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Abstract-The declarative nature of SQL has traditionally 
been a major strength. Users simply state what information 
they are interested in, and the database management system 
determines the best plan for retrieving it. A consequence of 
this model is that should a user ever want to specify some 
aspect of how their queries are evaluated (e.g., a preference 
to read data from a specific replica, or a requirement for all 
joins to be performed by a single server), they are unable to. 
This can leave database administrators shoehorning evaluation 
preferences into database cost models. Further, for distributed 
database users, it can result in query evaluation plans that violate 
data handling best practices or the privacy of the user. To address 
such issues, we have developed a framework for declarative, 
user-specified constraints on the query optimization process and 
implemented it within PosgreSQL. Our Preference-Aware Query 
Optimizer (PAQO) upholds both strict requirements and partially 
ordered preferences that are issued alongside of the queries that 
it processes. In this paper, we present the design of PAQO and 
thoroughly evaluate its performance. 

I. INTRODUCTION 

The declarative nature of SQL has traditionally been a major 
boon to users querying relational databases. It allows users 
to avoid dealing with the complexities of query planning and 
optimization. They are able to simply specify what information 
they want and then allow the system to devise a plan for how to 
retrieve it. Unfortunately, this simplicity leaves users unable 
to control how their queries are evaluated when they need 
or want to. The growing popularity of distributed database 
systems makes this lack of control increasingly problematic. 

Consider a corporate user operating on data from several 
of her company's partners who is instructed not to reveal 
to either of the partners how she is combining their data. 
Traditionally, she would need to make separate queries to 
each partner database and then combine the results herself. 
Even if both servers were part of a distributed system this user 
could query, doing so might result in a condition for joining 
different partner data tables being revealed to one of the 
partner database servers. As another example, consider a user 
that issues queries containing sensitive or private information 
(e.g., queries containing medical patient names or illnesses) 

to a distributed database system. Issuing such queries via a 
traditional query optimizer could violate the user's privacy by 
revealing sensitive information to a server needed to resolve 
the query, but not fully trusted (e.g., an insurance company 
server, or a database server in a different hospital from the 
user). These cases are made even more problematic by the 
fact that these users would not have known how their queries 
were evaluated (they would only receive the results of their 
query). They would be left unaware if any problems occurred. 

We have developed a Preference-Aware Query Optimizer 
(PAQO) and implemented it within PostgreSQL [22]. PAQO 
allows users to specify declarative preferences on the query 
optimization process and resulting query plans. We refer to 
these declarative preferences as constraints. For example: 

• A doctor issuing a query over data stored at several 
different hospitals can constrain the optimizer to produce 
a plan that only executes operations involving patient 
names at the doctor's own hospital. 

• When issuing a query that operates on a relation repli­
cated across several different sites, users could state a 
preference for accessing this relation via the primary 
server while still allowing the optimizer to fall back to 
eventually-consistent replicas if needed. 

• A user could require that specific portions of her query 
are evaluated by different database servers to uphold 
separation of duty policies (e.g., any site that performs a 
scan on a relation it hosts should not perform any joins, 
as needed by our corporate user mentioned above). 

We have developed extensions to the SQL SELECT statement 
that allow users to express constraints as either requirements 
(constraints that must be upheld by any plan to evaluate 
their query), or preferences (constraints the user would prefer 
to be upheld but does not consider necessary) [7]. PAQO 
interprets constraints expressed through these SQL extensions 
and upholds them during the query optimization process. By 
doing so, PAQO ensures that user-specified constraints are 
upheld by plans for evaluating their corresponding queries at 
a minimal cost to the cost of evaluating the query. 
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SELECT · 

FROM Plants, Supplies, Polluted_Waters, Waterway_Maps 

WHERE supplies.type '" 'solvent' 

AND Supplies. name '" Polluted_Waters. pollutant 

AND Plants. id '" Supplies. plant_id 

AND Polluted_Waters. name '" Waterway_Haps. name 

AND Waterway-Maps . location '" Plants . location; 

----------- �='--<...,----1 Join. 1 
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Fig. 1 .  A visualization of how PAQO would process Alice's example query from Section II-A. Solid lines indicate Alice passing her query to PAQO, and 
PAQO distributing the partial evaluation plans to each server involved in the query. The final result of the query is passed back to Alice along the dashed line. 

Contributions In this work, we present the design of PAQO, 
and an extensive experimental evaluation. Specifically: 

• We have designed and implemented what is, to the best of 
our knowledge, the first query optimizer to leverage user 
requirements and preferences as optimization metrics. 

• We have developed and implemented a heuristic algo­
rithm for efficiently upholding complex user preferences 
during query optimization. 

• To demonstrate the utility of preference-aware optimiza­
tion, we have developed a PAQO prototype by extending 
the PostgreSQL query optimizer. This required extending 
PostgreSQL to be able to reason about distributed loca­
tions during optimization and cost modeling, making for 
a rich experimental platform. 

• We have performed and present a thorough experimental 
evaluation of PAQO's performance, showing that it incurs 
only modest overhead to optimization costs. 

Roadmap Sec. II presents the system model that PAQO 
operates in. Sec. III overviews our extensions to SQL. Sec. IV 
describes the design of PAQO, while Sec. V presents its 
experimental evaluation. Sec. VI overviews related work and 
Sec. VII concludes with our future work. 

II. SYSTEM M ODEL AND EXAMPLE 

In this section, we first describe an example that will be 
used throughout this work and our assumed system model. 

A. Running Example Scenario 

Alice is a low ranking corporate executive who wishes to 
investigate possible illegal pollution by her employer ManuCo. 
As a first step in this investigation, she wishes to join data 
stored by her employer with that of an environmental watch­
dog group (Pollution Watch) and a waterway mapping service 
(Mapper) to see if there is any correlation between where 
her company has plants holding industrial solvents and where 
those chemicals are appearing as waterway pollutants. To do 
so, she constructs a query over records describing hazardous 

solvents owned by ManuCo (stored in the Supplies table on 
ManuCo's Inventory database server), details of ManuCo's 
manufacturing plants (stored in the Plants table on ManuCo's 
Facilities server), water pollution data (stored in Pollution 
Watch's Polluted_Waters table), and waterway location data 
(stored in Mapper's Waterway_Maps table) as follows: 

SELECT * 
FROM Plants, Supplies, Polluted_Waters, Waterway_Maps 
WHERE Supplies.type � 'solvent' 

AND Supplies.name � Polluted_Waters.pollutant 
AND Plants.id � Supplies.plant_id 
AND Polluted_Waters.name � Waterway_Maps.name 
AND Waterway_Maps. location = Plants. location; 

In issuing this query, however, Alice would not want either 
ManuCo or Pollution Watch to become aware of the portion 
of her query that was issued to the other, or the join condition 
between the Supplies and Polluted_Waters tables. Such a 
revelation could easily cost her her job, either because her 
employer felt that she "knew too much," or because the 
watchdog group applied external pressure to the company after 
learning of the content of her query. 

