
Automated Operator Placement in Distributed Data
Stream Management Systems Subject to User

Constraints
Cory Thoma, Alexandros Labrinidis, Adam J. Lee

Department of Computer Science, University of Pittsburgh
{corythoma, labrinid, adamlee}@cs.pitt.edu

Abstract—Traditional distributed Data Stream Management
Systems assign query operators to sites by optimizing for some
criterion such as query throughput, or network delay. The
work presented in this paper begins to augment this traditional
operator placement technique by allowing the user issuing a
continuous query to specify a variety of constraints—including
collocation, upstream/downstream, and tag- or attribute-based
constraints—controlling operator placement within the query
network. Given a set of constraints, operators, and sites; four
strategies are presented for optimizing the operator placement.
An optimal brute force algorithm is presented first for smaller
cases, followed by linear programming, constraint satisfaction,
and local search strategies. The four methods are compared
for speed, accuracy, and efficiency, with constraint satisfaction
performing the best, and allowing assignments to be adapted on
the fly by the DDSMS.

I. INTRODUCTION

Distributed data stream management systems (DDSMS),
much like distributed database management systems, require
certain operators to be placed on certain sites in order to
satisfy the query. Traditional operator placement in DDSMS
have focused on solving the problem of finding the optimal
assignment for each node based on optimizing some fitness
function [1] [2] [3]. The optimization algorithms honor system
constraints where an operator must be collocated with a source
stream, but otherwise focus on placing operators based on the
fitness function. The work presented in this paper explores
the addition of querier constraints into the placement process.
The user provides a set of constraints to limit the placement
of specific operators onto specific sites. These constraints give
the user the ability to explicitly place an operator onto or off
of a site, or to implicitly place an operator by constraining
it against other operators in the network. Other than giving a
set of constraints, the user has no other interaction with the
placement, leaving actual assignments to the automated solver
explored in this paper.

Consider the case where three servers are running at three
different cities, Atlanta, Boston, and Calgary, and a user issues
a distributed query to them. One server is placed in Atlanta and
contains private data, and the other two are placed in Boston
and Calgary respectively, and do not contain any private data.
In order to make sure private data is not leaked, the user would
like to make sure no JOINS happen at Boston or Calgary

with data from Atlanta, and that there is no operator from
Atlanta upstream from any other city. An ideal query plan
would resemble Figure 1. Note Atlanta does not send data to
the other cities, and therefore the user’s constraints are met.
Clearly, in such a small example it is trivial to find a good
solution. However, one can clearly see that this would not
be straight-forward for the general case. This is exactly the
problem we address in this paper. In particular, we make the
following contributions:

1) We identify several different, yet important, types of
constraints a user will use in a DDSMS, and formalize
their inputs.

2) We explore different approaches for satisfying the con-
straints with a fitness function.

3) We identify a Constraint Satisfaction Solver which out-
performs the other approaches tested and evaluate its
performance on larger datasets.

Road map The rest of this paper is structured as follows. In
Section II, the process for creating and enforcing constraints
is introduced. Section III presents all of the approaches con-
sidered (brute force, constraint satisfaction, linear program-
ming, and satisfiability solvers). Section IV evaluates the four
solvers, and details the best one, Section V presents related
work, and Section VI concludes.

Fig. 1. Ideal Plan where Atlanta is far downstream.

II. PROBLEM STATEMENT

A. Assumptions

The main focus of our work is operator placement in a query
plan, and as such, constraints deal with operator assignment
to sites. Constraints deal directly with where operators should
be placed within the query network. For the remainder of
this paper, we assume that the query plan is provided with
operators requiring system input streams having already been
placed, and the inter-operator streams and dependencies have
already been decided. Therefore, the only task that remains is
the assignment of the remaining operators to sites.

978-1-4799-3481-2/14/$31.00 © 2014 IEEE ICDE Workshops 2014310Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:35:54 UTC from IEEE Xplore. Restrictions apply.

