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Big Data and
Its Technical
Challenges

IN A BROAD range of application areas, data is being
collected at an unprecedented scale. Decisions

that previously were based on guesswork, or on
painstakingly handcrafted models of reality, can now
be made using data-driven mathematical models.
Such Big Data analysis now drives nearly every

aspect of society, including mobile services, retail,
manufacturing, financial services, life sciences, and
physical sciences.

As an example, consider scientific research, which
has been revolutionized by Big Data."'* The Sloan
Digital Sky Survey* has transformed astronomy from
a field where taking pictures of the sky was a large part
of an astronomer’s job to one where the pictures are
already in a database, and the astronomer’s task is
to find interesting objects and phenomena using the
database. In the biological sciences, there is now a
well-established tradition of depositing scientific data
into a public repository, and also of creating public
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databases for use by other scientists.
Furthermore, as technology advances,
particularly with the advent of Next
Generation Sequencing (NGS), the size
and number of experimental datasets
available is increasing exponentially.'?

The growth rate of the output of cur-
rent NGS methods in terms of the raw
sequence data produced by a single
NGS machine is shown in Figure 1,
along with the performance increase
for the SPECint CPU benchmark.
Clearly, the NGS sequence data growth
far outstrips the performance gains
offered by Moore’s Law for single-
threaded applications (here, SPECint).
Note the sequence data size in Figure 1
is the output of analyzing the raw im-
ages that are actually produced by the
NGS instruments. The size of these raw
image datasets themselves is so large
(many TBs per lab per day) that it is im-
practical today to even consider storing
them. Rather, these images are ana-
lyzed on the fly to produce sequence
data, which is then retained.

Big Data has the potential to revolu-
tionize much more than just research.
Google’s work on Google File System
and MapReduce, and subsequent open
source work on systems like Hadoop,
have led to arguably the most exten-
sive development and adoption of Big
Data technologies, led by companies
focused on the Web, such as Facebook,

key insights

m Big Data is revolutionizing all aspects
of our lives ranging from enterprises to
consumers, from science to government.

B Creating value from Big Data is a multi-
step process: Acquisition, information
extraction and cleaning, data integration,
modeling and analysis, and interpretation
and deployment. Many discussions of
Big Data focus on only one or two steps,
ignoring the rest.

B Research challenges abound, ranging
from heterogeneity of data, inconsistency
and incompleteness, timeliness, privacy,
visualization, and collaboration, to the
tools ecosystem around Big Data.

B Many case studies show there are huge
rewards waiting for those who use Big
Data correctly.
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LinkedIn, Microsoft, Quantcast, Twit-
ter, and Yahoo!. They have become
the indispensable foundation for ap-
plications ranging from Web search to
content recommendation and compu-
tational advertising. There have been
persuasive cases made for the value of
Big Data for healthcare (through home-
based continuous monitoring and
through integration across providers),’®
urban planning (through fusion of
high-fidelity geographical data), intel-
ligent transportation (through analysis
and visualization of live and detailed
road network data), environmental
modeling (through sensor networks
ubiquitously collecting data),® energy
saving (through unveiling patterns of
use), smart materials (through the new

materials genome initiative'¥), machine

translation between natural languages
(through analysis of large corpora), ed-
ucation (particularly with online cours-
es),? computational social sciences (a
new methodology growing fast in popu-
larity because of the dramatically low-
ered cost of obtaining data)," systemic
risk analysis in finance (through inte-
grated analysis of a web of contracts to
find dependencies between financial
entities),® homeland security (through
analysis of social networks and finan-
cial transactions of possible terrorists),
computer security (through analysis of
logged events, known as Security In-
formation and Event Management, or
SIEM), and so on.