B. System Model 

An illustration of the flow of processing Alice's query 
through PAQO is shown in Fig. I: Alice issues her query 
to PAQO, which optimizes and produces an evaluation plan. 
Each operation in this plan is designated to be evaluated by a 
specific database server in the system. PAQO splits the plan 
into the subplans to be evaluated by each server involved 
in resolving the query, and distributes these plans to their 
respective servers. The servers then evaluate their subplans, 
combine the intermediate results as needed, and return the 
final result to Alice via the machine running PAQO. 

System We assume that PAQO produces query plans to 
be issued over a system of distributed, autonomous, and 
heterogeneous database servers. These servers can be located 
anywhere on the Internet, though we assume that all entities in 
the system (i.e., users, PAQO instances, and database servers) 
are able to establish private and authenticated cOlmnunication 
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channels with one another. Messages sent along these chan­
nels should be protected from eavesdropping, modification, 
reordering, and replay (e.g., through the use of TLS [6]). We 
further assume that all relations in the system are protected by 
access controls that are specified and enforced by the database 
systems that host them (e.g., using the industry standard 
RBAC [9], [23]). As such, we assume that users only obtain 
the results that they are authorized to see. 

We assume that PAQO knows a priori all of the servers par­
ticipating in the system via an expanded catalog that includes 
cached metadata about these remote servers. In addition to 
listing participating servers, this catalog details the relations 
they make available, and metadata about these relations (e.g., 
cardinality, attribute selectivities). This relational metadata 
mirrors that stored in the catalogs of the remote servers 
so that PAQO can intelligently process distributed queries. 
The catalog is kept current with remote servers via periodic 
polling or pushed updates since on-demand polling could 
reveal aspects of a user's query to remote servers. 

Trust Model We assume that the user has access to a 
running copy of PAQO on either a personal machine or a 
trusted server. Throughout this work we will refer to the 
PAQO instance being used to optimize a given query as the 
querier. We assume the querier to be fully trusted by a user. 
We consider this assumption reasonable, not only due to the 
user's ability to run and maintain their own personal PAQO 
instance, but further because users must reveal their queries to 
some piece of software in order for them to be evaluated. 

Database servers in the system, on the other hand, we 
consider to be honest-but-curious passive adversaries. That 
is, database servers will correctly evaluate the query subplans 
assigned to them, and will return the correct results to the user, 
but in doing so, they will attempt to learn the query issued by 
the user. Techniques for verifiable computation can be used 
to ensure correct query evaluation [2]. Though we assume all 
servers to be honest-but-curious, users may trust subsets of 
the servers in the system to learn the makeup of their queries 
(e.g., patient names can be revealed to a doctor's own hospital 
severs). Our model allows individual users to decide which 
servers should be trusted to handle sensitive portions of their 
queries, and which should be treated as untrusted adversaries. 

Input to PAQO As shown in Fig. 1, processing distributed 
database query via PAQO begins with the user specifying 
her query to PAQO. In addition to supporting queries issued 
in SQL, PAQO is built to optimize queries specified in 
Preference-Aware SQL (PASQL). PASQL extends SQL to 
support specification of constraints on the optimization process 
and the query evaluation plans produced by that process. 
Specifically, it extends the SQL SELECT statement with two 
clauses, the REQUIRING and PREFERRING clauses. These clauses 
were first introduced in [7], and are discussed in Section III-B. 
Constraints expressed via these clauses can either be appended 
to individual queries as they are issued, or placed into profiles 
to be applied to all outgoing queries. PAQO is able to parse 
these extensions and ensure that the constraints they express 
are upheld during query optimization. 

It should be noted that PASQL support is only needed by 
PAQO instances. Database servers in the system can remain 
unmodified, as they need only evaluate query plans sent 
to them by a remote query optimizer. The REQUIRING and 
PREFERRING statements are only processed by the optimizer, 
where they are used as optimization metrics. As such, these 
constraints are locally-enforceable: they do not require server­
side support to be used. A user wishing to issue queries with 
PASQL constraints attached can simply install and set up a 
PAQO instance on her personal machine. 

III. CONSTRAINT LANGUAGE 

In this section, we describe the SQL extensions supported 
by PAQO [7]. 

A. Constraints 

Constraints are user requirements or preferences on the 
types of evaluation plans that PAQO produces to evaluate their 
queries. Traditionally, query performance (specifically the time 
required to return a result to the user) has been the primary 
metric used by query optimizers. As such, the fastest plan to 
evaluate a query was the one chosen. Constraints allow the user 
to ensure that other conditions are accounted for in addition to 
query run time. Through constraints, users can instruct PAQO 
to, instead of just emitting the fastest plan, emit the fastest 
plan that upholds their specified constraints. 

Our approach to constraint specification consists of two 
steps. First, a user identifies the portions of her query that she 
wishes to have specially handled during query optimization. 
This could be, e.g., pointing out which parts of the query 
contain patient names, which parts need to be evaluated by 
separate sites, or which tables should be specifically scanned 
from servers hosting the freshest copies. In Alice's case, she 
may want to identify all query plan operations involving the 
pollutant attribute from the Polluted_Waters table. 

Node descriptors are used to identify these portions of the 
query that should be specially handled. We consider query 
plans to be trees of nodes representing relational algebra 
operations. Each of these nodes is a ternary ( op, params, p ) , 
where op is the operation represented by the node, params 
represents the parameters to that operation, and p is the 
principal (e.g., a database server or the querier) assigned to 
evaluate the operation. We define node descriptors as a mirror 
to query tree nodes, also ternaries consisting of op, params, 
and p. Node descriptors are used to "match" query tree nodes 
that the user would like to have evaluated in a specific way. To 
accomplish this matching, a "*,, is used as a general wildcard. 
Setting op, params, or p to be "*,, in a node descriptor will 
cause that portion of the node descriptor to match any value in 
the corresponding portion of a query plan node. To construct a 
node descriptor matching any query tree node that operates on 
the attribute Polluted_Waters .pollutant, for example, Alice 
could instantiate op and p as "*,, while defining params as 
Polluted_Waters. pollutant as follows: 

(*, {(Polluted_Waters.pollutant)}, *) 
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Once a portion of the query plan has been identified via 
a node descriptor, the user can move on to the second step 
of authoring a constraint: creating a condition that must be 
upheld by query tree nodes matching the node descriptor. 
Node descriptors are tied to conditions through the use of 
free variables. The "@" character is used to mark the use of 
free variables in node descriptors. Like the wildcard marker, 
free variables will match any value in the corresponding 
position of a query tree node. Conditions are written over 
the potential values found in positions corresponding to free 
variables in matched query tree nodes. For example, to keep all 
operations on the attribute Polluted_Waters. pollutant from 
be executed by ManuCo's Inventory server, Alice would first 
include a free variable (@site) in the p position as follows: 

(*, {(Polluted_W aters.pollutant)}, @site) 

She could then ensure that any query plan node matching 
that node descriptor should not have the Inventory server as 
the value of p by specifying that @site <> Inventory. For 
the full syntax of node descriptors and constraints, see [7]. 