We also assume that each site has a descriptor which con-
tains essential information such as the computational capacity
of the system, the transmission rate for the network, the
operators already placed onto the site, tags users have added
to the descriptor, as well as location, pricing, and organization
information. Operators have similar descriptors which provide
details regarding the cost to execute the operator, the selectiv-
ity, the streams in and out, the operator type, source or sink,
and a set of user defined tags. These descriptors are used to
ensure physical limitations are not broken and user constraints
can be satisfied.

B. Operator Constraints

A user may identify many ways they wish to constrain
their query. For example, a user may wish to stack as many
operators on their own machine as possible to avoid paying
for server time. Users may wish to ensure no sensitive data is
transmitted from one source to another. Users may also wish to
ensure that a select and a join happen on the same node. This
section provides an overview of the constraints considered and
implemented in this work, as well as an input specification for
each constraint.

System Constraints These constraints are derived from the
characteristics of the system. Each site can only supply a
certain amount of computational resources, and therefore
operators can only be assigned up to the maximum available
resources for each site. Network connections and transmission
rates are also defined by the system and therefore must be
constrained as operators are assigned. Finally, since most raw
data streams inputs are associated with a source site, those
operators must remain on their given site. These constraints
are given the highest priority, and must always be satisfied.
System Constraints are derived from system information in
the input file. Constraints of this type are also in Stanoi et al
[4]. A system administrator may also impose constraints on
the system, which should be considered as part of the system
set up. System constraints are applied to all queries in the
system, unless specified otherwise by the administrator. Note
that we expect to have a mix of system constraints (specified
by an administrator) together with other types of constraints
(specified by users submitting queries); operator placement
should then consider all the constraints specified.

Collocation Collocation (referred to as location) constraints
are used to either put two operators on the same site, or
ensure they are on different sites. Collocation constraints are
represented as an equality or a non-equality, meaning that the
site variable in the descriptor of one operator must equal or not
equal the site variable in the descriptor of the other. The same
syntax is used to ensure collocation (or separation) between
a site and an operator. If an operator must be on a site, then
it should be collocated with it. For two operators o1 and o2
a typical constraint would be o1.site = o2.site or o1.site
!= o2.site. For the case when an operator needs to be assigned
to a specific site, instead of o1.site != o2.site, it is simply
o1.site = si.site or o1.site != si.site.

Upstream and Downstream Since we know the interconnec-
tions of operators, we may wish to restrict the flows which
come into or out of a given site. For example, if the user
does not want any information from Atlanta going to Boston,
they can constrain that Boston never be downstream from
Atlanta. To ensure the constraint is held, we must guarantee
no stream from an operator assigned to Atlanta ever feeds
a stream assigned to Boston, which requires traversing each
path leaving Atlanta. Upstream constraints are encoded with
si\\sj , and downstream constraints with si//sj . An upstream
constraint is simply the inverse of a downstream constraint, but
both options are provided for simplicity to the user.

Tag-Based Included in every descriptor is a set of tags. These
tags are used to provide information not already captured in
the descriptor such as typical load, owner, uptime, maintenance
calls, and many other types of tags. If a user wishes to make
sure an operator is never placed on a site with a certain tag,
they simply check to see if the tag is listed in the descriptor
with an equality constraint. Tag constraints simply take the tag
as a string and are encoded by “tag in si” or “tag !in si”.

Attribute-Based The final supported constraint relies on the
attributes of the site as provided in the descriptor. If a user
wishes to ensure their operator will not end up on a slow
machine, for example, they can constrain the operator to
only be assigned to a site if the site’s speed is greater than
some threshold. We do not support aggregate constraints at
this point, where the user may want to ensure a machine’s
total utilization is above some threshold, but it is part of the
future work. Typical attribute constraints are encoded with
the mathematical operators >,<,=,!=. An example would
be “Network Transmission > .5”.