In 2010, enterprises and users
stored more than 13 exabytes of new
data; this is over 50,000 times the data

Figure 1. Next-gen sequence data size compared to SPECint.
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Figure 2. The Big Data analysis pipeline. Major steps in the analysis of Big Data are shown

in the top half of the figure. Note the possible
of the figure shows Big Data characteristics that make these steps challenging.

feedback loops at all stages. The bottom half
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in the Library of Congress. The poten-
tial value of global personal location
data is estimated to be $700 billion to
end users, and it can result in an up
to 50% decrease in product develop-
ment and assembly costs, according to
a recent McKinsey report.'” McKinsey
predicts an equally great effect of Big
Data in employment, where 140,000~
190,000 workers with “deep analytical”
experience will be needed in the U.S.;
furthermore, 1.5 million managers will
need to become data-literate. Not sur-
prisingly, the U.S. President’s Council
of Advisors on Science and Technology
recently issued a report on Networking
and IT R&D?* identified Big Data as a
“research frontier” that can “acceler-
ate progress across a broad range of
priorities.” Even popular news media
now appreciates the value of Big Data
as evidenced by coverage in the Econo-
mist,” the New York Times,>'® National
Public Radio,"** and Forbes magazine.’

While the potential benefits of Big
Data are real and significant, and some
initial successes have already been
achieved (such as the Sloan Digital Sky
Survey), there remain many technical
challenges that must be addressed to
fully realize this potential. The sheer
size of the data, of course, is a major
challenge, and is the one most easily
recognized. However, there are others.
Industry analysis companies like to
point out there are challenges not just
in Volume, but also in Variety and Veloc-
ity,'" and that companies should not
focus on just the first of these. Variety
refers to heterogeneity of data types,
representation, and semantic interpre-
tation. Velocity denotes both the rate at
which data arrive and the time frame in
which they must be acted upon. While
these three are important, this short
list fails to include additional impor-
tant requirements. Several additions
have been proposed by various parties,
such as Veracity. Other concerns, such
as privacy and usability, still remain.

The analysis of Big Data is an itera-
tive process, each with its own challeng-
es, that involves many distinct phases
as shown in Figure 2. Here, we consider
the end-to-end Big Data life cycle.

Phases in the Big Data Life Cycle

Many people unfortunately focus just
on the analysis/modeling step—while
that step is crucial, it is of little use



without the other phases of the data
analysis pipeline. For example, we
must approach the question of what
data to record from the perspective
that data is valuable, potentially in
ways we cannot fully anticipate, and
develop ways to derive value from data
that is imperfectly and incompletely
captured. Doing so raises the need to
track provenance and to handle uncer-
tainty and error. As another example,
when the same information is repre-
sented in repetitive and overlapping
fashion, it allows us to bring statisti-
cal techniques to bear on challenges
such as data integration and entity/re-
lationship extraction. This is likely to
be a key to successfully leveraging data
that is drawn from multiple sources
(for example, related experiments re-
ported by different labs, crowdsourced
traffic information, data about a given
domain such as entertainment, culled
from different websites). These topics
are crucial to success, and yet rarely
mentioned in the same breath as
Big Data. Even in the analysis phase,
which has received much attention,
there are poorly understood complexi-
ties in the context of multi-tenanted
clusters where several users’ programs
run concurrently.

One place to do it all. The most
important shift may well be that
increasingly, the same data goes through
all five stages of the life cycle, and it is
no longer acceptable to have silos that

address each stage. How do we provide
an integrated set of data management
and analysis capabilities that support
all five stages adequately?

In the rest of this article, we begin
by considering the five stages in the Big
Data pipeline, along with challenges
specific to each stage. We also present
a case study (see sidebar) as an exam-
ple of the issues that arise in the dif-
ferent stages. Here, we discuss the six
crosscutting challenges.

Data acquisition. Big Data does
not arise in a vacuum: it is a record of
some underlying activity of interest.
For example, consider our ability to
sense and observe the world around
us, from the heart rate of an elderly
citizen, to the presence of toxins in the
air we breathe, to logs of user-activity
on a website or event-logs in a software

system. Sensors, simulations and sci-
entific experiments can produce large
volumes of data today. For example,
the planned square kilometer array
telescope will produce up to one mil-
lion terabytes of raw data per day.

Pushing summarization to edge
devices. What we can filter and compress
is often tied to the intended analysis in
intimate ways, and a fixed filtering strategy
does not work well. Can we provide flexible

complex event processing frameworks that
can optimize data acquisition by pushing
down permissible filtering and compression
criteria based on the user’s analysis to edge
devices where the data is generated?

Much of this data can be filtered
and compressed by orders of magni-
tude without compromising our ability
to reason about the underlying activity
of interest. One challenge is to define
these “on-line” filters in such a way
they do not discard useful information,
since the raw data is often too volumi-
nous to even allow the option of storing
it all. For example, the data collected
by sensors most often are spatially and
temporally correlated (such as traffic
sensors on the same road segment).
Suppose one sensor reading differs
substantially from the rest. This is like-
ly to be due to the sensor being faulty,
but how can we be sure it is not of real
significance?

