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Abstract—The declarative nature of SQL has traditionally
been a major strength. Users simply state what information
they are interested in, and the database management system
determines the best plan for retrieving it. A consequence of
this model is that should a user ever want to specify some
aspect of how their queries are evaluated (e.g., a preference
to read data from a specific replica, or a requirement for all
joins to be performed by a single server), they are unable to.
This can leave database administrators shoehorning evaluation
preferences into database cost models. Further, for distributed
database users, it can result in query evaluation plans that violate
data handling best practices or the privacy of the user. To address
such issues, we have developed a framework for declarative,
user-specified constraints on the query optimization process and
implemented it within PosgreSQL. Our Preference-Aware Query
Optimizer (PAQO) upholds both strict requirements and partially
ordered preferences that are issued alongside of the queries that
it processes. In this paper, we present the design of PAQO and
thoroughly evaluate its performance.

I. INTRODUCTION

The declarative nature of SQL has traditionally been a major
boon to users querying relational databases. It allows users
to avoid dealing with the complexities of query planning and
optimization. They are able to simply specify what information
they want and then allow the system to devise a plan for zow to
retrieve it. Unfortunately, this simplicity leaves users unable
to control how their queries are evaluated when they need
or want to. The growing popularity of distributed database
systems makes this lack of control increasingly problematic.

Consider a corporate user operating on data from several
of her company’s partners who is instructed not to reveal
to either of the partners how she is combining their data.
Traditionally, she would need to make separate queries to
each partner database and then combine the results herself.
Even if both servers were part of a distributed system this user
could query, doing so might result in a condition for joining
different partner data tables being revealed to one of the
partner database servers. As another example, consider a user
that issues queries containing sensitive or private information
(e.g., queries containing medical patient names or illnesses)

to a distributed database system. Issuing such queries via a
traditional query optimizer could violate the user’s privacy by
revealing sensitive information to a server needed to resolve
the query, but not fully trusted (e.g., an insurance company
server, or a database server in a different hospital from the
user). These cases are made even more problematic by the
fact that these users would not have known how their queries
were evaluated (they would only receive the results of their
query). They would be left unaware if any problems occurred.

We have developed a Preference-Aware Query Optimizer
(PAQO) and implemented it within PostgreSQL [22]. PAQO
allows users to specify declarative preferences on the query
optimization process and resulting query plans. We refer to
these declarative preferences as constraints. For example:

e A doctor issuing a query over data stored at several

different hospitals can constrain the optimizer to produce
a plan that only executes operations involving patient
names at the doctor’s own hospital.

« When issuing a query that operates on a relation repli-
cated across several different sites, users could state a
preference for accessing this relation via the primary
server while still allowing the optimizer to fall back to
eventually-consistent replicas if needed.

o A user could require that specific portions of her query
are evaluated by different database servers to uphold
separation of duty policies (e.g., any site that performs a
scan on a relation it hosts should not perform any joins,
as needed by our corporate user mentioned above).

We have developed extensions to the SQL seLECT statement
that allow users to express constraints as either requirements
(constraints that must be upheld by any plan to evaluate
their query), or preferences (constraints the user would prefer
to be upheld but does not consider necessary) [7]. PAQO
interprets constraints expressed through these SQL extensions
and upholds them during the query optimization process. By
doing so, PAQO ensures that user-specified constraints are
upheld by plans for evaluating their corresponding queries at
a minimal cost to the cost of evaluating the query.
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Fig. 1.

A visualization of how PAQO would process Alice’s example query from Section II-A. Solid lines indicate Alice passing her query to PAQO, and

PAQO distributing the partial evaluation plans to each server involved in the query. The final result of the query is passed back to Alice along the dashed line.

Contributions In this work, we present the design of PAQO,
and an extensive experimental evaluation. Specifically:

« We have designed and implemented what is, to the best of
our knowledge, the first query optimizer to leverage user
requirements and preferences as optimization metrics.

« We have developed and implemented a heuristic algo-
rithm for efficiently upholding complex user preferences
during query optimization.

« To demonstrate the utility of preference-aware optimiza-
tion, we have developed a PAQO prototype by extending
the PostgreSQL query optimizer. This required extending
PostgreSQL to be able to reason about distributed loca-
tions during optimization and cost modeling, making for
a rich experimental platform.

« We have performed and present a thorough experimental
evaluation of PAQO’s performance, showing that it incurs
only modest overhead to optimization costs.

Roadmap Sec. II presents the system model that PAQO
operates in. Sec. III overviews our extensions to SQL. Sec. IV
describes the design of PAQO, while Sec. V presents its
experimental evaluation. Sec. VI overviews related work and
Sec. VII concludes with our future work.

II. SYSTEM MODEL AND EXAMPLE

In this section, we first describe an example that will be
used throughout this work and our assumed system model.

A. Running Example Scenario

Alice is a low ranking corporate executive who wishes to
investigate possible illegal pollution by her employer ManuCo.
As a first step in this investigation, she wishes to join data
stored by her employer with that of an environmental watch-
dog group (Pollution Watch) and a waterway mapping service
(Mapper) to see if there is any correlation between where
her company has plants holding industrial solvents and where
those chemicals are appearing as waterway pollutants. To do
so, she constructs a query over records describing hazardous

solvents owned by ManuCo (stored in the supplies table on
ManuCo’s Inventory database server), details of ManuCo’s
manufacturing plants (stored in the p1ants table on ManuCo’s
Facilities server), water pollution data (stored in Pollution
Watch’s polluted_waters table), and waterway location data
(stored in Mapper’s waterway_Maps table) as follows:

SELECT =
FROM Plants, Supplies, Polluted Waters, Waterway_Maps
WHERE Supplies.type = ’‘solvent’

AND Supplies.name = Polluted Waters.pollutant
AND Plants.id = Supplies.plant_id

AND Polluted_Waters.name = Waterway_Maps.name
AND Waterway_Maps.location = Plants.location;

In issuing this query, however, Alice would not want either
ManuCo or Pollution Watch to become aware of the portion
of her query that was issued to the other, or the join condition
between the supplies and Polluted_wWaters tables. Such a
revelation could easily cost her her job, either because her
employer felt that she “knew too much,” or because the
watchdog group applied external pressure to the company after
learning of the content of her query.