B. SQL Extensions 

Our extensions to the SQL SELECT statement combine node 
descriptors and conditions and pass them to PAQO. While 
we only demonstrate queries with either a REQUIRING or 
PREFERRING clause attached, these clauses can be combined 
by a user to reflect her needs for evaluating a single query. 

Required constraints take the following general form: 

REQUIRING condition 1 HOLD S OVER node descriptor 1 

[ AND condition 2 HOLD S OVER node descriptor 2 1 

Alice's need to keep ManuCo's Inventory server from 
evaluating operations on Polluted_Waters. pollutant could 
be added to her query using a REQUIRING clause as follows: 

SELECT * 
FROM Plants, Supplies, Polluted_Waters, Waterway_Maps 

WHERE Supplies.type � 'solvent' 

AND Polluted_Waters.pollutant � Supplies.name 

AND Plants.id � Supplies.plant_id 

AND Polluted_Waters.name = Waterway_Maps.name 

AND Waterway_Maps. location � Plants. location 

REQUIRING @p <> Inventory HOLDS OVER 

< *, {(Polluted_Waters .pollutant)}
' 

@p >; 

As another example, let us say that Alice would like her 
query to be evaluated even if none of her constraints can 
be upheld, and that she has the following preferences for 
evaluating her query: 

Pi Most importantly, 
should not evaluate 

the Inventory server 
operations on the attribute 

P2 

P3 

Polluted_Waters.pollutant 

The Inventory server should not evaluate operations 
on the attribute Polluted_Waters. name 

The Facilities server should not evaluate opera­
tions on the attribute Polluted_Waters. name 

In order to allow users to express complex and partially 
ordered hierarchies of constraints such as this, PASQL in­
cludes the PREFERRING clause. While the PREFERRING clause 

Ip11p21p31 , .. 'I P- 1 I'P""'21r--,1 'I P-'-1 l""-'I'p""' 31 
.. , 

1 P11 1 1 
+ 

1 1 P21 P31 , .. 

r-T1""'P2+1 'I 'I ":"1---r:1 p"-'31 
.. , 
1 1 1 1 

Fig. 2. A preference lattice with the most preferred sets of upheld preferences 
(Pi) at the top, and the least preferred at the bottom. 

is made up of the same basic constraint HOLD S OVER node 
descriptors building blocks as the REQUIRING clause, it makes 
use of an additional keyword to bind them together. Where the 
REQUIRING clause uses only AND to join individual constraints 
together, constraints in the PREFERRING clause can also be 
joined using CASCADE. This second keyword is needed to 
establish the priority of different constraints relative to one 
another to form partially ordered preference structures. While 
two constraints joined by AND are considered equally preferred, 
any constraint before a given CASCADE is considered more 
important by the optimizer than those listed after that CASCADE. 

Returning to our example, Alice could express her prefer­
ential constraints as follows: 

SELECT * 
FROM Plants, Supplies, Polluted_Waters, Waterway_Maps 

WHERE Supplies.type � 'solvent' 

AND Polluted_Waters.pollutant � Supplies.name 

AND Plants.id � Supplies.plant_id 

AND Polluted_Waters.name � Waterway_Maps.name 

AND Waterway_Maps.location � Plants. location 

PREFERRING @p <> Inventory HOLDS OVER 

< *, {(Polluted_Waters.pollutant)}, @p > -- PI 

CASCADE @p <> Inventory HOLDS OVER 

< *, {(Polluted_Waters.name)}, @p > -- P2 

AND @p <> Facilities HOLDS OVER 

< *, {(Polluted_Waters.name)}, @p >; -- P3 

This specification forms a partial order of preferred con­
straints. Specifically, keeping Pollution_Watch. pollutant 

from Inventory is the most important constraint to be con­
sidered, while the other two constraints should be given equal 
weight. Using this partial order, a ranking of query plans by 
the query constraints they uphold can be constructed as shown 
in Fig. 2. Of the most preferred plans found by PAQO during 
query optimization (i.e., the highest ranking plans), the one 
with the lowest cost will be the one emitted to evaluate the 
query. In Sec. IV-B, we will show how such a ranking is used 
by PAQO to efficiently generate highly-preferred evaluation 
plans for queries with an attached PREFERRING clause. 

IV. DE S IGN AND IMPLEMENTATION 

In this section, we first demonstrate how a strawman 
approach can lead to woefully inefficient query plans, and 
describe the design and implementation of PAQO in detail. 

A. A Strawman Approach 

An intuitive approach to support most user constraints on 
query evaluation plans would be to optimize the query using 
an off-the-shelf query optimizer, and then post-process the 
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Fig. 3 .  Candidate query plans for the example query i n  Sec. IV-A. 

resulting plan to enforce user constraints. [4] uses this general 
approach to ensure that their optimizer generates plans that 
uphold tuple-level access controls (as defined by the hosts of 
the relations involved in the query) during query evaluation. 
To apply this approach to uphold user-specified constraints, 
REQUIRING and PREFERRING clauses would first need to be 
stripped from incoming queries. The resulting pure SQL query 
would then be optimized and a plan without any execution 
locations would be produced. A second optimization phase 
would then be performed on this plan, applying execution 
locations to each operation according to the user-specified 
constraints in these REQUIRING and PREFERRING clauses. 

However, this disconnect between optimization and con­
straint consideration opens the door for the creation of un­
necessarily inefficient query plans. Consider this example: 

SELECT * FROM A, B, C 

WHERE A.fkey � B.pkey AND C.fkey � B.pkey; 

REQUIRING @p <> siteB HOLDS OVER < *, {(A. fkey)}, @p >; 

Here, a user wishes to join Tables A, B, and c (stored at 
siteA, siteB, and siteC, respectively) while ensuring that 
siteB does not evaluate any operations on A. fkey. We assume 
that A has a cardinality of 100 tuples, B 5,000,000 tuples, and 
C 200 tuples. We further assume that the joins to be performed 
link attributes in Tables A and C that are foreign keys to B. 

Given the pure SQL version of this query (everything 
preceding the REQUIRING clause) a traditional query optimizer 
(the first phase of a two-phase approach) would first join 
Tables A and B, as A is half the size of c, resulting in the query 
plan shown in Fig. 3(a). Post-processing this plan to support 
its attached requirement would disallow the join tables A and 
B at siteB. Hence, the second phase would logically choose 
siteA to evaluate this join (as in Fig. 3(b », though this comes 
at a great cost to query performance. Under this plan, all of B 

(5,000,000 tuples) must be shipped over the network to siteA, 

incurring a great cost to not only total query evaluation time, 
but also network bandwidth utilization. Further, this prevents 
all indices for Table B (assumedly) maintained at siteB from 
being used during the evaluation of this query. 