Global Aggregate Constraints Global aggregate constraints
apply to a complete plan. A typical constraint of this type
would involve aggregate information collected once each op-
erator has been assigned. For example, if the user wants to
ensure the total computational load of a site is only 75% of its
capacity, the full plan would be required as all operators must
be placed to ensure no other system constraints are violated
(if all of the sites were nearly full, this constraint may not be
satisfiable, but we wont know until all operators are placed).
The current implementation does not support these types of
constraints, but should be included in future work.

All of the constraint types are summarized in Table III.
In order to express a constraint, one simply concatenates
two applicable strings with a constraint in the middle. If the
strings exist in the system, the constraint is accepted, else
it is rejected. These five types of constraints cover operator
assignment related to the site and to other operators, as well
as the flow of the sites with respect to other sites. Returning to
the opening example, a user could state that Boston or Calgary
never be downstream of Atlanta, or they could constrain
Boston and Calgary to be upstream of Atlanta. To show exactly
how these constraints can be used, consider the query network
in Figure 2. The “AGGR” functions are aggregates, each with
an associated window and slide. There are also two selects

311Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:35:54 UTC from IEEE Xplore. Restrictions apply.

Constraint Syntax Applicable Strings Example
Stream \\, // Sites Calgary // Boston

Attribute-Based <, >, <=, >= ,=,!= Sites.attribute Select1.selectivity >= .9
Tag-Based in, !in Sites.tag, Operator.tag Calgary.tag != closed

Global Aggregation <, >, <=, >= ,=,!= global attribute (not supported) GlobalSelectivity >= .9
Colocation =, != Operator, Site Select1=Atlanta

TABLE I
SYNTAX AND EXAMPLES FOR EACH TYPE OF CONSTRAINT

Fig. 2. Simple Query Network

and a join. The join can be expensive, and one may wish to
ensure its computation would remain on a powerful server.
An equality constraint can be used to satisfy this. Shipping
data can also be expensive, and sending the entire results of
the select to the join could be costly. One may wish to keep
them on the same node to reduce this cost, and a location
constraint (or equality constraint over the site) can be used to
ensure this. Finally, data being shipped from the aggregate to
the join may contain sensitive data which one may not want
to reveal to a certain server. In order to ensure that the server
never gets the data, a stream constraint can be used to ensure
that that site is never downstream from the site containing the
join. Again, these constraints assume we have a query plan
provided to the solver, and in future work, we wish to extend
these constraints to a higher level policy which maps to the
work we have presented here.

III. APPROACHES FOR FINDING OPERATOR PLACEMENT

The authors in [4] state that finding an optimal placement
of operators in a DDSMS is NP-hard. If the size of the query
plan is large, the time it takes to produce a plan will become
prohibitive. In this section we explore different options for
finding optimal operator placement that would still run in a
reasonable amount of time.

A. Brute Force Algorithm

The first algorithm used is a simple brute force approach,
and is used as a baseline for the other approaches. Every
possible configuration is considered, so the result is guaranteed
to be optimal. The first step is to identify all of the operators
which have no system constraints (provided) over them. The
next step is to create all of the combinations of assignments of
operators to sites. Once the list is created, each combination is
tested to make sure that it satisfies all of the system constraints
(e.g. a machine can not be assigned more than it can handle),
and all of the user constraints. If the plan successfully satisfies
them, it is scored by a fitness function described below.

After iterating through all possible combinations, the optimal
solution(s) are given, and the one with the lowest cost is
selected.

The fitness function is a simple one. Each machine has
associated with it a speed, and a network transmission cost,
relative to a standard reference machine. Each operator’s cost
is multiplied with its site’s speed, and the sum of the products
is calculated to get the computational time on each machine.
Then, every time an operator sends data to another site,
the minimum of the sending site’s and the receiving site’s
transmission rate is multiplied with the link speed to get the
network delay time. This delay is added to the overall cost
and the cost is associated with the plan and stored.