B. System Model

An illustration of the flow of processing Alice’s query
through PAQO is shown in Fig. 1: Alice issues her query
to PAQO, which optimizes and produces an evaluation plan.
Each operation in this plan is designated to be evaluated by a
specific database server in the system. PAQO splits the plan
into the subplans to be evaluated by each server involved
in resolving the query, and distributes these plans to their
respective servers. The servers then evaluate their subplans,
combine the intermediate results as needed, and return the
final result to Alice via the machine running PAQO.

System We assume that PAQO produces query plans to
be issued over a system of distributed, autonomous, and
heterogeneous database servers. These servers can be located
anywhere on the Internet, though we assume that all entities in
the system (i.e., users, PAQO instances, and database servers)
are able to establish private and authenticated communication
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channels with one another. Messages sent along these chan-
nels should be protected from eavesdropping, modification,
reordering, and replay (e.g., through the use of TLS [6]). We
further assume that all relations in the system are protected by
access controls that are specified and enforced by the database
systems that host them (e.g., using the industry standard
RBAC [9], [23]). As such, we assume that users only obtain
the results that they are authorized to see.

We assume that PAQO knows a priori all of the servers par-
ticipating in the system via an expanded catalog that includes
cached metadata about these remote servers. In addition to
listing participating servers, this catalog details the relations
they make available, and metadata about these relations (e.g.,
cardinality, attribute selectivities). This relational metadata
mirrors that stored in the catalogs of the remote servers
so that PAQO can intelligently process distributed queries.
The catalog is kept current with remote servers via periodic
polling or pushed updates since on-demand polling could
reveal aspects of a user’s query to remote servers.

Trust Model We assume that the user has access to a
running copy of PAQO on either a personal machine or a
trusted server. Throughout this work we will refer to the
PAQO instance being used to optimize a given query as the
querier. We assume the querier to be fully trusted by a user.
We consider this assumption reasonable, not only due to the
user’s ability to run and maintain their own personal PAQO
instance, but further because users must reveal their queries to
some piece of software in order for them to be evaluated.

Database servers in the system, on the other hand, we
consider to be honest-but-curious passive adversaries. That
is, database servers will correctly evaluate the query subplans
assigned to them, and will return the correct results to the user,
but in doing so, they will attempt to learn the query issued by
the user. Techniques for verifiable computation can be used
to ensure correct query evaluation [2]. Though we assume all
servers to be honest-but-curious, users may trust subsets of
the servers in the system to learn the makeup of their queries
(e.g., patient names can be revealed to a doctor’s own hospital
severs). Our model allows individual users to decide which
servers should be trusted to handle sensitive portions of their
queries, and which should be treated as untrusted adversaries.

Input to PAQO As shown in Fig. 1, processing distributed
database query via PAQO begins with the user specifying
her query to PAQO. In addition to supporting queries issued
in SQL, PAQO is built to optimize queries specified in
Preference-Aware SQL (PASQL). PASQL extends SQL to
support specification of constraints on the optimization process
and the query evaluation plans produced by that process.
Specifically, it extends the SQL serLecT statement with two
clauses, the REQuIRING and PREFERRING clauses. These clauses
were first introduced in [7], and are discussed in Section III-B.
Constraints expressed via these clauses can either be appended
to individual queries as they are issued, or placed into profiles
to be applied to all outgoing queries. PAQO is able to parse
these extensions and ensure that the constraints they express
are upheld during query optimization.

It should be noted that PASQL support is only needed by
PAQO instances. Database servers in the system can remain
unmodified, as they need only evaluate query plans sent
to them by a remote query optimizer. The requirinc and
PREFERRING statements are only processed by the optimizer,
where they are used as optimization metrics. As such, these
constraints are locally-enforceable: they do not require server-
side support to be used. A user wishing to issue queries with
PASQL constraints attached can simply install and set up a
PAQO instance on her personal machine.

IIT. CONSTRAINT LANGUAGE

In this section, we describe the SQL extensions supported
by PAQO [7].

A. Constraints

Constraints are user requirements or preferences on the
types of evaluation plans that PAQO produces to evaluate their
queries. Traditionally, query performance (specifically the time
required to return a result to the user) has been the primary
metric used by query optimizers. As such, the fastest plan to
evaluate a query was the one chosen. Constraints allow the user
to ensure that other conditions are accounted for in addition to
query run time. Through constraints, users can instruct PAQO
to, instead of just emitting the fastest plan, emit the fastest
plan that upholds their specified constraints.

Our approach to constraint specification consists of two
steps. First, a user identifies the portions of her query that she
wishes to have specially handled during query optimization.
This could be, e.g., pointing out which parts of the query
contain patient names, which parts need to be evaluated by
separate sites, or which tables should be specifically scanned
from servers hosting the freshest copies. In Alice’s case, she
may want to identify all query plan operations involving the
pollutant attribute from the polluted_waters table.

Node descriptors are used to identify these portions of the
query that should be specially handled. We consider query
plans to be trees of nodes representing relational algebra
operations. Each of these nodes is a ternary ( op, params, p ),
where op is the operation represented by the node, params
represents the parameters to that operation, and p is the
principal (e.g., a database server or the querier) assigned to
evaluate the operation. We define node descriptors as a mirror
to query tree nodes, also ternaries consisting of op, params,
and p. Node descriptors are used to “match” query tree nodes
that the user would like to have evaluated in a specific way. To
accomplish this matching, a “*” is used as a general wildcard.
Setting op, params, or p to be “*” in a node descriptor will
cause that portion of the node descriptor to match any value in
the corresponding portion of a query plan node. To construct a
node descriptor matching any query tree node that operates on
the attribute Polluted_Waters.pollutant, for example, Alice
could instantiate op and p as “*” while defining params as
Polluted _Waters.pollutant as follows:

(x, {(Polluted_W aters.pollutant)}, *)
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Once a portion of the query plan has been identified via
a node descriptor, the user can move on to the second step
of authoring a constraint: creating a condition that must be
upheld by query tree nodes matching the node descriptor.
Node descriptors are tied to conditions through the use of
free variables. The “@” character is used to mark the use of
free variables in node descriptors. Like the wildcard marker,
free variables will match any value in the corresponding
position of a query tree node. Conditions are written over
the potential values found in positions corresponding to free
variables in matched query tree nodes. For example, to keep all
operations on the attribute Polluted_Waters.pollutant from
be executed by ManuCo’s 1nventory server, Alice would first
include a free variable (@site) in the p position as follows:

(x, {(Polluted_W aters.pollutant)}, Qsite)

She could then ensure that any query plan node matching
that node descriptor should not have the Inventory server as
the value of p by specifying that Qsite <> Inventory. For
the full syntax of node descriptors and constraints, see [7].