To compare the costs of different optimizer results, we 
assume that all three servers are capable of downloading 
tuples at 50 Mbitlsecond, that all three tables have a tuple 
width of 128 bytes, that scan operations read tuples at a rate 
of 120 microseconds/tuple, and that join comparisons take 
0.028 microseconds/tuple. I Further, we assume that operations 

'These values were gleaned from the experimental setup used in Sec. v. 

executed at different sites occur in parallel, and tuples are 
pipelined from one operation to the next as they are generated. 

Given these assumptions, the plan shown in Fig. 3(b) 
would take 711.66576 seconds to execute. Without considering 
constraints, the general plan from Fig. 3(a) could be evaluated 
in 0.02847 seconds. In addition to not having to ship all 
5,000,000 tuples of B across the network, this unconstrained 
plan can utilize indices on the primary key of B to quickly 
scan only the tuples needed in the process of joining A and B. 

Ideally, this preference-aware query would be evaluated 
using the plan shown in Fig. 3(c). By joining B and c first 
at siteB, the large network transfer shown in Fig. 3(b) can 
be avoided while upholding the user's specified constraint. 
Further, by joining B and c together at siteB, indices on B 

can again be utilized to speed up the join and avoid scanning 
all of table B. This approach takes 0.03038 seconds to evaluate. 
Such a plan can only be discovered, however, by considering 
constraints when determining the join order of a query plan. 

B. PAQO 

To avoid the shortcomings of two-phase optimization dis­
cussed above, we take synergistic approach to query optimiza­
tion, accounting for both user preference and query perfor­
mance during the query optimization process. We now outline 
the challenges inherent in adopting this approach, and then 
describe our implementation of PAQO within PostgreSQL's 
query optimizer. Finally, we highlight how these challenges 
were overcome in our implementation. 

1) Challenges in Implementing PAQO: 
Distributed Processing Support The optimizers of most 

open-source DBMSs (e.g., PosgreSQL, MySQL) have no 
support for optimizing queries issued across a system of 
autonomous, distributed, heterogeneous database servers as we 
assume in our system model. Hence, we had to adapt the 
optimizer to be able to reason about execution locations for 
individual operations in a query plan. 

Early Pruning Any subplan that violates a required con­
straint can not be used as the basis for any further plans as 
no plan can be emitted that violates a required user constraint. 
This makes user requirements natural pruning rules: any plan 
that violates one can be safely discarded as soon as it is 
realized. We needed to ensure that PAQO enforces this. 

Efficient Preference Support Producing optimally­
preferred plans can lead to an increase in the state space that 
need be explored during optimization. Consider the following: 
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Algorithm 1 PAQO's dynamic programming optimization 
pseudocode. 
Require: A parsed representation of a user query, Q 
Require: A list of requirements, R 
Require: A list of preferences, P 
1 :  subplans +- EMPTY_LIST 
2: subplans[l].add(EMPTY_LlST) 
3: for table in Q do 
4: subplans[l].add(scan plan for table) 

5: num_tabs = number of tables in Q 
6: for level = 2 to num_tabs do 
7:  subplans[level].add(EMPTY_L1ST) 
8 :  possibles +- ENuMERATE_JOINS(level, subplans) 
9 :  for plan in  possibles do 
10 :  for each possible site do 
1 1 :  set site to evaluate the root of plan 
1 2: if VIOLATES_REQUIREMENT(plan, R) then 
1 3 :  continue t o  next iteration 
14:  cHEcK_PREFERENcEs(plan, P) 
1 5 :  accepCnew = True 
16 :  for other in  subplans[level] do 
17 :  r> Compare prefs upheld by  plan and other 
1 8 :  i f  plan � other then 
19 :  subplans[level].remove(other) 
20: else if plan ::S other then 
2 1 :  accepCnew = False 
22: break 
23: else if  plan has a better sort order then 
24: if cost(plan) < cost(other) then 
25: subplans[level].remove(other) 

26: else if cost(plan) > cost(other) then 
27: accepCnew = False 
28: break 
29: if accept_new then 
30: subplans[level].add(plan) 

return the fastest plan in subplans[num_tabs] 

PREFERRING @P = Mapper HOLDS OVER 

< *, ({Polluted_Waters .pollutant)}, @p > 
AND @p <> @q HOLDS OVER 

< *, {(Polluted_Waters .pollutant)}, @p >, 
< *, {(Plants .location) } I @q >; 

If a join on Plants .location needs to be performed before 
a join on Polluted_Waters. pollutant, in order to ensure 
that both of constraints are upheld, PAQO would have to 
maintain multiple plans with differing execution sites for the 
join on Plants .location. PAQO would be unable to simply 
select the most efficient subplan as, if that subplan required 
the evaluation of the join on Plants.location at Mapper, 

maintaining only this subplan would cause the constraints to 
be unnecessarily violated. Unfortunately, maintaining multiple 
such subplans leads to an increase in the state space to be 
searched, and hence, and increase in query optimization time. 
We needed to efficiently produce highly preferred query plans, 
that is, support preferences and emit highly preferred plans 
while avoiding this increase in searchable state space. 

2) Implementation Overview: We will use Algorithms 1 
and 2 to describe our implementation of PAQO. Unless oth­
erwise noted, all line numbers refer to Algorithm l. To make 
our discussion concrete, our description below is based on an 
implementation of PAQO on PostgreSQL. It is not hard to see 
that it can be easily adapted to other database systems. 

Similar to most query optimizers, PAQO takes as input a 
parsed representation of a query and returns a plan to evaluate 
that query. PAQO also takes two additional inputs: a list of 
required constraints, and a list of lists of preferred constraints 

Algorithm 2 Pseudocode for the functions handling require­
ments and preferences. 
1 :  function vIOLATES]EQUIREMENT(plan, R) 
2:  for req in  R do 
3 :  fvar _vals +- EMPTY_LIST 
4: for node in plan do 
5 :  for descriptor attached t o  requirement do 
6: if node matches descriptor then 
7:  fvar _vals.add(values from node) 

8 :  for value in  fvar _vals do 
9 :  i f  condition of  req i s  False for value then 
10 :  return True return False 
1 1 :  end function 
12 :  function CHECK_PREFERENcEs(plan, P) 
1 3 :  prefs_upheld +- EMPTY_LIST 
14: for preLlevel in P do 
1 5 :  pref s_upheld[pref _level] +- EMPTY_BITMAP 
16 :  for pref in  pref _level do 
17 :  fvar _vals +- EMPTY_LIST 
1 8 :  for node i n  plan do 
19 :  for descriptor attached t o  preference do 
20: if node matches descriptor then 
2 1 :  fvar _vals.add(values from node) 

22: for value in fvar _vals do 
23: if condition of pref is True for value then 
24: pref s_upheld[pref _level].add(pref) 

25: Attach prefs_upheld to plan 
26: end function 

(where each inner list represents constraints in a different 
preference level). Note that either or both of these constraint 
lists may be empty. With these inputs, PAQO begins a bottom­
up dynamic programming approach to find an evaluation plan 
for the query that upholds its specified constraints. 