As one would expect, the brute force approach yields a
runtime of O(os) where o is the number of operators and s
is the number of sites. For o and s sufficiently large (o = 15,
s = 10), the solver would take more than a half hour to return
the result, making this approach unrealistic. However, since
it yields the optimal solution, it is still a very good baseline
to compare the other approaches to. The brute force approach
would yield the best result if the query plan was small, and the
user did not mind a delay. however, we can not take queries
running on the system down to optimize them for a long
period of time, as this will seriously impact the performance
of continuous queries, which are typically used by monitoring
applications. However, if the user is willing to wait a given
length of time, they could use the brute force approach.

B. Constraint Satisfaction Approach

The first non-brute force approach tested is a natural choice,
namely, a constraint satisfaction problem (CSP) solver. Given
a set of constraints, a set of operators, a set of sites, and a
fitness function, the solver attempts to place each operator
without violating the constraints, while optimizing for the
fitness function. The output produced by the solver is a
complete and near optimal solution. The solver we chose to
use is the open source JaCoP program [5]. JaCoP provides
many types of constraints and many types of search strategies.
JaCoP also allows for optimization functions to be taken over
the entire problem. One key feature of JaCoP used in this work
is the conditional constraints, which allow our solver to check
up/down stream constraints at each assignment.

In order to check the optimality of the CSP approach, the
same small cases used in the brute force approach were run
on the CSP approach, and for all small cases, the same result
was produced. This leads one to believe that the CSP will find

312Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:35:54 UTC from IEEE Xplore. Restrictions apply.

a near optimal solution for larger problems as well. The CSP
solver is comprised of three parts. In order to guarantee global
system constraints (such as making sure no site is overloaded
beyond its capacity), JaCoP provides a bin-packing constraint.
For the purposes of operator placement, the bins represent the
sites, and their sizes represent their computational capacity.
The items represent the operators, and each size represents its
cost in terms of computation.

Equality and location constraints are easy. Operators which
can not be collocated with one another are simply constrained
with a primitive “not equals” constraint, so that they are not put
into the same bin. Operators which need to be on a certain site
are simply put into the correct bin. Streaming constraints are
the most robust, and therefore the most difficult to implement.
If a stream constraint is given to the system, the system
uses the query network to determine which operators could
potentially violate the constraint. For example, if there is an
upstream constraint saying Atlanta can not be upstream from
Boston, every operator is paired with all operators that are
upstream from it, then a constraint is added which simply
states (assuming operatorx is upstream from operatory in the
query plan) “if operatorx=Atlanta then operatory != Boston”.
In the worst case, there will need to be o! constraints added
to the system, where o is the number of operators.

The CSP approach satisfies all of the constraints, as well
as producing a near optimal result (since optimality is not
guaranteed). In Section IV, we will revisit the CSP solver.

C. Satisfiability Approach

Another approach is to view the automated operator place-
ment problem as a satisfiability problem. However, there is
one major drawback to the satisfiability approach in that it is
just a satisfaction of the constraints, and not an optimization.
Given this drawback, it would be unjust to directly compare
the CSP approach (which can give a near optimal result) to
the satisfiability approach (which has no optimization at all),
so we simply focus on satisfaction-only constraints, without
needing optimization. This approach utilizes the open source
satisfiability modulo theory (SMT) solver yices [6]. Yices
takes as input a list of variable definitions, a list of assertions
(x=y), and finally a command to satisfy the constraints. A
typical input may resemble:

(define x::int (subrange 0 2))
(define y::int (subrange 0 2))
(define z::int (subrange 0 2))
(assert (= z 1))
(assert (/=x 0))
(assert (= x y))

This simple example provides insight into how yices can
be used to place operators subject to user constraints. Here,
each variable definition is an operator. The subrange represents
the sites on which each operator can be placed. So in this
example, we have operators x, y, and z and sites 0, 1, and 2.
Then we assert that operator z must be assigned to site 2 (like
assigning a select operator to the Atlanta location), and we
assert operator x can not be placed on site 0 (like placing a join

at site Boston). Finally, a constraint where the operator x must
be the same as the operator y, or that they must be collocated
(or easily /= for disjunction). In simple terms, we have shown
the collocation and equality constraints are supported. This
leaves upstream, downstream, and tag-based constraints. Tag-
based constraints are handled via preprocessing. If a site has
a tag, it is converted to an (assert (z̄ site)) constraint. This
preprocessing is done in one simple loop, taking no more steps
than the number of tag constraints.