B. SQL Extensions

Our extensions to the SQL seLEcT statement combine node
descriptors and conditions and pass them to PAQO. While
we only demonstrate queries with either a REQUIRING or
PREFERRING clause attached, these clauses can be combined
by a user to reflect her needs for evaluating a single query.

Required constraints take the following general form:

REQUIRING condition 1 HOLDS OVER node descriptor 1
[ aND condition 2 HOLDS OVER node descriptor 2 |
Alice’s need to keep ManuCo’s Inventory server from

evaluating operations on pPolluted_Waters.pollutant could
be added to her query using a REQuIRING clause as follows:

SELECT =
FROM Plants, Supplies, Polluted Waters, Waterway_Maps
WHERE Supplies.type = ’solvent’

AND Polluted_Waters.pollutant = Supplies.name
AND Plants.id = Supplies.plant_id
AND Polluted Waters.name = Waterway_Maps.name
AND Waterway_Maps.location = Plants.location
REQUIRING @p <> Inventory HOLDS OVER
< %, {(Polluted_Waters.pollutant)}, @p >;

As another example, let us say that Alice would like her
query to be evaluated even if none of her constraints can
be upheld, and that she has the following preferences for
evaluating her query:

P1 Most importantly, the server
should not evaluate operations on the attribute
Polluted_Waters.pollutant

P2 The 1nventory server should not evaluate operations
on the attribute Polluted_Waters.name

P3  The racilities server should not evaluate opera-
tions on the attribute Polluted_Waters.name

Inventory

In order to allow users to express complex and partially
ordered hierarchies of constraints such as this, PASQL in-
cludes the prerFeERRING clause. While the PREFERRING clause
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Fig. 2. A preference lattice with the most preferred sets of upheld preferences
(P7) at the top, and the least preferred at the bottom.

is made up of the same basic constraint HOLDS OVER node
descriptors building blocks as the rREQuUIRING clause, it makes
use of an additional keyword to bind them together. Where the
REQUIRING clause uses only anp to join individual constraints
together, constraints in the prRerERrRING clause can also be
joined using cascape. This second keyword is needed to
establish the priority of different constraints relative to one
another to form partially ordered preference structures. While
two constraints joined by anp are considered equally preferred,
any constraint before a given cascape is considered more
important by the optimizer than those listed after that casczbe.

Returning to our example, Alice could express her prefer-
ential constraints as follows:

SELECT =«
FROM Plants, Supplies, Polluted_Waters,
WHERE Supplies.type = ’solvent’
AND Polluted Waters.pollutant = Supplies.name
AND Plants.id = Supplies.plant_id
AND Polluted_Waters.name = Waterway_Maps.name
AND Waterway_Maps.location = Plants.location
PREFERRING @p <> Inventory HOLDS OVER

Waterway_Maps

< %, {(Polluted _Waters.pollutant)}, @p > —— P1
CASCADE @p <> Inventory HOLDS OVER

< %, {(Polluted_Waters.name)}, Gp > -- P2
AND @p <> Facilities HOLDS OVER

< %, {(Polluted_Waters.name)}, @p >; -— P3

This specification forms a partial order of preferred con-
straints. Specifically, keeping Pollution_Watch.pollutant
from Inventory is the most important constraint to be con-
sidered, while the other two constraints should be given equal
weight. Using this partial order, a ranking of query plans by
the query constraints they uphold can be constructed as shown
in Fig. 2. Of the most preferred plans found by PAQO during
query optimization (i.e., the highest ranking plans), the one
with the lowest cost will be the one emitted to evaluate the
query. In Sec. IV-B, we will show how such a ranking is used
by PAQO to efficiently generate highly-preferred evaluation
plans for queries with an attached pPReFERRING clause.

IV. DESIGN AND IMPLEMENTATION

In this section, we first demonstrate how a strawman
approach can lead to woefully inefficient query plans, and
describe the design and implementation of PAQO in detail.

A. A Strawman Approach

An intuitive approach to support most user constraints on
query evaluation plans would be to optimize the query using
an off-the-shelf query optimizer, and then post-process the
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C.fkey = B.pkey

Join,
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(a) Traditional optimizer result

Fig. 3.

resulting plan to enforce user constraints. [4] uses this general
approach to ensure that their optimizer generates plans that
uphold tuple-level access controls (as defined by the hosts of
the relations involved in the query) during query evaluation.
To apply this approach to uphold user-specified constraints,
REQUIRING and PREFERRING clauses would first need to be
stripped from incoming queries. The resulting pure SQL query
would then be optimized and a plan without any execution
locations would be produced. A second optimization phase
would then be performed on this plan, applying execution
locations to each operation according to the user-specified
constraints in these REQUIRING and PREFERRING clauses.
However, this disconnect between optimization and con-
straint consideration opens the door for the creation of un-
necessarily inefficient query plans. Consider this example:
SELECT = FROM A, B, C

WHERE A.fkey = B.pkey AND C.fkey = B.pkey;
REQUIRING @p <> siteB HOLDS OVER < x, {(A.fkey)}, @p >;

Here, a user wishes to join Tables 2, B, and c (stored at
siten, siteB, and sitec, respectively) while ensuring that
siteB does not evaluate any operations on 2. fkey. We assume
that 2 has a cardinality of 100 tuples, 8 5,000,000 tuples, and
¢ 200 tuples. We further assume that the joins to be performed
link attributes in Tables 2 and c that are foreign keys to B.