To begin, PAQO initializes nested lists that will be used 
to store the sub-plans that are realized over the course of 
query optimization (lines 1-2). These lists are seeded with 
plans for reading the data needed to evaluate the query under 
consideration (lines 3-4). PAQO then proceeds to iteratively 
find plans by joining increasing number of tables (lines 5-
32). Note that to conserve space, we abbreviate the process 
for discovering potential joins at each join level with a single 
function call at line 8 (ENUMERATE_JOINS ()) . 

For each of these join plans, we check the viability of 
a large number of potential evaluation sites to ensure that 
an efficient plan upholding user constraints can be found. 
Specifically, PAQO considers the querier, all sites hosting data 
required by the query, and further third-party sites offering to 
perform computation for queries as potential evaluation sites. 
To perform this site assignment, we augmented PostgreSQL's 
query plan data structures to hold additional state representing 
execution location. The entire site assignment process is 
represented in lines 10 and 1l. Note that only the root of 
a query plan is assigned a site at any given time. This is due 
to PAQO's bottom-up construction of query plans: each newly 
created node is added as the root of two previously-realized 
query plans that already have assigned evaluation sites. 

Once an evaluation site is assigned to the root node of a 
new plan, PAQO checks to ensure that this plan does not 
violate any required constraints (lines 12 and l3). To perform 
this check, PAQO iterates through all requirements attached 
to the query (lines 2-1 1  of Algorithm 2) finding all nodes 
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of the current query plan that match each requirement (lines 
line 4-7 of Algorithm 2). If a match is found (lines 6-7 of 
Algorithm 2), the appropriate free variable values are stored 
(e.g., if the descriptor that was just matched has a single free 
variable in place of p, the execution location of the matched 
query plan node is stored). The current requirement's condition 
is then checked using all of the matched free variable values 
stored in traversing the query plan (lines 8-10 of Algorithm 2). 
If a violation is found, the function returns, and the plan is 
pruned from further consideration (lines 12-l3). 

Assuming that the current query plan does not violate 
any required constraints, PAQO checks which preferences it 
upholds (line 14). Checking for preferred constraint adherence 
is done in a manner very similar to checking for required 
constraint adherence. The first key difference is that preferred 
constraints are divided into several levels of constraints that 
must be iterated through (lines 14 and 16 of Algorithm 2). 
When the PREFERRING clause is parsed, every time a CASCADE 

keyword is encountered, a new level of preferences is instan­
tiated and populated with all constraints that come before the 
next CASCADE (or the end of the query, in the case of the 
final level). Hence, the levels are ordered from most to least­
preferred. Checking preference adherence also differs from 
checking requirements in that the goal is not to find a single 
violation, but to record the constraints upheld in a list of 
bitmaps (lines 13-24 of Algorithm 2). These bitmaps are used 
to efficiently compare the relative preference of two plans. 

Once PAQO has checked which preferences a given plan 
upholds, it is compared with previously stored plans joining 
the same set of relations to see if either or both can be pruned 
(lines 16-32). Each plan is assumed to be kept until PAQO 
determines that it is dominated by another plan. As shown in 
lines 17-22, PAQO uses a heuristic that more preferred plans 
dominate lesser preferred. Comparisons of plan preference are 
shown on lines 18 and 20 via the � and :::S operators. For plans 
that are equally preferred, PAQO falls back to PostgreSQL's 
standard domination checks to see if either of the two should 
be discarded. Specifically, one of the plans will be discarded 
if it does not produce a different tuple sort order that could 
be used to the benefit of future operations and it is estimated 
to cost more than the other (lines 24-30). If no plan is found 
to dominate the current plan, it is stored for later use. 

Our assumption of distributed query evaluation necessitated 
a wide-ranging reworking of query plan cost estimation func­
tions. First and foremost, the cost of shipping data between 
sites needed to be accounted for. To do this, we extended 
PostgreSQL's calculation of costs to read data from disk, 
scaling the calculation up to network transfer speeds. To 
calculate disk read costs, PostgreSQL simply multiplies the 
number of tuples to be read by a disk read cost constant. 
We similarly defined a network transfer cost constant, scaled 
it appropriately relative to the disk read cost constant, and 
calculate network transfer costs by mUltiplying the number of 
tuples to be transferred by this constant. 

Using multiple execution sites further allows for parallel 
execution of query plans. While PostgreSQL is a threaded 

database server, each query is evaluated within a single thread, 
and hence, the cost estimation functions assume the total cost 
of evaluating a query to be the sum of the costs of evaluating 
all of its operations. We modified these functions to account for 
parallel execution of operations annotated for different sites. 
Further, we allow for operations to process streams of tuples 
from their children where appropriate (e.g., the smaller relation 
involved in a hash join must be realized and hashed before 
the join can begin, though the larger relation can be streamed, 
probing the join attribute of each tuple as it is received). 

Once all potential n-way joins have been processed, only the 
most preferred plans will remain due to our heuristic. PAQO 
then returns the n-way join plan with the lowest cost. 

3) Challenges Revisited: 
Distributed Processing Support By including evaluation 

location state in optimization data structures and rewriting 
PostgreSQL's cost estimation functions to account for paral­
lelizable and distributed query evaluation, we enable PAQO to 
optimize queries over a distributed set of database servers. 

Early Pruning As soon as an execution location is assigned 
to a new operation (and hence a new subplan), the plan 
rooted by that operation is checked for adherence to all 
user requirements. Any plans that fail to pass this check are 
immediately pruned from the search space. 

Efficient Preference Support By maintaining only the 
most preferred plans at each join level, we limit the number 
of plans maintained over the course of optimization. This 
heuristic enables us to avoid the state space blowup discussed 
in Sec. IV-Bl, and efficiently support user preferences. 

V. EXPERIMENTAL EVALUATION 

In this section, we begin by describing our experimental 
setup, and then present the results of several experiments 
evaluating the performance of PAQO. 

A. General Experimental Setup 

All of the experiments presented in this section were con­
ducted on a single machine running Arch Linux with an Intel 
i5-2500 processor, 16GB of RAM, a 2TB hard disk dedicated 
to database tables and configuration files, and a 500GB hard 
disk to hold everything else on the machine (e.g., OS files 
and database binaries). For experiments comparing PAQO's 
performance to PostgreSQL's standard optimizer, the optimizer 
from PostgreSQL version 9. 1. 1 (which serves as the basis 
for PAQO) was used. Optimization times, memory utilization 
statistics, and query plan makeups are gathered from logs 
produced by PAQO and PostgreSQL during optimization. Due 
to the difficulties of gathering accurate measurements of Post­
greSQL's memory usage (see [ 1], [ 15]), the memory utilization 
statistics presented here were gathered via modifications to 
PostgreSQL's internal memory allocation functions. Hence, 
they precisely show the amount of memory allocated by the 
optimizer to evaluate the presented queries. 