Furthermore, loading of large da-
tasets is often a challenge, especially
when combined with on-line filtering
and data reduction, and we need ef-
ficient incremental ingestion tech-
niques. These might not be enough
for many applications, and effective in-
situ processing has to be designed.

Information extraction and clean-
ing. Frequently, the information col-
lected will not be in a format ready for
analysis. For example, consider the col-
lection of electronic health records in a
hospital, comprised of transcribed dic-
tations from several physicians, struc-
tured data from sensors and measure-
ments (possibly with some associated
uncertainty), image data such as X-rays,
and videos from probes. We cannot
leave the data in this form and still ef-
fectively analyze it. Rather, we require
an information extraction process
that pulls out the required informa-
tion from the underlying sources and
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expresses it in a structured form suit-
able for analysis. Doing this correctly
and completely is a continuing tech-
nical challenge. Such extraction is of-
ten highly application-dependent (for
example, what you want to pull out of
an MRI is very different from what you
would pull out of a picture of the stars,
or a surveillance photo). Productivity
concerns require the emergence of de-
clarative methods to precisely specify
information extraction tasks, and then
optimizing the execution of these tasks
when processing new data.

Most data sources are notoriously
unreliable: sensors can be faulty, hu-
mans may provide biased opinions,
remote websites might be stale, and so
on. Understanding and modeling these
sources of error is a first step toward de-
veloping data cleaning techniques. Un-
fortunately, much of this is data source
and application dependent.

Data integration, aggregation, and
representation. Effective large-scale
analysis often requires the collection
of heterogeneous data from multiple
sources. For example, obtaining the
360-degrees health view of a patient
(or a population) benefits from in-
tegrating and analyzing the medical
health record along with Internet-
available environmental data and
then even with readings from multiple
types of meters (for example, glucose
meters, heart meters, accelerometers,
among others®). A set of data trans-
formation and integration tools helps
the data analyst to resolve heterogene-
ities in data structure and semantics.
This heterogeneity resolution leads
to integrated data that is uniformly
interpretable within a community, as
they fit its standardization schemes
and analysis needs. However, the cost
of full integration is often formidable
and the analysis needs shift quickly,
so recent “pay-as-you-go” integration
techniques provide an attractive "re-
laxation,” doing much of this work on
the fly in support of ad hoc exploration.

It is notable that the massive avail-
ability of data on the Internet, coupled
with integration and analysis tools that
allow for the production of derived
data, lead to yet another kind of data
proliferation, which is not only a prob-
lem of data volume, but also a problem
of tracking the provenance of such de-
rived data (as we will discuss later).
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Even for simpler analyses that de-
pend on only one dataset, there usually
are many alternative ways of storing
the same information, with each alter-
native incorporating certain trade-offs.
Witness, for instance, the tremendous
variety in the structure of bioinformat-
ics databases with information about
substantially similar entities, such as
genes. Database design is today an art,
and is carefully executed in the enter-
prise context by highly paid profession-
als. We must enable other profession-
als, such as domain scientists, to create
effective data stores, either through de-
vising tools to assist them in the design
process or through forgoing the design
process completely and developing
techniques so datasets can be used ef-
fectively in the absence of intelligent
database design.

Modeling and analysis. Methods for
querying and mining Big Data are fun-
damentally different from traditional
statistical analysis on small samples.
Big Data is often noisy, dynamic, het-
erogeneous, inter-related, and un-
trustworthy. Nevertheless, even noisy
Big Data could be more valuable than
tiny samples because general statistics
obtained from frequent patterns and
correlation analysis usually overpower
individual fluctuations and often dis-
close more reliable hidden patterns
and knowledge. In fact, with suitable
statistical care, one can use approxi-
mate analyses to get good results with-
out being overwhelmed by the volume.