The final constraint type is the upstream and downstream
constraints. These constraints require verification each time an
assignment is made. For example, if we want to ensure Atlanta
is never upstream from Boston, then each assignment would
check to make sure this constraint is not violated. The first
assignment would skip this check, and then from the second
assignment on, the graph would be checked to ensure that the
new assignment did not set Atlanta upstream from Boston.
Yices does not handle this type of dynamic constraint, but we
can take advantage of knowing the query network. Much like
in the CSP approach, we know all potential upstream conflicts,
since we know which operators are upstream from one another
in the query network.

Using this knowledge, we can enumerate all of the possible
conflicts. Consider the “Atlanta not upstream from Boston”
example. We know when a given operator is upstream from
another since we are given the query network as input.
Consider all pairs of nodes where node x is upstream from
node y. We can enumerate all possible pairs of upstream nodes
and make a constraint which would say “if operator o1 == x
and operator o2 == y then o1!= x” where x and y are an
upstream pair, and o1 and o2 are the constraint pairs, which
can handle the upstream problem. Yices allows us to do just
this with an if-then-else command. We can write “(if (= x 1
and =y 2) /=x 1)”. Each possible combination is listed in a
preprocessing state, and then it is satisfied in the satisfaction
stage. Preprocessing is done by a Perl script which prints a
yices script and calls the yices program on that input.

The setup for these experiments is straightforward. Con-
straints are added to the system, yices is used, and the
runtime is collected. The graph type (i.e. query network) is
held constant. Of course, the final output of the Yices is not
optimized. It also does not allow a global constraint on the
limit of operators onto one site, or how much a site can handle
(a count constraint). The solver does honor every constraint
if they are all satisfiable, and can be used as a first step to
an optimization solver. Most results are produced in under a
second, so it is quick as well.

D. Linear Programming Approach

At first glance, a linear programming approach seemed as
if it would be the best for the operator placement problem. It
allows for an optimization formula and almost all types of con-
straints. The only types of constraints that the linear program-
mer could not efficiently handle are the system constraints.
Using a system of equations, one can not constrain the number
of times a value in the range was selected, let alone assign

313Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:35:54 UTC from IEEE Xplore. Restrictions apply.

Plan Execution Cost (× Brute Force) Std. Dev. Plan Generation Time(ms) Std. Dev.
Brute Force 1.00 .15 1,560,235 208421.20

CSP 1.07 .19 412 89.12
LPS 2.29 .11 652 42.50
SMT 3.07 .09 212 34.83

TABLE II
RUNTIMES FOR EACH APPROACH ON THE SAME QUERY, WITH THE FINAL ASSIGNMENTS’ COST.

a mapping which would allow operator costs to be summed
under a sites total computational power. The main problem
resides in how a problem is represented. Each solution is
simply a set of integers satisfying the system of equations, and
the entirety of the solution is not known until the end. Since we
can not alter a solution until all assignments are made, we can
not eliminate solutions which violate stream constraints, since
all assignments must be known. This also hindered the ability
to determine network costs, since a whole set of assignments
must be known before the cost can be calculated. Our initial
work in linear programming used Matlab. The Matlab script
takes as input an optimization function, and then a system of
linear equations which act as the constraints. Much like in
the yices, the operators are the variables, and their domain
represents the sites. The next input involves instantiating each
operator: x1 = 0, x2 = 0 . . . until each operator is instantiated.
The last input involves constraining the inputs. To add sites,
we simply limit the domain of each operator to the number of
sites. Then, a simple xi = (!=)i ∈ Z or xi = (!=)y where y
is an operator will give us all of the equality and collocation
constraints. Tag constraints are again preprocessed by a Perl
script to make them an equality (or inequality) constraint,
leaving only the upstream and downstream approaches to be
added. In Matlab, these are more difficult.