As most of our experiments optimize for data stored at 
multiple sites, a distributed database system was simulated 
within the PostgreSQL DBMS. Each relation used by PAQO 

430 Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:37:03 UTC from IEEE Xplore.  Restrictions apply. 



101 Baseline 0 timization Time: CHAIN 
H PAQO single stte 

10' Baseline 0 timization Time: STAR 
H PAQO single site 

10' Baseline 0 timization Time: CLIQUE 
H PAQO single site 

f -; Standard PostgreSQL t- -; Standard PostgreSQL f -; Standard PostgreSQL 

OJ 
... 

! 
..... 
'II C 
8 � 101 

i .0' 

.� ,���,--�.--�,--�,-.,��� 
Tables In Query 

10" ]�--;-----.,--7.--�, --,�--;,.-----�-! 10" ]���,--�.--�, --�, -.,��� 
Tables in Query Tables In Query 

(a) CHAIN Optimization Time (b) STAR Optimization Time (c) CLIQUE Optimization Time 

.0' rr.=�Ba� s�e� lIn� e=M;o e� m= o�� u�se", :---,C�H-", A�IN� 
H PAQO single stte 

'0' rr.=-;oB� as§e� lI�ne�M=:= em�0o;-'u�se",, :'--,-".ST,-,A:o:- R'-----, 
H PAQO single site 

f -+ Standard PostgreSQL 

... 
.. 

! _-t-

.0' 

'0' 

.. .. �10' 
II 

'0' 

� -+ Standard PostgreSQL 

. -
.. .. 

.0' 

� 107 
II 

'0' 

... 

... ,��-.,� .. --.,--.,-.,.-.. � 
Tables in Query 

10· ]��-.,--•• ---;-, -----,,0--.,.-----..-----1 
Tables in Query 

... ,��-.,� .. --.,--.,-.,.-.. � 
Tables in Query 

(d) CHAIN Memory Usage (e) STAR Memory Usage (f) CLIQUE Memory Usage 

Fig. 4. Results of comparing the optimization times and memory usages of PAQO and the optimizer from PostgreSQL 

is assumed to be stored at a single site in the system, and 
this site is annotated as the execution location of all scans 
of the relation. We treat PostgreSQL's system catalog as the 
catalog of metadata from remote databases maintained by 
PAQO. Because we aim only to evaluate the performance of 
our optimizer, this simulation does not affect the results we 
present here. Optimization occurs at a single site with access to 
a single metadata catalog before distributed query evaluation. 

B. Experiments 

We first demonstrate the negligible effects of our code on 
the optimization of queries without constraints by comparing 
PAQO with PostgreSQL' standard optimizer. From there, we 
demonstrate the effect that requirements and preferences have 
on query optimization performance with both randomly gen­
erated queries, and a case study using the example scenario 
from Sec. II-A. Finally, we examine the plans generated by 
the case study queries to show that PAQO is not only efficient, 
but also makes correct choices during optimization. 

1) Comparison to PostgreSQL: These experiments were 
performed on randomly generated queries over randomly 
generated relations following the experimental model used 
in [l3], [ 18], [20]. The relations over which these queries 
are defined are sized according to the distribution shown in 
Table I, and composed of attributes whose size follows the 
distribution shown in Table II. The experiments were run on 
queries over an increasing number of relations (from three 
to eleven). Queries were generated according to three join 
topologies: CHAIN, STAR, and CLIQUE. Each query was run 
once to warm caches, and again to be averaged into the data 

TABLE I 
DiSTRiBUTIONS USED TO GENERATE RELATION CARDiNALITIES. 

Class 
S 
M 
L 
XL 

Relation Size (Cardinality) 
10 - 1 ,000 
1 ,000 - 1 0,000 
1 0,000 - 1 ,000,000 
1 ,000,000 - 1 00,000,000 

TABLE II 

Distribution 
15% 
30% 
35% 
20% 

DiSTRiBUTIONS USED TO GENERATE RELATION SCHEMAS. 

Class 
S 
M 
L 
XL 

Attribute Domain Size (Bytes) 
2 - 1 0  
1 0  - 1 00 
1 00 - 500 
500 - 1 ,000 

Distribution 
5% 
50% 
30% 
15% 

point value. Each of these data points represents the average 
of 20 runs of different randomly generated queries. 

For a fair comparison, PAQO assumes that all relations are 
stored at a single site. As such, all points where multiple 
execution locations must be considered are effectively avoided. 
Further, in order to be processed by PostgreSQL's standard 
optimizer, none of these queries had any constraints attached. 
Figs. 4(a), 4(b), and 4(c) show the optimization time (in mil­
liseconds) required by queries of CHAIN, STAR, or CLIQUE 
topology (respectively) while Figs. 4(d), 4(e), and 4(f) show 
the memory (in bytes) required to optimize these queries. 

These graphs clearly demonstrate the negligible overhead 
that PAQO incurs on the optimization process. With this 
data, we establish that any increases in optimization time and 
memory usage shown in later experiments are a result of site 
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Fig. 5 .  

Fig. 6 .  

Optimization times of queries with varying shapes of constraints. 

Memory utilization by queries with varying shapes of constraints. 

assignment and constraint processing. Our implementation of 
PAQO does not inherently necessitate an increase in optimiza­
tion cost, it only requires more time and space to perform 
additional processing that PostgreSQL cannot provide. 

2) Processing Constraints: To demonstrate the effects of 
constraint processing on optimization time and memory uti­
lization, we randomly generated a query over six relations 
and nine constraints on the optimization of that query. This 
query is issued over the same randomly generated relations 
used in the previous experiments. Here, though, the relations 
are considered to be stored at different sites, allowing for 
meaningful use of constraints. We optimized this query by 
itself and with the generated constraints attached to produce 
the graphs displayed in Figs. 5 and 6. Each data point is the 
average of five runs of this query with a given number of 
constraints attached (six runs were performed in total for each 
data point, one to warm caches and the five to gather data). 
As the similarities across topologies shown in Fig. 4 are also 
displayed in this experiment, only the STAR topology results 
are presented here in the interest of space. 

In these graphs, the Baseline curve shows the performance 
of PAQO when given the query without any constraints. The 
Required curve shows the results of adding each of the nine 
constraints as a requirement. The rest of the graphs show the 
results of adding these constraints as preferences according to 
different shapes. Different shapes were created by varying the 
use of the AND and CASCADE keywords to for each additional 
constraint. Fig. 7 illustrates the shapes used in this experiment. 

It should be noted that the graph of required constraints 
shows no data for any more than five constraints because the 

Fig. 7. A visualization of the different preference shapes used in Sec. V-B2's  
experiments (clockwise from the left): Vertical. Horizontal. Diamond. Inverted 
Pyramid and Pyramid. Each node represents a constraint. Equally preferred 
nodes Goined by an AND) are shown on the same level. while nodes higher in 
a given structure are considered more preferred than those lower (i.e .• each 
change in level represents the use of a CASCADE. 