Interpretation. Ultimately, a deci-
sion-maker, provided with the result of
analysis, has to interpret these results.
Usually, this involves examining all the
assumptions made and retracing the
analysis. Furthermore, there are many
possible sources of error: computer
systems can have bugs, models almost
always have assumptions, and results
can be based on erroneous data. For
all of these reasons, no responsible
user will cede authority to the com-
puter system. Rather, she will try to
understand, and verify, the results pro-
duced by the computer. The computer
system must make it easy for her to do
so. This is particularly a challenge with
Big Data due to its complexity. There
are often crucial assumptions behind
the data recorded. Analytical pipe-
lines can involve multiple steps, again
with assumptions built in. The recent
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While the potential
benefits of Big
Data are real

and significant,
and some initial
successes

have already

been achieved,
there remain
many technical
challenges that
must be addressed
to fully realize

this potential.
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mortgage-related shock to the finan-
cial system dramatically underscored
the need for such decision-maker dili-
gence—rather than accept the stated
solvency of a financial institution at
face value, a decision-maker has to ex-
amine critically the many assumptions
at multiple stages of analysis. In short,
it is rarely enough to provide just the
results. Rather, one must provide users
with the ability both to interpret analyt-
ical results obtained and to repeat the
analysis with different assumptions,
parameters, or datasets to better sup-
port the human thought process and
social circumstances.

The net result of interpretation is
often the formulation of opinions that
annotate the base data, essentially
closing the pipeline. It is common that
such opinions may conflict with each
other or may be poorly substantiated
by the underlying data. In such cases,
communities need to engage in a con-
flict resolution “editorial” process (the
Wikipedia community provides one ex-
ample of such a process). A novel gen-
eration of data workspaces is needed
where community participants can
annotate base data with interpretation
metadata, resolve their disagreements
and clean up the dataset, while partial-
ly clean and partially consistent data
may still be available for inspection.

Challenges in Big Data Analysis

Having described the multiple phases
in the Big Data analysis pipeline, we
now turn to some common challenges
that underlie many, and sometimes all,
of these phases, due to the characteris-
tics of Big Data. These are shown as six
boxes in the lower part of Figure 2.

Heterogeneity. When humans con-
sume information, a great deal of het-
erogeneity is comfortably tolerated.
In fact, the nuance and richness of
natural language can provide valuable
depth. However, machine analysis al-
gorithms expect homogeneous data,
and are poor at understanding nu-
ances. In consequence, data must be
carefully structured as a first step in (or
prior to) data analysis.

An associated challenge is to auto-
matically generate the right metadata
to describe the data recorded. For ex-
ample, in scientific experiments, con-
siderable detail regarding specific ex-
perimental conditions and procedures
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Case Study

Since fall 2010, as part of a contract
with Los Angeles Metropolitan
Transportation Authority (LA-
Metro), researchers at the University
of Southern California’s (USC)
Integrated Media Systems Center
(IMSC) have been given access to
high-resolution spatiotemporal
transportation data from the LA
County road network. This data
arrives at 46 megabytes per minute
and over 15 terabytes have been
collected so far. IMSC researchers
have developed an end-to-end system
called TransDec (for Transportation
Decision-making) to acquire, store,
analyze and visualize these datasets
(see the accompanying figure). Here,
we discuss various components of
TransDec corresponding to the Big
Data flow depicted in Figure 2.
Acquisition: The current system
acquires the following datasets in real
time:
> Traffic loop-detectors: About 8,900
sensors located on the highways and
arterial streets collect traffic param-
eters such as occupancy, volume, and
speed at the rate of one reading/sen-
sor/min.
> Bus and rail: Includes information
from about 2,036 busses and 35 trains
operating in 145 different routes in

TransDec.

Los Angeles County. The sensor data
contain geospatial location of each bus
every two minutes, next-stop informa-
tion relative to current location, and
delay information relative to pre-
defined timetables.
> Ramp meters and CMS: 1851 ramp
meters regulate the flow of traffic
entering into highways according to
current traffic conditions, and 160
Changeable Message Signs (CMS) to
give travelers information about road
conditions such as delays, accidents,
and roadwork zones. The update rate
of each ramp meter and CMS sensor is
75 seconds.
> Event: Detailed free-text format
information (for example, number of
casualties, ambulance arrival time)
about special events such as collisions,
traffic hazards, and so on acquired
from three different agencies.
Cleaning: Data-cleaning algorithms
remove redundant XML headers,
detect and remove redundant sensor
readings, and so on in real time using
Microsoft’s StreamInsight, resulting
in reducing the 46MB/minute input
data to 25MB/minute. The result is
then dumped as simple tables into the
Microsoft Azure cloud platform.
Aggregation/Representation: Data
are aggregated and indexed into a