Matlab allows for an “if” statement to be used in a linear
problem, so we will take advantage of it. In the optimization
step, it appears the expressions are checked at each assign-
ment, and not after the entire script is run. Using our technique
from the CSP and SMT, we enumerate each possible conflict
and add it as input to the system. The variable assignment
will be checked for each upstream pair and if the assignment
violates the upstream pair, we do not allow the upstream
node to remain upstream, or the downstream node to remain
downstream (with a 50% chance of one happening). Since
Matlab can not score an assignment and test the result before
all assignments are made, we must randomly chose which to
move, meaning that the result may not be the actual optimal
result. A typical if statement is simply:

if(x=constrainedSite)&(y = constrainedSite2){
x˜=constrainedSite; }

Here two sites are constrained such that one is not upstream
of the other (constraiedSite // constraintedSite2). Since x is
assigned to a constrained site and y is assigned to the other
site, one needs to be moved, and in this case, x is moved from
its assigned site. Adding all of the possible statements to the
Matlab script will provide the optimal result given the random

assignments to avoid upstream and downstream conflicts.
There are some obvious drawbacks with the Linear Pro-

gramming approach. The optimization has no way of rec-
ognizing a graph structure separate from the linear system
at the current moment, so it can not include network costs
in its optimization function. It also requires preprocessing
like Yices, differing only in the optimization function, and
the optimization is not guaranteed to be optimal since up-
stream/downstream conflicts are resolved by randomly moving
one. Finally, it may not produce an optimal result, given a
modest cost function of speed of the operator multiplied by
the cost of the site to which it was assigned.

IV. EVALUATION

The four approaches listed in Section III each have their
advantages and disadvantages. In this section, we compare
and contrast the approaches. Each approach (brute force, CSP
solver, LPS, and the SMT solver) can be generally described
by the three categories of speed, number of constraints sat-
isfied, and the optimality of the final satisfaction. Recall that
finding optimal placement of the operators is exponential if
all cases are considered, hence the brute force approach is the
slowest by a large margin. The CSP is quick and satisfies all
of the constraints, but is not guaranteed to be optimal. LPS
fails to satisfy all of the constraints, and SMT fails to produce
the optimal answer.

Table III gives more detail on which constraints each
approach can satisfy. Obviously, the brute force approach can
satisfy all of the constraints, since it considers all possibilities.
The CSP can also satisfy all of the approaches, but may not be
optimal. The SMT solver can satisfy all of the constraints so
long as stream and tag constraints are preprocessed. The SMT
also does not allow for network cost optimality since it does
not yield an optimal solution, but rather a complete assignment
of all operators. LSP can satisfy all of the primitive constraints,
but can not guarantee a site will not be overloaded, nor can
it identify network costs. In order to test the approaches,
the following experiments were run on a workstation with a
2.53GHz dual core processor with 4GB of RAM.
Experiment 1 This experiment focused on comparing the
runtimes of each approach with the fitness function score of
the final output. The experiment was run over 5 randomly
connected query network with 20 sites and 40 operators, and
the averages are reported. Each trial was run once since the
brute force, LSP, and SMT solver will always return the same
result (per query). Table II displays the results. Although
optimal, the brute force approach took nearly half an hour

314Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:35:54 UTC from IEEE Xplore. Restrictions apply.