Given the pure SQL version of this query (everything
preceding the REQUIRING clause) a traditional query optimizer
(the first phase of a two-phase approach) would first join
Tables 2 and B, as a is half the size of c, resulting in the query
plan shown in Fig. 3(a). Post-processing this plan to support
its attached requirement would disallow the join tables 2 and
B at siteB. Hence, the second phase would logically choose
sitea to evaluate this join (as in Fig. 3(b)), though this comes
at a great cost to query performance. Under this plan, all of B
(5,000,000 tuples) must be shipped over the network to sitea,
incurring a great cost to not only total query evaluation time,
but also network bandwidth utilization. Further, this prevents
all indices for Table B (assumedly) maintained at sitep from
being used during the evaluation of this query.

To compare the costs of different optimizer results, we
assume that all three servers are capable of downloading
tuples at 50 Mbit/second, that all three tables have a tuple
width of 128 bytes, that scan operations read tuples at a rate
of 120 microseconds/tuple, and that join comparisons take
0.028 microseconds/tuple.! Further, we assume that operations

IThese values were gleaned from the experimental setup used in Sec. V.

4 Join, 4
i Cifikey =Bpkey, *

(b) Inefficient site-assigned plan

Join,
Afkey = B.pkey,
@siteB

(c) Efficient site-assigned plan

Candidate query plans for the example query in Sec. IV-A.

executed at different sites occur in parallel, and tuples are
pipelined from one operation to the next as they are generated.

Given these assumptions, the plan shown in Fig. 3(b)
would take 711.66576 seconds to execute. Without considering
constraints, the general plan from Fig. 3(a) could be evaluated
in 0.02847 seconds. In addition to not having to ship all
5,000,000 tuples of B across the network, this unconstrained
plan can utilize indices on the primary key of B to quickly
scan only the tuples needed in the process of joining 2 and B.

Ideally, this preference-aware query would be evaluated
using the plan shown in Fig. 3(c). By joining B and c first
at siteB, the large network transfer shown in Fig. 3(b) can
be avoided while upholding the user’s specified constraint.
Further, by joining B and c together at siteB, indices on B
can again be utilized to speed up the join and avoid scanning
all of table B. This approach takes 0.03038 seconds to evaluate.
Such a plan can only be discovered, however, by considering
constraints when determining the join order of a query plan.

B. PAQO

To avoid the shortcomings of two-phase optimization dis-
cussed above, we take synergistic approach to query optimiza-
tion, accounting for both user preference and query perfor-
mance during the query optimization process. We now outline
the challenges inherent in adopting this approach, and then
describe our implementation of PAQO within PostgreSQL’s
query optimizer. Finally, we highlight how these challenges
were overcome in our implementation.

1) Challenges in Implementing PAQO:

Distributed Processing Support The optimizers of most
open-source DBMSs (e.g., PosgreSQL, MySQL) have no
support for optimizing queries issued across a system of
autonomous, distributed, heterogeneous database servers as we
assume in our system model. Hence, we had to adapt the
optimizer to be able to reason about execution locations for
individual operations in a query plan.

Early Pruning Any subplan that violates a required con-
straint can not be used as the basis for any further plans as
no plan can be emitted that violates a required user constraint.
This makes user requirements natural pruning rules: any plan
that violates one can be safely discarded as soon as it is
realized. We needed to ensure that PAQO enforces this.

Efficient Preference Support Producing optimally-
preferred plans can lead to an increase in the state space that
need be explored during optimization. Consider the following:
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Algorithm 1 PAQO’s dynamic programming optimization
pseudocode.

Algorithm 2 Pseudocode for the functions handling require-
ments and preferences.

Require: A parsed representation of a user query, @
Require: A list of requirements, R

Require: A list of preferences, P

1: subplans < EMPTY_LIST

2: subplans[1].add(EMPTY_LIST)

3: for table in Q do

4: subplans(1].add(scan plan for table)

5. num_tabs = number of tables in Q

6. for level = 2 to num_tabs do

7: subplans|level].add(EMPTY_LIST)

8: possibles <+— ENUMERATE_JOINS(level, subplans)

9: for plan in possibles do

10: for each possible site do

11: set site to evaluate the root of plan

12: if VIOLATES_REQUIREMENT(plan, R) then
13: continue to next iteration

14: CHECK_PREFERENCES(plan, P)

15: accept_new = True

16: for other in subplans(level] do

17: > Compare prefs upheld by plan and other
18: if plan > other then

19: subplans[level].remove(other)
20: else if plan < other then

21: accept_new = False

22: break

23: else if plan has a better sort order then
24: if cost(plan) < cost(other) then
25: subplans|level].remove(other)
26: else if cost(plan) > cost(other) then
27: accept_new = False

28: break

29: if accept_new then

30: subplans|level].add(plan)

return the fastest plan in subplans[num_tabs]

PREFERRING @P = Mapper HOLDS OVER

< %, {(Polluted_Waters.pollutant)}, @p >
AND @p <> @g HOLDS OVER

< %, {(Polluted_Waters.pollutant)}, @p >,

< %, {(Plants.location)}, Qg >;

If a join on Plants.location needs to be performed before
a join on Polluted_Waters.pollutant, in order to ensure
that both of constraints are upheld, PAQO would have to
maintain multiple plans with differing execution sites for the
join on plants.location. PAQO would be unable to simply
select the most efficient subplan as, if that subplan required
the evaluation of the join on Plants.location at Mapper,
maintaining only this subplan would cause the constraints to
be unnecessarily violated. Unfortunately, maintaining multiple
such subplans leads to an increase in the state space to be
searched, and hence, and increase in query optimization time.
We needed to efficiently produce highly preferred query plans,
that is, support preferences and emit highly preferred plans
while avoiding this increase in searchable state space.

2) Implementation Overview: We will use Algorithms 1
and 2 to describe our implementation of PAQO. Unless oth-
erwise noted, all line numbers refer to Algorithm 1. To make
our discussion concrete, our description below is based on an
implementation of PAQO on PostgreSQL. It is not hard to see
that it can be easily adapted to other database systems.