Transportation Environment

© Luciano Nocera

may be required in order to interpret
the results correctly. Metadata acquisi-
tion systems can minimize the human
burden in recording metadata. Record-
ing information about the data at its
birth is not useful unless this infor-
mation can be interpreted and carried
along through the data analysis pipe-
line. This is called data provenance.
For example, a processing error at one
step can render subsequent analysis
useless; with suitable provenance,
we can easily identify all subsequent

Data Store

processing that depends on this step.
Therefore, we need data systems to car-
ry the provenance of data and its meta-
data through data analysis pipelines.
Inconsistency and incomplete-
ness. Big Data increasingly includes
information provided by increasingly
diverse sources, of varying reliability.
Uncertainty, errors, and missing val-
ues are endemic, and must be man-
aged. On the bright side, the volume
and redundancy of Big Data can often
be exploited to compensate for miss-
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set of tables in Oracle 11g (indexed
in space and time with an R-tree and
B-tree). For example, the data are
aggregated to create sketches for
supporting a predefined set of spatial
and temporal queries (for example,
average hourly speed of a segment of
north-bond I-110).

Analysis: Several machine-learning
techniques are applied, to generate
accurate traffic patterns/models for
various road segments of LA County at
different times of the day (for example,
rush hour), different days of the week
(for example, weekends) and different
seasons. Historical accident data
is used to classify new accidents to
predict clearance time and the length
of induced traffic backlog.

Interpretation: Many things can
go wrong in a complex system, giving
rise to bogus results. For example,
the failures of various (independent)
system components can go unnoticed,
resulting in loss of data. Similarly, the
data format was sometimes changed
by one organization without informing
a downstream organization, resulting
in erroneous parsing. To address
such problems, several monitoring
scripts have been developed, along
with mechanisms to obtain user
confirmation and correction.

Query Engine Interface

ing data, to crosscheck conflicting
cases, to validate trustworthy relation-
ships, to disclose inherent clusters,
and to uncover hidden relationships
and models.

Similar issues emerge in crowd-
sourcing. While most such errors will
be detected and corrected by others
in the crowd, we need technologies to
facilitate this. As humans, we can look
at reviews of a product, some of which
are gushing and others negative, and
come up with a summary assessment
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based on which we can decide whether
to buy the product. We need computers
to be able to do the equivalent. The is-
sues of uncertainty and error become
even more pronounced in a specific
type of crowdsourcing called partici-
patory-sensing. In this case, every per-
son with a mobile phone can act as a
multi-modal sensor collecting various
types of data instantaneously (or ex-
ample, picture, video, audio, location,
time, speed, direction, acceleration).
The extra challenge here is the inher-
ent uncertainty of the data collection
devices. The fact that collected data
is probably spatially and temporally
correlated can be exploited to better
assess their correctness. When crowd-
sourced data is obtained for hire, such
as with Mechanical Turks, the varying
motivations of workers give rise to yet
another error model.

Even after error correction has been
applied, some incompleteness and
some errors in data are likely to remain.
This incompleteness and these errors
must be managed during data analysis.
Doing this correctly is a challenge. Re-
cent work on managing and querying
probabilistic and conflicting data sug-
gests one way to make progress.

Scale. Of course, the first thing any-
one thinks of with Big Data is its size.
Managing large and rapidly increasing
volumes of data has been a challeng-
ing issue for many decades. In the past,
this challenge was mitigated by proces-
sors getting faster, following Moore’s
Law. But there is a fundamental shift
under way now: data volume is increas-
ing faster than CPU speeds and other
compute resources.

Due to power constraints, clock
speeds have largely stalled and proces-
sors are being built with increasing
numbers of cores. In short, one has to
deal with parallelism within a single
node. Unfortunately, parallel data pro-
cessing techniques that were applied
in the past for processing data across
nodes do not directly apply for intra-
node parallelism, since the architec-
ture looks very different. For example,
there are many more hardware re-
sources such as processor caches and
processor memory channels that are
shared across cores in a single node.

