Mercury: a
wearable sensor network platform for high-fidelity motion analysis. In:
Proceedings of the seventh ACM conference on embedded networked sensor
systems (SenSys'09), November, Berkeley, CA; 2009.

Luu HV, Tang X. An efficient algorithm for scheduling sensor data collection
through multi-path routing structures. ] Netw Comput Appl (JNCA'14)
2014;38(February):150-62.

Madden SR, Franklin M]J, Hellerstein JM, Hong W. TAG: a tiny AGgregation service
for ad-hoc sensor networks. In: Proceedings of the fifth symposium on
operating systems design and implementation (OSDI'02), vol. 36, No. SI;
2002. p. 131-46.

Madden SR, Franklin MJ, Hellerstein JM, Hong W. The design of an acquisitional
query processor for sensor networks. In: Proceedings of the international
conference on management of data (SIGMOD'03), San Diego, CA, USA; June
9-12, 2003. p. 491-502.

MemsSic Technology Inc., ¢(http://www.memsic.com/).

Ollero A, Bernard M, Civita ML, van Hoesel L, Marron PJ, Lepley ], et al. AWARE:
platform for autonomous self-deploying and operation of wireless sensor-
actuator networks cooperating with unmanned AeRial vehiclEs. In: Proceedings
of the IEEE international workshop on safety, security and rescue robotics
(SSRR 2007), Rome, Italy; September 27-29, 2007. p. 1-6.

Paradiso ], Feldmeier M. Ultra-low-cost wireless motion sensors for musical
interaction with very large groups. In: Proceedings of the 2002 international
computer music conference, Gothenburg, Sweden; September 16-21, 2002. p.
83-7.

Polastre ], Szewczyk R, Culler DE. TELOS: enabling ultra-low power wireless
research. In: Proceedings of the fourth international symposium on information
processing in sensor networks (IPSN'05), Los Angeles, CA, USA; April 25-27,
2005. p. 364-9.

Roantree M, Shi ], Cappellari P, O'Connor MF, Whelah M, Moyna N. Data
transformation and query management in personal health sensor networks. ]
Netw Comput Appl (JNCA'12) 2012;35(July (4)):384-403.

Rose I, Welsh M. Mapping the urban wireless landscape with argos. In: Proceedings
of the eighth ACM conference on embedded networked sensor systems
(SenSys10), Zurich, Switzerland; November 3-5, 2010.

Sadler C, Zhang P, Martonosi M, Lyon S. Hardware design experiences in ZebraNet.
In: Proceedings of the second international conference on embedded net-
worked sensor systems (SenSys'04), Baltimore, MD, USA; November 3-5, 2004.
p. 227-38.

SELEX Galileo Inc., (http://www.selex-sas.com/).

Sharaf MA, Beaver ], Labrinidis A, Chrysanthis PK. Balancing energy efficiency and
quality of aggregate data in sensor networks. Int ] Very Large Data Bases
(VLDBJ'04) 2004;13(December (4)):384-403.

Sharaf MA, Beaver ], Labrinidis A, Chrysanthis PK. TiNA: a scheme for temporal
coherency-aware in-network aggregation. In: Proceedings of the third ACM
international workshop on data engineering for wireless and mobile access
(MobiDe'03), San Diego, CA, USA; September 19, 2003. p. 69-76.

Shen C-C, Srisathapornphat C, Jaikaeo C. Sensor information networking architec-
ture and applications. IEEE Pers Commun 2001;8(August (5)):52-9.

Souto E, Guimaraes G, Vasconcelos G, Vieira M, Rosa N, Ferraz C, et al. Mires: a
publish/subscribe middleware for sensor networks. Pers Ubiquitous Comput
2005;10(December (1)).

Stojmenovic I. Handbook of sensor networks: algorithms and architectures. Wiley;
November 2005. ISBN: 978-0-471-68472-5.

Szewczyk R, Mainwaring A, Polastre J, Anderson J, Culler D. An analysis of a large
scale habitat monitoring application. In: Proceedings of the second interna-
tional conference on embedded networked sensor systems (SenSys'04), Balti-
more, MD, USA; November 3-5, 2004. p. 214-26.

Thomas H, Yi S, Sherali HD. Rate allocation in wireless sensor networks with
network lifetime requirement. In: Proceedings of the fifth ACM international
symposium on mobile ad hoc networking and computing (MobiHoc'04), Tokyo,
Japan; May 24-26, 2004. p. 67-77.

Virmani D, Sharma T, Sharma R. Adaptive energy aware data aggregation tree for
wireless sensor networks. Int | Hybrid Inf Technol (IJHIT'13) 2013;6(January
(1))

Voltree Power Inc., (http://www.voltreepower.com/).

Yang DB, Gonzalez-Ba HH, Guibas LJ. Counting people in crowds with a real-time
network of simple image sensors. In: Proceedings of the ninth IEEE interna-
tional conference on computer vision (ICCV'03), Nice, France, vol. 1; October
13-16, 2003.

Yao Y, Gehrke JE. The cougar approach to in-network query processing in sensor
networks. In: ACM SIGMOD record (SIGMOD'02), vol. 31, No. 3, September
2002. p. 9-18; vol. 12, No. 3; 2004. p. 493-506.

Yu X, Niyogi K, Mehrotra S, Venkatasubramanian N. Adaptive middleware for
distributed sensor environments. [EEE Distrib Syst Online 2003;4(May (5)).
Zeinalipour-Yazti D, Lin S, Gunopulos D. Distributed spatio-temporal similarity
search. In: ACM international conference on information and knowledge
management (CIKM'06), Arlington, VA, USA; November 6-11, 2006. p. 14-23.


http://www.sciencedirect.com/science/article/pii/S1084804514000046
http://www.sciencedirect.com/science/article/pii/S1084804514000046
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref13
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref13
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref15
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref15
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref15
http://db.csail.mit.edu/labdata/labdata.html
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref18
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref18
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref20
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref20
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref20
http://www.memsic.com/
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref27
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref27
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref27
http://www.selex-sas.com/
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref31
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref31
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref31
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref33
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref33
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref34
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref34
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref34
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref38
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref38
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref38
http://www.voltreepower.com/
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref42
http://refhub.elsevier.com/S1084-8045(14)00209-4/sbref42

	A network-aware framework for energy-efficient data acquisition in wireless sensor networks
	Introduction
	The KSpot+ framework
	Design goals
	KSpot+ framework architecture design
	Modular design
	Query syntax
	Logical group management
	Proof of concept application

	Workload balancing module
	Tree balancing module
	Query processing module
	Experimental methodology
	Experimental results
	Related work
	Conclusions
	Acknowledgments
	References