0

500

1000

1500

2000

2500

3000

3500

10 15 20 25 30 35

ti
m

e
 (

m
s)

Number of Constraints

Equality

Collocation

Stream

(a) Time to generate operator assignment vs. Size of Query in
CSP approach

0

2000

4000

6000

8000

10000

12000

14000

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

ti
m

e
 (

m
s)

Size of Query (number of operators)

(b) Time to generate operator assignment vs. Size of Query in
CSP approach

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90

ti
m

e
 (

m
s)

Query Network Density (% connected)

(c) Time to generate operator assignment vs. Query Network
Density in CSP approach

Fig. 3. Experimental Results

Brute Force CSP LPS SMT
Operator (in)Equality Y Y Y Y

Operator to Site (in)equality Y Y Y Y
Stream Constraints Y Y Y* Y*

Tag Y Y Y* Y*
Global Site Capacity Y Y N Y*

Global Network Optimization Y Y N N

TABLE III
* REQUIRES PREPROCESSING ON EXPONENTIAL INPUT SIZE.

to return the assignment. The SMT and LPS were both quick,
but their results were further from the optimal assignment.
The CSP approach does not return the optimal assignment, but
returns one which is close, and does so in far less time than
the brute force approach. Combining this experiments results
with Table III lead us to believe a constraint satisfaction solver
is the best approach. The CSP generates operator assignments
which may not be optimal, but are at least going to provide
a good result. CSP also satisfies all of the constraints, both
user and system. Since it does not consider all of the possible
configurations, CSPs can find a solution quickly. In order to
test exactly how quick the CSP can find an answer, three more
experiments were attempted. Each experiment was the average
of 5 iterations.

Experiment 2 The second experiment alters the number of
constraints over the same query plan, and measures its runtime.
Figure 3(a) displays the results. As the number of stream

constraints increases, so does the amount of time it takes to
process and satisfy them. This is simply due to the number
of constraints that must be considered. Recall that the number
of added constraints in the worst case o! × c where c is the
number of constraints, so as c and o get bigger, we can expect
the time to increase. The equality and location constraints have
an opposite effect. The more constrained the assignments, the
lower the number of states to be considered, and therefore a
quicker execution. In the brute force approach, there was a
dramatic difference in runtimes when increasing the number
of location and equality constraints, but since the CSP does
not consider them all, it is not as dramatically affected.
Experiment 3 The third experiment compared the size of
the query network to the runtime, over the same percentage
of constraints. For example, the query network ranges in
the number of sizes and nodes, and 20% of the operators
are constrained (7% equality, 7% location, and 6% stream
constraints). In order to ensure the query plan remained similar
as the size grew, operators were interconnected with a 50%
probability, and their loads were scaled randomly between 1
and 5. Figure 3(b) displays the results. As expected, as the
problem grows larger, so does the runtime. With 380 operators
(with half as many sites) the runtime was just over 12s.
Experiment 4 The final experiment focused on the streaming
constraints relative to the density of the graph. For this
experiment, the number of sites and operators was fixed, but
they were connected to other operators with some probability.

315Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:35:54 UTC from IEEE Xplore. Restrictions apply.

Quick Constraints Optimal
Brute Force NO YES YES

CSP YES YES NO
LPS YES NO MAYBE
SMT YES YES NO

TABLE IV
PROPERTIES OF THE TESTED APPROACHES.

There were 50 sites and 100 operators, and of the 50 sites, 15
were constrained with an upstream or downstream constraint.
Figure 3(c) displays the results. The y-axis represents the
percentage of operators a given operator is connected to.
Again, as expected, the more dense the query network, the
longer the runtime. The runtime is not affected by increasing
density for equality and location constraints.

Combining the results of the three experiments shows that a
dense, highly constrained (where most constraints are stream
constraints), large network is the hardest to satisfy. Easier loads
would include large networks with a large number of equality
and location constraints, or just smaller networks.