Another dramatic shift under way
is the move toward cloud computing,
which now aggregates multiple dis-
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parate workloads with varying perfor-
mance goals into very large clusters.
This level of sharing of resources on
expensive and large clusters stresses
grid and cluster computing techniques
from the past, and requires new ways
of determining how to run and execute
data processing jobs so we can meet
the goals of each workload cost-effec-
tively, and to deal with system failures,
which occur more frequently as we op-
erate on larger and larger systems.

This leads to a need for global op-
timization across multiple users’
programs, even those doing complex
machine learning tasks. Reliance on
user-driven program optimizations
is likely to lead to poor cluster utiliza-
tion, since users are unaware of other
users’ programs, through virtualiza-
tion. System-driven holistic optimi-
zation requires programs to be suffi-
ciently transparent, for example, as in
relational database systems, where de-
clarative query languages are designed
with this in mind. In fact, if users are to
compose and build complex analytical
pipelines over Big Data, it is essential
they have appropriate high-level primi-
tives to specify their needs.

In addition to the technical reasons
for further developing declarative ap-
proaches to Big Data analysis, there is a
strong business imperative as well. Or-
ganizations typically will outsource Big
Data processing, or many aspects of it.
Declarative specifications are required
to enable meaningful and enforceable
service level agreements, since the
point of outsourcing is to specify pre-
cisely what task will be performed with-
out going into details of how to do it.

Timeliness. As data grow in volume,
we need real-time techniques to sum-
marize and filter what is to be stored,
since in many instances it is not eco-
nomically viable to store the raw data.
This gives rise to the acquisition rate
challenge described earlier, and a
timeliness challenge we describe next.
For example, if a fraudulent credit card
transaction is suspected, it should ide-
ally be flagged before the transaction
is completed—potentially preventing
the transaction from taking place at
all. Obviously, a full analysis of a us-
er’s purchase history is not likely to be
feasible in real time. Rather, we need
to develop partial results in advance
so that a small amount of incremen-
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tal computation with new data can be
used to arrive ata quick determination.
The fundamental challenge is to pro-
vide interactive response times to com-
plex queries at scale over high-volume
event streams.

Another common pattern is to
find elements in a very large dataset
that meet a specified criterion. In the
course of data analysis, this sort of
search is likely to occur repeatedly.
Scanning the entire dataset to find suit-
able elements is obviously impractical.
Rather, index structures are created in
advance to find qualifying elements
quickly. For example, consider a traffic
management system with information
regarding thousands of vehicles and lo-
cal hot spots on roadways. The system
may need to predict potential conges-
tion points along a route chosen by a
user, and suggest alternatives. Doing
so requires evaluating multiple spatial
proximity queries working with the tra-
jectories of moving objects. We need to
devise new index structures to support
awide variety of such criteria.

Privacy and data ownership. The pri-
vacy of data is another huge concern,
and one that increases in the context
of Big Data. For electronic health re-
cords, there are strict laws governing
what data can be revealed in different
contexts. For other data, regulations,
particularly in the U.S., are less force-
ful. However, there is great public
fear regarding the inappropriate use
of personal data, particularly through
linking of data from multiple sources.
Managing privacy effectively is both a
technical and a sociological problem,
which must be addressed jointly from
both perspectives to realize the prom-
ise of Big Data.

Consider, for example, data gleaned
from location-based services, which
require a user to share his/her loca-
tion with the service provider. There
are obvious privacy concerns, which
are not addressed by hiding the user’s
identity alone without hiding her lo-
cation. An attacker or a (potentially
malicious) location-based server can
infer the identity of the query source
from its (subsequent) location infor-
mation. For example, a user may leave
“a trail of packet crumbs” that can be
associated with a certain residence or
office location, and thereby used to
determine the user’s identity. Several



other types of surprisingly private in-
formation such as health issues (for
example, presence in a cancer treat-
ment center) or religious preferences
(for example, presence in a church)
can also be revealed by just observing
anonymous users’ movement and us-
age patterns over time. In general, it
has been shown there is a close corre-
lation between people’s identities and
their movement patterns." But with
location-based services, the location of
the user is needed for a successful data
access or data collection, so doing this
right is challenging.