Similar to most query optimizers, PAQO takes as input a
parsed representation of a query and returns a plan to evaluate
that query. PAQO also takes two additional inputs: a list of
required constraints, and a list of lists of preferred constraints

1: function VIOLATES_REQUIREMENT(plan, R)

2 for req in R do

3 fvar_vals < EMPTY_LIST

4 for node in plan do

5: for descriptor attached to requirement do
6: if node matches descriptor then

7 fvar_vals.add(values from node)

8 for value in fvar_vals do

9 if condition of req is False for value then

10: return True
return False

11: end function

12: function CHECK_PREFERENCES(plan, P)
13: prefs_upheld < EMPTY_LIST
14; for pref_level in P do

15: prefs_upheld[pref_level] + EMPTY_BITMAP
16: for pref in pref_level do

17: fvar_vals <+ EMPTY_LIST

18: for node in plan do

19: for descriptor attached to preference do
20: if node matches descriptor then

21: fvar_vals.add(values from node)
22: for value in fvar_vals do

23: if condition of pref is True for value then
24: prefs_upheld[pref_level].add(pre f)

25: Attach pre fs_upheld to plan
26: end function

(where each inner list represents constraints in a different
preference level). Note that either or both of these constraint
lists may be empty. With these inputs, PAQO begins a bottom-
up dynamic programming approach to find an evaluation plan
for the query that upholds its specified constraints.

To begin, PAQO initializes nested lists that will be used
to store the sub-plans that are realized over the course of
query optimization (lines 1-2). These lists are seeded with
plans for reading the data needed to evaluate the query under
consideration (lines 3-4). PAQO then proceeds to iteratively
find plans by joining increasing number of tables (lines 5-
32). Note that to conserve space, we abbreviate the process
for discovering potential joins at each join level with a single
function call at line 8 (ENUMERATE_JOINS()).

For each of these join plans, we check the viability of
a large number of potential evaluation sites to ensure that
an efficient plan upholding user constraints can be found.
Specifically, PAQO considers the querier, all sites hosting data
required by the query, and further third-party sites offering to
perform computation for queries as potential evaluation sites.
To perform this site assignment, we augmented PostgreSQL’s
query plan data structures to hold additional state representing
execution location. The entire site assignment process is
represented in lines 10 and 11. Note that only the root of
a query plan is assigned a site at any given time. This is due
to PAQO’s bottom-up construction of query plans: each newly
created node is added as the root of two previously-realized
query plans that already have assigned evaluation sites.

Once an evaluation site is assigned to the root node of a
new plan, PAQO checks to ensure that this plan does not
violate any required constraints (lines 12 and 13). To perform
this check, PAQO iterates through all requirements attached
to the query (lines 2-11 of Algorithm 2) finding all nodes
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of the current query plan that match each requirement (lines
line 4-7 of Algorithm 2). If a match is found (lines 6-7 of
Algorithm 2), the appropriate free variable values are stored
(e.g., if the descriptor that was just matched has a single free
variable in place of p, the execution location of the matched
query plan node is stored). The current requirement’s condition
is then checked using all of the matched free variable values
stored in traversing the query plan (lines 8-10 of Algorithm 2).
If a violation is found, the function returns, and the plan is
pruned from further consideration (lines 12-13).

Assuming that the current query plan does not violate
any required constraints, PAQO checks which preferences it
upholds (line 14). Checking for preferred constraint adherence
is done in a manner very similar to checking for required
constraint adherence. The first key difference is that preferred
constraints are divided into several levels of constraints that
must be iterated through (lines 14 and 16 of Algorithm 2).
When the preFERRING clause is parsed, every time a CASCADE
keyword is encountered, a new level of preferences is instan-
tiated and populated with all constraints that come before the
next cascape (or the end of the query, in the case of the
final level). Hence, the levels are ordered from most to least-
preferred. Checking preference adherence also differs from
checking requirements in that the goal is not to find a single
violation, but to record the constraints upheld in a list of
bitmaps (lines 13-24 of Algorithm 2). These bitmaps are used
to efficiently compare the relative preference of two plans.

Once PAQO has checked which preferences a given plan
upholds, it is compared with previously stored plans joining
the same set of relations to see if either or both can be pruned
(lines 16-32). Each plan is assumed to be kept until PAQO
determines that it is dominated by another plan. As shown in
lines 17-22, PAQO uses a heuristic that more preferred plans
dominate lesser preferred. Comparisons of plan preference are
shown on lines 18 and 20 via the > and =< operators. For plans
that are equally preferred, PAQO falls back to PostgreSQL’s
standard domination checks to see if either of the two should
be discarded. Specifically, one of the plans will be discarded
if it does not produce a different tuple sort order that could
be used to the benefit of future operations and it is estimated
to cost more than the other (lines 24-30). If no plan is found
to dominate the current plan, it is stored for later use.

Our assumption of distributed query evaluation necessitated
a wide-ranging reworking of query plan cost estimation func-
tions. First and foremost, the cost of shipping data between
sites needed to be accounted for. To do this, we extended
PostgreSQL’s calculation of costs to read data from disk,
scaling the calculation up to network transfer speeds. To
calculate disk read costs, PostgreSQL simply multiplies the
number of tuples to be read by a disk read cost constant.
We similarly defined a network transfer cost constant, scaled
it appropriately relative to the disk read cost constant, and
calculate network transfer costs by multiplying the number of
tuples to be transferred by this constant.

Using multiple execution sites further allows for parallel
execution of query plans. While PostgreSQL is a threaded

database server, each query is evaluated within a single thread,
and hence, the cost estimation functions assume the total cost
of evaluating a query to be the sum of the costs of evaluating
all of its operations. We modified these functions to account for
parallel execution of operations annotated for different sites.
Further, we allow for operations to process streams of tuples
from their children where appropriate (e.g., the smaller relation
involved in a hash join must be realized and hashed before
the join can begin, though the larger relation can be streamed,
probing the join attribute of each tuple as it is received).

Once all potential n-way joins have been processed, only the
most preferred plans will remain due to our heuristic. PAQO
then returns the n-way join plan with the lowest cost.

3) Challenges Revisited:

Distributed Processing Support By including evaluation
location state in optimization data structures and rewriting
PostgreSQL’s cost estimation functions to account for paral-
lelizable and distributed query evaluation, we enable PAQO to
optimize queries over a distributed set of database servers.

Early Pruning As soon as an execution location is assigned
to a new operation (and hence a new subplan), the plan
rooted by that operation is checked for adherence to all
user requirements. Any plans that fail to pass this check are
immediately pruned from the search space.