TABLE III 
REQUIREMENTS APPLIED TO ALlCE ' S  QUERY FROM SEC. II-A AS PART OF 

OUR CASE STUDY EVALUATION 

@p <>Inventory HOLDS OVER 
( *. {(Polluted_Waters.pollutant)}. @p ) 

2 @p < > Pollution_Watch HOLDS OVER 
( *. {(Waterway_Maps. name)}. @p ) 

3 @p <>@q HOLDS OVER 
( *. {(Polluted_Waters.name)}. @p ). ( *. {(Plants.location)}. @q ) 

4 @p <>Facilities HOLDS OVER 
( *. {(Polluted_Waters.name)}. @p ) 

5 @p <>Inventory HOLDS OVER 
( *. {(Polluted_Waters.name)}. @p ) 

6 @p = Querier HOLDS OVER 
( *. {(Polluted_Waters.name)}. @p ) 

7 @p = Querier HOLDS OVER 
(join. *. @p ); 

sixth constraint generated conflicts with a previous constraint, 
and hence it is impossible for PAQO to generate query plan 
that upholds all user-specified requirements. Note that this con­
flict is only an attribute of the specific constraints generated, 
this is not an inherent limit in the number of requirements 
that can be applied to a given query. As these constraints are 
randomly generated, however, there is an increasing probabil­
ity of conflict between required constraints as the number of 
random constraints applied to a query increases. The inclusion 
of conflicting constraints in this experiment further showcases 
PAQO's ability to handle conflicting preferred constraints. 

While this experiment does confirm the expectation that 
optimization cost increases with the number of constraints at­
tached to a query, more importantly, it shows that optimization 
time and space requirements increase linearly with the number 
of constraints. Hence, while an overhead is incurred to account 
for user constraints during query optimization, this overhead 
scales well as the number of constraints specified increases. 

3) Case Study Performance: We have further run a series 
of experiments evaluating the performance of Alice's query 
from Sec. II-A with the requirements listed in Table III. The 
results of these experiments are shown in Figs. 8 and 9. 
The constraints from Table III are applied one at a time as 
requirements, and each data point is the average of five runs 
(preceded by a cache-warming run). Fig. 8 further presents the 
optimization time needed to process each requirement alone in 
addition to combining it with previous requirements (i.e., the 
results for optimizing both Alice's query with just the second 
requirement attach and with the first and second requirements 

432 Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:37:03 UTC from IEEE Xplore.  Restrictions apply. 



- " 
VI 

! 
VI •• ... c 
o 
� lS 
is 
i ,. 

��-7--�.--�,�-.�-7.--�� 
Number of Constraints 

Fig. 8. Optimization times of Alice's query with a varying number of 
requirements .  

;: 

18 ..... riT�=.=
A
�

I
=
l
c=e=i

M=e=m'i'0::..z...:u�s�e'----__ , 
r -f Single Constraints 

1600000 H Multiple Constraints 

aooooo 

� 1000000 
.. 

...... 
"-- - - - - - - - - � "  

...... 
20000°0 2 ] . ,  

Number of Constraints 

Fig. 9. Memory utilization of Alice 's query with a varying number of 
requirements .  

attached are both presented, as are the results for the third 
and the first, second, and third, etc.). The sixth requirement, 
limiting all joins on Polluted_Waters. name to be evaluated by 
the Querier is highly restrictive. With this constraint, PAQO 
is able to prune large portions of the optimization search 
space (i.e., all plans with another site annotated to evaluate 
an operation on Polluted_Waters. name), resulting in a clear 
decrease in optimization time. 

4) Query Plan Cost and Correctness: As the queries and 
requirements used in previous experiments had no semantic 
meaning, comparing the tradeoff between constraint adherence 
and the estimated cost of executing a query plan similarly 
would have no real meaning. Hence, we also utilize this 
case study to demonstrate the cost and correctness of plans 
generated by PAQO. PAQO was similarly demonstrated in [8]. 

The query plans presented in this section are a direct 
representation of the plans produced by PAQO. As such, the 
nodes in these query plans display the method for evaluating 
the relational algebra operation needed as opposed to just 
the general relational algebra operation (e.g., sequential scan 
as opposed to scan, hash join as opposed to join). The first 
line of each node lists the method and the estimated cost of 
evaluating the entire subtree rooted at that node (hence the cost 
of the entire plan is displayed in the root node). It should be 
noted that these costs are given in PostgreSQL's computational 
units. The real world time required to evaluated these plans 
will depend on the computation power of the servers they 
are evaluated by, the speeds of network connections between 
these servers, etc. The middle lines of each node represent the 

Fig. 10 .  A plan to evaluate Alice 's base query. 

Fig. 1 1 .  A plan to evaluate Alice's query with requirement 1 .  

parameters to the operation while the final line indicates the 
execution location assigned to that operation. Note that PAQO 
will choose to evaluate some operations together by combining 
select and project operations with other operations. This is a 
performance improving technique that saves making an extra 
pass over the intermediate relation. As a final note, network 
transfers are indicated via annotations to the right of edges 
linking two operations to be performed at different sites. 

First, we show the result of optimizing Alice's base query 
(from Sec. II-A), in Fig. lO. The first requirement from Ta­
ble III requires that operations on Polluted_Water. pollutant 

are hidden from the Inventory server. To accommodate this, 
PAQO chooses to evaluate the root of the query plan at 
the Querier as shown in Fig. 11. This plan has a higher 
estimated cost, though that is exactly why it was not selected 
as the plan to evaluate Alice's query without constraints. With 
this requirement, Alice is adding an optimization metric that 
is considered more important than the otherwise assumed 
"lowest cost" metric. As such, this tradeoff between constraint 
adherence and plan cost is expected. As future work, we will 
develop constraints that allow users to bound the overheads 
incurred by upholding their constraints (see Sec. V-C). 

Applying both requirements 1 and 2 similarly shifts the 
evaluation of the join on the condition waterway_maps. name 

= polluted_waters.name from Pollution_Watch to Mapper 

as shown in Fig. 12. It is interesting to note that, though 
this requires another large network transfer of tuples from 
Pollution_Watch to Mapper, this transfer can be performed 
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Fig. 12 .  A plan to evaluate Alice 's query with requirements I and 2.  

in parallel with the transfer from Inventory to the Querier, 

and hence has only a small impact on the overall plan cost. 

Requirement 3 explicitly disallows Mapper from performing 
both of the operations that it does in Fig. 12, and hence the 
evaluation of the join on the condition waterway_maps. name 

= polluted_waters. name is shifted again to the Facilities 

server. Requirements 4 and 5 similarly adjust the site selected 
to evaluate this join to the Inventory server and a third party 
computation server, before requirement 6 finally forces it to 
be evaluated by the Querier as well. 

The inclusion of requirement 7 creates a conflict among the 
requirements. If all joins are to be performed by the Querier, 

requirement 3 cannot be upheld as the attributes it covers are 
both used as join conditions. Given this query, PAQO returns 
an error informing the user that it is unable to produce an 
evaluation plan for the supplied query. 