V. RELATED WORK

(I,A)-Privacy. The authors in [7] and [8] provide extensive
work into ensuring user privacy in distributed database man-
agement systems. They investigate the location at which an
operator is executed with regards to the data needed to preform
that operator at that location. A user’s intension can be realized
if data collected and sent from one site to another (in order
to preform an operation at that site) reveals what the true
meaning of the user is. In order to keep the intension private,
the authors propose (I,A)-privacy, where a user reserves some
part of their query as an intensional region, and the adversary
is to never learn anything in that region. In order to keep the
intensional region private, the authors propose extensions to
SQL which allow the user to constrain part of their queries
so that operators execute on sites which are approved by the
user. This keeps their intensions private by only moving data
from site to site if intensions are not revealed. Our work
differs in that we include more constraint types, and operate
on continuous queries. We also focus on a complete query
plan, whereas their work focuses on building a plan around a
set of constraints.
WhiteWater. The authors in [4] provide an optimization
technique for placing operators in a DDSMS. The authors
differentiate their work from related work by being the first
to use throughput as a means for measuring the effectiveness
of a query network. The authors solve the problem of oper-
ator placement using a constraint satisfaction solver utilizing
simulated annealing. The authors therefore have the ability to
hard code some constraints into the system and allow the rest
to be chosen by the CSS. Our work differs from theirs in that
we allow the user to define the constraints to be satisfied and
then allow them to move to better optimize.
Borealis Borealis [2] uses a two step protocol [1] in distribut-
ing operators to nodes. An initial phase is used to gather
statistics on load and usage. A pair-wise algorithm is then

used to set the initial configuration to distribute the load to
each node. In the initial phase, operators are ordered by load,
and the largest is paired with the smallest in recursive fashion
until all are assigned. At runtime, each paring is compared for
to see if the difference in load is above some threshold, and if
so, the load is migrated between two nodes (sites). Our work
differs from [1] in that constraints are considered as first class
citizens, followed by an optimization.

VI. CONCLUSION

In this paper we introduced user preferences to operator
placement in DDSMS. User preferences are encoded through
the use of constraints over which sites an operator can be as-
signed to. Constraints at the query plan level allow the user to
ensure that certain operators remain under their control though
the optimization process. We introduced four techniques for
finding an assignment; brute force, a constraint satisfaction
solver, a SMT solver, and a linear programming solver. Ta-
ble IV summarizes our results. Through implementation and
evaluation, we have shown the CSP solver to be the most apt
for the operator assignment problem. Given its lower runtime,
it is feasible to use it in real time to adapt and changes in user
preferences or the environment to re-optimize under the new
settings.

As of now, queries are handled on an equal basis and
are serviced at random. Future work would include assigning
priorities to queries so system constraints are not an issue until
lower priority queries, where they would simply be unsatisfied,
and the best solution would be used. In general, the idea of
using user constraints to place operators is not a problem
unique to streaming applications, and can be generalized to
placing processing engines into a distributed setting. The work
proposed in this paper is unique to streaming applications
as selectivities and the query plan help guide the placement.
Streams also introduce their own class of constraints, which
we begin to explore with the upstream and downstream con-
straints. In the future, we hope to incorporated this constraint-
aware optimizer into a DDSMS to evaluate its performance.

REFERENCES

[1] Y. Xing, S. Zdonik, and J. Hwang, “Dynamic load distribution in the
borealis stream processor,” in ICDE 2005. IEEE, 2005, pp. 791–802.

[2] D. Abadi et al., “The design of the borealis stream processing engine,”
in CIDR, 2005.

[3] T. Pham and A. Labrinidis, “A practical load manager for data stream
management systems,” SMDB 2012, 2012.

[4] I. Stanoi, G. Mihaila, C. Lang, and T. Palpanas, “Whitewater: distributed
processing of fast streams,” TKDE, vol. 19, no. 9, pp. 1214–1226, 2007.

[5] JaCoP.com, “Jacop,” http://jacop.osolpro.com/.
[6] Yices.com, “Yices,” http://yices.csl.sri.com/.
[7] N. Farnan, A. Lee, P. Chrysanthis, and T. Yu, “Don’t reveal my intension:

Protecting user privacy using declarative preferences during distributed
query processing,” ESORICS, pp. 628–647, 2011.

[8] ——, “Paqo: Preference-aware query optimization for decentralized
database systems,” in ICDE. IEEE, 2014.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under awards CNS-1253204 and IIS-0746696.

316Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:35:54 UTC from IEEE Xplore. Restrictions apply.