Efficient Preference Support By maintaining only the
most preferred plans at each join level, we limit the number
of plans maintained over the course of optimization. This
heuristic enables us to avoid the state space blowup discussed
in Sec. IV-B1, and efficiently support user preferences.

V. EXPERIMENTAL EVALUATION

In this section, we begin by describing our experimental
setup, and then present the results of several experiments
evaluating the performance of PAQO.

A. General Experimental Setup

All of the experiments presented in this section were con-
ducted on a single machine running Arch Linux with an Intel
15-2500 processor, 16GB of RAM, a 2TB hard disk dedicated
to database tables and configuration files, and a 500GB hard
disk to hold everything else on the machine (e.g., OS files
and database binaries). For experiments comparing PAQO’s
performance to PostgreSQL’s standard optimizer, the optimizer
from PostgreSQL version 9.1.1 (which serves as the basis
for PAQO) was used. Optimization times, memory utilization
statistics, and query plan makeups are gathered from logs
produced by PAQO and PostgreSQL during optimization. Due
to the difficulties of gathering accurate measurements of Post-
greSQL’s memory usage (see [1], [15]), the memory utilization
statistics presented here were gathered via modifications to
PostgreSQL’s internal memory allocation functions. Hence,
they precisely show the amount of memory allocated by the
optimizer to evaluate the presented queries.

As most of our experiments optimize for data stored at
multiple sites, a distributed database system was simulated
within the PostgreSQL DBMS. Each relation used by PAQO
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Fig. 4. Results of comparing the optimization times and memory usages of PAQO and the optimizer from PostgreSQL

is assumed to be stored at a single site in the system, and
this site is annotated as the execution location of all scans
of the relation. We treat PostgreSQL’s system catalog as the
catalog of metadata from remote databases maintained by
PAQO. Because we aim only to evaluate the performance of
our optimizer, this simulation does not affect the results we
present here. Optimization occurs at a single site with access to
a single metadata catalog before distributed query evaluation.

B. Experiments

We first demonstrate the negligible effects of our code on
the optimization of queries without constraints by comparing
PAQO with PostgreSQL’ standard optimizer. From there, we
demonstrate the effect that requirements and preferences have
on query optimization performance with both randomly gen-
erated queries, and a case study using the example scenario
from Sec. II-A. Finally, we examine the plans generated by
the case study queries to show that PAQO is not only efficient,
but also makes correct choices during optimization.

1) Comparison to PostgreSQL: These experiments were
performed on randomly generated queries over randomly
generated relations following the experimental model used
n [13], [18], [20]. The relations over which these queries
are defined are sized according to the distribution shown in
Table I, and composed of attributes whose size follows the
distribution shown in Table II. The experiments were run on
queries over an increasing number of relations (from three
to eleven). Queries were generated according to three join
topologies: CHAIN, STAR, and CLIQUE. Each query was run
once to warm caches, and again to be averaged into the data

TABLE I
DISTRIBUTIONS USED TO GENERATE RELATION CARDINALITIES.

Class  Relation Size (Cardinality)  Distribution
S 10 - 1,000 15%
M 1,000 - 10,000 30%
L 10,000 - 1,000,000 35%
XL 1,000,000 - 100,000,000 20%
TABLE I1
DISTRIBUTIONS USED TO GENERATE RELATION SCHEMAS.
Class  Attribute Domain Size (Bytes)  Distribution
S 2-10 5%
M 10 - 100 50%
L 100 - 500 30%
XL 500 - 1,000 15%

point value. Each of these data points represents the average
of 20 runs of different randomly generated queries.

For a fair comparison, PAQO assumes that all relations are
stored at a single site. As such, all points where multiple
execution locations must be considered are effectively avoided.
Further, in order to be processed by PostgreSQL’s standard
optimizer, none of these queries had any constraints attached.
Figs. 4(a), 4(b), and 4(c) show the optimization time (in mil-
liseconds) required by queries of CHAIN, STAR, or CLIQUE
topology (respectively) while Figs. 4(d), 4(e), and 4(f) show
the memory (in bytes) required to optimize these queries.

These graphs clearly demonstrate the negligible overhead
that PAQO incurs on the optimization process. With this
data, we establish that any increases in optimization time and
memory usage shown in later experiments are a result of site
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assignment and constraint processing. Our implementation of
PAQO does not inherently necessitate an increase in optimiza-
tion cost, it only requires more time and space to perform
additional processing that PostgreSQL cannot provide.

2) Processing Constraints: To demonstrate the effects of
constraint processing on optimization time and memory uti-
lization, we randomly generated a query over six relations
and nine constraints on the optimization of that query. This
query is issued over the same randomly generated relations
used in the previous experiments. Here, though, the relations
are considered to be stored at different sites, allowing for
meaningful use of constraints. We optimized this query by
itself and with the generated constraints attached to produce
the graphs displayed in Figs. 5 and 6. Each data point is the
average of five runs of this query with a given number of
constraints attached (six runs were performed in total for each
data point, one to warm caches and the five to gather data).
As the similarities across topologies shown in Fig. 4 are also
displayed in this experiment, only the STAR topology results
are presented here in the interest of space.

In these graphs, the Baseline curve shows the performance
of PAQO when given the query without any constraints. The
Required curve shows the results of adding each of the nine
constraints as a requirement. The rest of the graphs show the
results of adding these constraints as preferences according to
different shapes. Different shapes were created by varying the
use of the anp and cascapbe keywords to for each additional
constraint. Fig. 7 illustrates the shapes used in this experiment.

It should be noted that the graph of required constraints
shows no data for any more than five constraints because the

Fig. 7. A visualization of the different preference shapes used in Sec. V-B2’s
experiments (clockwise from the left): Vertical, Horizontal, Diamond, Inverted
Pyramid and Pyramid. Each node represents a constraint. Equally preferred
nodes (joined by an 2ND) are shown on the same level, while nodes higher in
a given structure are considered more preferred than those lower (ie., each
change in level represents the use of a CASCADE.