C. Discussion and Future Work 

Requirements as Pruning Rules While PAQO incurs a 
negligible overhead on plans with no constraints attached, 
optimization time of constrained queries increases with the 
number of constraints applied to the queries. As requirements 
are used as additional pruning rules, queries with larger num­
bers of requirements should be able to use them to decrease the 
number of potential plans created during query optimization, 
and hence, decrease optimization time. Our selection of ran­
domly generated constraints (from the experiments presented 
in Sec. V-B2), by their random nature, rarely affected the query 
evaluation plans generated by PAQO (e.g., they prohibit joins 
at sites that were not selected to perform joins anyway as there 
was another site that could perform joins more efficiently). 
As such, the optimization time results from Sec. V-B2 serve 
as a worst-case experimental result. Lacking sufficient actual 
pruning, these queries are subject to the additional overheads 
imposed by constraint checking while achieving only minimal 
benefits. While we were able to clearly show how the use of 
requirements as pruning rules can reduce optimization time 
and overcome constraint checking overhead in Sec. V-B3, 
not all users will be able to glean those benefits (e.g., users 
who issue queries with only preferences attached). To address 
this, we will be investigating smarter approaches to constraint 
checking and constraint pruning as future work. 

Effect of Preference Shape In contrast to requirements, 
preferences have two factors that could contribute to their com­
plexity: the number of preferences attached and their shape. 
Fig. 5, however, clearly shows that shape has a negligible 
effect on optimization time. This is an intuitive conclusion, as 
in checking preference adherence, all preferences are iterated 
over without regard to the ranking relative to one another 
as shown in Algorithm 2. The shape of the ranking of 
preferences attached to a query only affects the comparison 
of the relative preference of two plans in that each CASCADE 

keyword used in a PREFERRING clause necessitates the use of 
another bitmap to store the preferences upheld by a given plan. 
This effect is negligible, however, due to the efficiency of 
bitmap comparisons and the fact that comparisons can stop as 
soon as a difference in the preferences upheld at a given level 
is found (i.e., an increased number of CASCADES does not have 
as much of an impact on the average case plan comparison 
times as it does on the worst case). 

Efficient Preference Support Fig. 5 further shows PAQO 
is able to optimize queries with attached preferences with 
performance competitive to queries with the same number 
of requirements. Recall that, though the cost of constraint 
checking takes its toll on optimization with requirements, they 
are used as pruning rules when exploring the optimization 
search space. Because of this, additional requirements can 
only decrease the size of the search space that must be 
explored during query optimization. By showing that PAQO's 
optimization of queries with preferences takes little more time 
than for those with requirements, we can validate our intuition 
that our use of a heuristic for emitting highly-preferred query 
plans limits the number of query plans maintained duration 
optimization, and hence, maintains lower optimization times. 
This does lead us to question what tradeoffs in optimization 
time would be required to support better heuristics. We will 
be investigating such tradeofl's as future work on PAQO. 

VI. RELATED W ORK 

Preference SQL Our support for preferred constraints 
closely mirrors that of [ 11] in both the use of partially­
ordered preference structures, and the syntax of the SQL 
extensions used to express them. Here, these techniques are 
used to drastically different effect: we use user preferences as 
optimization metrics, while in [ 11], preferences are used to 
order query result tuples from most to least-interesting. 

Distributed Query Processing The optimization and pro­
cessing of queries over distributed database systems has been 
an area of active research for several decades (for a survey, 
see [ 12]). There are two main techniques for evaluating queries 
over distributed database systems: data shipping (transferring 
the data being queried to the querier for processing) and query 
shipping (having servers hosting data process it as needed 
to evaluate the query and return the result to the querier). 
The combination of these techniques is known as hybrid ship­
ping [10]. While previous work on distributed database query 
optimization has focused primarily on decreasing optimization 
time and improving the plans generated [5], [18], [21], here, 
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we present the first distributed query optimizer to include user­
specified constraints as additional optimization metrics. 

While query hints [17] also allow users to guide the query 
optimization process, they are orthogonal and complimentary 
to query constraints. Hints specify the use of certain physical 
operators for relational operations (e.g., the use of hash join 
for evaluating a certain condition). We allow users to constrain 
the evaluation site of any portion of their SQL query. 

Authorization Enforcement in Database Systems In [4], 
the authors propose a theoretical framework for optimizing 
distributed database queries such that when evaluating the 
resulting plan, tuples are only processed by sites that are 
explicitly allowed to see them according to authorizations 
specified as profiles for each relation in the system. To enact 
these controls, the authors utilize the strawman two-phase 
optimization approach presented in IV-A. They first optimize 
the query without regard to data distribution, and then assign 
sites to the operations in the resulting query plan according 
to the authorization profiles. Here, we present techniques for 
including not only site assignment, but further user-specified 
constraints directly in the query optimization process. 

The authors of [3] consider a very different adversary: pas­
sive mal ware with access to the memory of a database server 
for a limited period of time. The authors modify MySQL to 
optimize queries over centralized, encrypted databases so as to 
limit the number of tuples that are stored decrypted in memory 
as well as the number of decryption keys stored in memory. 
While their approach of modifying MySQL's query optimizer 
to include new optimization metrics is, indeed, similar to 
that presented here, they focus strictly on protecting database 
contents from a compromised system. We empower users to 
express new optimization metrics for the queries they issue. 

Private Information Retrieval (PIR) techniques allow a user 
to retrieve some information form a remote database without 
revealing to the database server specifically what information 
was retrieved. Though the practical feasibility of PIR has been 
called into question [ 19], it has received quite a bit of research 
attention over the past several years [ 14], [16]. In [7], we 
prove that the use cases for PIR are a subset of those that can 
be expressed by the user via PASQL. Hence, PIR techniques 
could be used to evaluate PASQL queries in the case that both 
the client and server support PIR, and using PIR would be 
the most efficient option. PAQO allows users to protect their 
privacy in a locally-enforceable manner, however, and further 
supports protecting any aspect of an SQL query. 

VII. C ONCLUSION 

In this paper, we present PAQO, a distributed query opti­
mizer with support for declarative, user-specified constraints 
on the optimization process. Such constraints enable users to 
express a variety of requirements and preferences ranging from 
privacy aspects to data quality. To the best of our knowledge, 
PAQO is the first query optimizer to include user-specified 
requirements and preferences as optimization metrics. We have 
thoroughly experimentally evaluated PAQO to establish the 

overheads incurred on the optimization process by upholding 
such constraints during query optimization. 

In addition to the previously outlined future work, we are 
working to expose internal optimizer state for the user to 
constrain. This type of constraint would empower users to 
inform PAQO that they would like some set of constraints 
upheld, provided that doing so does not significantly impact 
the estimated runtime of their query. We are also developing an 
interactive query optimization interface that will make PASQL 
constraints more user friendly by allowing users to graphically 
select unacceptable execution site choices as they are realized 
by the optimizer. 
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