TABLE III
REQUIREMENTS APPLIED TO ALICE’S QUERY FROM SEC. II-A AS PART OF
OUR CASE STUDY EVALUATION

1 @p < >Inventory HOLDS OVER
( *, {(Polluted_Waters.pollutant) }, @p )
2 @p < >Pollution_Watch HOLDS OVER
( *, {(Waterway_Maps.name)}, @p )
3 @p <>@q HOLDS OVER
( *, {(Polluted_Waters.name) }, @p ), ( *, {(Plants.location)}, @q )
4 @p < >Facilities HOLDS OVER
( *, {(Polluted_Waters.name) }, @p )
5 @p < >Inventory HOLDS OVER
( *, {(Polluted_Waters.name)}, @p )
6  @p = Querier HOLDS OVER
( *, {(Polluted_Waters.name)}, @p )
7 @p = Querier HOLDS OVER
( join, *, @p );

sixth constraint generated conflicts with a previous constraint,
and hence it is impossible for PAQO to generate query plan
that upholds all user-specified requirements. Note that this con-
flict is only an attribute of the specific constraints generated,
this is not an inherent limit in the number of requirements
that can be applied to a given query. As these constraints are
randomly generated, however, there is an increasing probabil-
ity of conflict between required constraints as the number of
random constraints applied to a query increases. The inclusion
of conflicting constraints in this experiment further showcases
PAQQO’s ability to handle conflicting preferred constraints.
While this experiment does confirm the expectation that
optimization cost increases with the number of constraints at-
tached to a query, more importantly, it shows that optimization
time and space requirements increase linearly with the number
of constraints. Hence, while an overhead is incurred to account
for user constraints during query optimization, this overhead
scales well as the number of constraints specified increases.
3) Case Study Performance: We have further run a series
of experiments evaluating the performance of Alice’s query
from Sec. II-A with the requirements listed in Table III. The
results of these experiments are shown in Figs. 8 and 9.
The constraints from Table III are applied one at a time as
requirements, and each data point is the average of five runs
(preceded by a cache-warming run). Fig. 8 further presents the
optimization time needed to process each requirement alone in
addition to combining it with previous requirements (i.e., the
results for optimizing both Alice’s query with just the second
requirement attach and with the first and second requirements
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attached are both presented, as are the results for the third
and the first, second, and third, etc.). The sixth requirement,
limiting all joins on Polluted Waters.name to be evaluated by
the querier is highly restrictive. With this constraint, PAQO
is able to prune large portions of the optimization search
space (i.e., all plans with another site annotated to evaluate
an operation on pPolluted Waters.name), resulting in a clear
decrease in optimization time.

4) Query Plan Cost and Correctness: As the queries and
requirements used in previous experiments had no semantic
meaning, comparing the tradeoff between constraint adherence
and the estimated cost of executing a query plan similarly
would have no real meaning. Hence, we also utilize this
case study to demonstrate the cost and correctness of plans
generated by PAQO. PAQO was similarly demonstrated in [8].

The query plans presented in this section are a direct
representation of the plans produced by PAQO. As such, the
nodes in these query plans display the method for evaluating
the relational algebra operation needed as opposed to just
the general relational algebra operation (e.g., sequential scan
as opposed to scan, hash join as opposed to join). The first
line of each node lists the method and the estimated cost of
evaluating the entire subtree rooted at that node (hence the cost
of the entire plan is displayed in the root node). It should be
noted that these costs are given in PostgreSQL’s computational
units. The real world time required to evaluated these plans
will depend on the computation power of the servers they
are evaluated by, the speeds of network connections between
these servers, etc. The middle lines of each node represent the
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Fig. 10. A plan to evaluate Alice’s base query.
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Fig. 11. A plan to evaluate Alice’s query with requirement 1.

parameters to the operation while the final line indicates the
execution location assigned to that operation. Note that PAQO
will choose to evaluate some operations together by combining
select and project operations with other operations. This is a
performance improving technique that saves making an extra
pass over the intermediate relation. As a final note, network
transfers are indicated via annotations to the right of edges
linking two operations to be performed at different sites.
First, we show the result of optimizing Alice’s base query
(from Sec. II-A), in Fig. 10. The first requirement from Ta-
ble III requires that operations on Polluted_Water.pollutant
are hidden from the Inventory server. To accommodate this,
PAQO chooses to evaluate the root of the query plan at
the Querier as shown in Fig. 11. This plan has a higher
estimated cost, though that is exactly why it was not selected
as the plan to evaluate Alice’s query without constraints. With
this requirement, Alice is adding an optimization metric that
is considered more important than the otherwise assumed
“lowest cost” metric. As such, this tradeoff between constraint
adherence and plan cost is expected. As future work, we will
develop constraints that allow users to bound the overheads
incurred by upholding their constraints (see Sec. V-C).
Applying both requirements 1 and 2 similarly shifts the
evaluation of the join on the condition waterway_maps.name
= polluted_waters.name from Pollution_Watch to Mapper
as shown in Fig. 12. It is interesting to note that, though
this requires another large network transfer of tuples from
Pollution_Watch tO Mapper, this transfer can be performed
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Fig. 12. A plan to evaluate Alice’s query with requirements 1 and 2.

in parallel with the transfer from Inventory to the Querier,
and hence has only a small impact on the overall plan cost.

Requirement 3 explicitly disallows Mapper from performing
both of the operations that it does in Fig. 12, and hence the
evaluation of the join on the condition waterway_maps.name
= polluted_waters.name is shifted again to the Facilities
server. Requirements 4 and 5 similarly adjust the site selected
to evaluate this join to the Inventory server and a third party
computation server, before requirement 6 finally forces it to
be evaluated by the querier as well.

The inclusion of requirement 7 creates a conflict among the
requirements. If all joins are to be performed by the querier,
requirement 3 cannot be upheld as the attributes it covers are
both used as join conditions. Given this query, PAQO returns
an error informing the user that it is unable to produce an
evaluation plan for the supplied query.

C. Discussion and Future Work

Requirements as Pruning Rules While PAQO incurs a
negligible overhead on plans with no constraints attached,
optimization time of constrained queries increases with the
number of constraints applied to the queries. As requirements
are used as additional pruning rules, queries with larger num-
bers of requirements should be able to use them to decrease the
number of potential plans created during query optimization,
and hence, decrease optimization time. Our selection of ran-
domly generated constraints (from the experiments presented
in Sec. V-B2), by their random nature, rarely affected the query
evaluation plans generated by PAQO (e.g., they prohibit joins
at sites that were not selected to perform joins anyway as there
was another site that could perform joins more efficiently).
As such, the optimization time results from Sec. V-B2 serve
as a worst-case experimental result. Lacking sufficient actual
pruning, these queries are subject to the additional overheads
imposed by constraint checking while achieving only minimal
benefits. While we were able to clearly show how the use of
requirements as pruning rules can reduce optimization time
and overcome constraint checking overhead in Sec. V-B3,
not all users will be able to glean those benefits (e.g., users
who issue queries with only preferences attached). To address
this, we will be investigating smarter approaches to constraint
checking and constraint pruning as future work.

Effect of Preference Shape In contrast to requirements,
preferences have two factors that could contribute to their com-
plexity: the number of preferences attached and their shape.
Fig. 5, however, clearly shows that shape has a negligible
effect on optimization time. This is an intuitive conclusion, as
in checking preference adherence, all preferences are iterated
over without regard to the ranking relative to one another
as shown in Algorithm 2. The shape of the ranking of
preferences attached to a query only affects the comparison
of the relative preference of two plans in that each cascape
keyword used in a PREFERRING clause necessitates the use of
another bitmap to store the preferences upheld by a given plan.
This effect is negligible, however, due to the efficiency of
bitmap comparisons and the fact that comparisons can stop as
soon as a difference in the preferences upheld at a given level
is found (i.e., an increased number of cascapes does not have
as much of an impact on the average case plan comparison
times as it does on the worst case).

Efficient Preference Support Fig. 5 further shows PAQO
is able to optimize queries with attached preferences with
performance competitive to queries with the same number
of requirements. Recall that, though the cost of constraint
checking takes its toll on optimization with requirements, they
are used as pruning rules when exploring the optimization
search space. Because of this, additional requirements can
only decrease the size of the search space that must be
explored during query optimization. By showing that PAQO’s
optimization of queries with preferences takes little more time
than for those with requirements, we can validate our intuition
that our use of a heuristic for emitting highly-preferred query
plans limits the number of query plans maintained duration
optimization, and hence, maintains lower optimization times.
This does lead us to question what tradeoffs in optimization
time would be required to support better heuristics. We will
be investigating such tradeoffs as future work on PAQO.

VI. RELATED WORK

Preference SQL Our support for preferred constraints
closely mirrors that of [11] in both the use of partially-
ordered preference structures, and the syntax of the SQL
extensions used to express them. Here, these techniques are
used to drastically different effect: we use user preferences as
optimization metrics, while in [11], preferences are used to
order query result tuples from most to least-interesting.

Distributed Query Processing The optimization and pro-
cessing of queries over distributed database systems has been
an area of active research for several decades (for a survey,
see [12]). There are two main techniques for evaluating queries
over distributed database systems: data shipping (transferring
the data being queried to the querier for processing) and query
shipping (having servers hosting data process it as needed
to evaluate the query and return the result to the querier).
The combination of these techniques is known as hybrid ship-
ping [10]. While previous work on distributed database query
optimization has focused primarily on decreasing optimization
time and improving the plans generated [5], [18], [21], here,
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we present the first distributed query optimizer to include user-
specified constraints as additional optimization metrics.

While query hints [17] also allow users to guide the query
optimization process, they are orthogonal and complimentary
to query constraints. Hints specify the use of certain physical
operators for relational operations (e.g., the use of hash join
for evaluating a certain condition). We allow users to constrain
the evaluation site of any portion of their SQL query.

Authorization Enforcement in Database Systems In [4],
the authors propose a theoretical framework for optimizing
distributed database queries such that when evaluating the
resulting plan, tuples are only processed by sites that are
explicitly allowed to see them according to authorizations
specified as profiles for each relation in the system. To enact
these controls, the authors utilize the strawman two-phase
optimization approach presented in IV-A. They first optimize
the query without regard to data distribution, and then assign
sites to the operations in the resulting query plan according
to the authorization profiles. Here, we present techniques for
including not only site assignment, but further user-specified
constraints directly in the query optimization process.

The authors of [3] consider a very different adversary: pas-
sive malware with access to the memory of a database server
for a limited period of time. The authors modify MySQL to
optimize queries over centralized, encrypted databases so as to
limit the number of tuples that are stored decrypted in memory
as well as the number of decryption keys stored in memory.
While their approach of modifying MySQL’s query optimizer
to include new optimization metrics is, indeed, similar to
that presented here, they focus strictly on protecting database
contents from a compromised system. We empower users to
express new optimization metrics for the queries they issue.

Private Information Retrieval (PIR) techniques allow a user
to retrieve some information form a remote database without
revealing to the database server specifically what information
was retrieved. Though the practical feasibility of PIR has been
called into question [19], it has received quite a bit of research
attention over the past several years [14], [16]. In [7], we
prove that the use cases for PIR are a subset of those that can
be expressed by the user via PASQL. Hence, PIR techniques
could be used to evaluate PASQL queries in the case that both
the client and server support PIR, and using PIR would be
the most efficient option. PAQO allows users to protect their
privacy in a locally-enforceable manner, however, and further
supports protecting any aspect of an SQL query.

VII. CONCLUSION

In this paper, we present PAQQO, a distributed query opti-
mizer with support for declarative, user-specified constraints
on the optimization process. Such constraints enable users to
express a variety of requirements and preferences ranging from
privacy aspects to data quality. To the best of our knowledge,
PAQO is the first query optimizer to include user-specified
requirements and preferences as optimization metrics. We have
thoroughly experimentally evaluated PAQO to establish the

overheads incurred on the optimization process by upholding
such constraints during query optimization.

In addition to the previously outlined future work, we are
working to expose internal optimizer state for the user to
constrain. This type of constraint would empower users to
inform PAQO that they would like some set of constraints
upheld, provided that doing so does not significantly impact
the estimated runtime of their query. We are also developing an
interactive query optimization interface that will make PASQL
constraints more user friendly by allowing users to graphically
select unacceptable execution site choices as they are realized
by the optimizer.
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