Another issue is that many online
services today require us to share pri-
vate information (think of Facebook
applications), but beyond record-level
access control we do not understand
what it means to share data, how the
shared data can be linked, and how
to give users fine-grained control over
this sharing in an intuitive, but effec-
tive way. In addition, real data are not
static but get larger and change over
time; none of the prevailing techniques
results in any useful content being re-
leased in this scenario.

Privacy is but one aspect of data
ownership. In general, as the value of
data is increasingly recognized, the
value of the data owned by an orga-
nization becomes a central strategic
consideration. Organizations are con-
cerned with how to leverage this data,
while retaining their unique data ad-
vantage, and questions such as how to
share or sell data without losing con-
trol are becoming important. These
questions are not unlike the Digital
Rights Management (DRM) issues
faced by the music industry as distri-
bution shifted from sales of physical
media such as CDs to digital purchas-
es; we need effective and flexible Data
DRM approaches.

The human perspective: Visualiza-
tion and collaboration. For Big Data to
fully reach its potential, we need to con-
sider scale not just for the system but
also from the perspective of humans.
We have to make sure the end points—
humans—can properly “absorb” the
results of the analysis and not get lost
in a sea of data. For example, ranking
and recommendation algorithms can
help identify the most interesting data
for a user, taking into account his/her
preferences. However, especially when
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these techniques are being used for
scientific discovery and exploration,
special care must be taken to not im-
prison end users in a “filter bubble”?!
of only data similar to what they have
already seen in the past—many inter-
esting discoveries come from detecting
and explaining outliers.

In spite of the tremendous advances
made in computational analysis, there
remain many patterns that humans
can easily detect but computer algo-
rithms have a difficult time finding. For
example, CAPTCHAs exploit precisely
this fact to tell human Web users apart
from computer programs. Ideally, ana-
Iytics for Big Data will not be all com-
putational—rather it will be designed
explicitly to have a human in the loop.
The new subfield of visual analytics
is attempting to do this, at least with
respect to the modeling and analysis
phase in the pipeline. There is similar
value to human input at all stages of
the analysis pipeline.

In today’s complex world, it often
takes multiple experts from different
domains to really understand what is
going on. A Big Data analysis system
must support input from multiple hu-
man experts, and shared exploration
of results. These multiple experts may
be separated in space and time when it
is too expensive to assemble an entire
team together in one room. The data
system must accept this distributed
expert input, and support their col-
laboration. Technically, this requires
us to consider sharing more than raw
datasets; we must also consider how
to enable sharing algorithms and ar-
tifacts such as experimental results
(for example, obtained by applying an
algorithm with specific parameter val-
ues to a given snapshot of an evolving
dataset).

Systems with a rich palette of visual-
izations, which can be quickly and de-
claratively created, become important
in conveying to the users the results
of the queries in ways that are best un-
derstood in the particular domain and
are at the right level of detail. Whereas
early business intelligence systems’
users were content with tabular pre-
sentations, today’s analysts need to
pack and present results in powerful
visualizations that assist interpreta-
tion, and support user collaboration.
Furthermore, with a few clicks the user
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should be able to drill down into each
piece of data she sees and understands
its provenance. This is particularly im-
portant since there is a growing num-
ber of people who have data and wish
to analyze it.

Big Data Collabhoratories. As many
communities begin to rely on cloud-based
data management and large shared data
repositories become key resources, the
potential value of collaboration using
shared data goes up significantly. How do
we permit users to create data analyses
that combine their data with shared data
and (selectively) allow other users to re-
run, refine, and redistribute these analytic
artifacts, which could range from single
queries to entire modeling and scoring
workflows? This requires us to address a
number of issues (for example, provenance,
access control, or workflows) but holds
great potential for increased collaboration,
and raising the level of transparency in
collaborative work (imagine being able to
re-run all the analysis reported in a paper
using the same data and code used by the
authors and being able to refine and publish
the results!).

A popular new method of harness-
ing human ingenuity to solve problems
is through crowdsourcing. Wikipedia,
the online encyclopedia, is perhaps
the best-known example of crowd-
sourced data. Social approaches to Big
Data analysis hold great promise. As
we make a broad range of data-centric
artifacts sharable, we open the door to
social mechanisms such as rating of
artifacts, leader-boards (for example,
transparent comparison of the effec-
tiveness of several algorithms on the
same datasets), and induced reputa-
tions of algorithms and experts.

Conclusion

We have entered an era of Big Data.
Many sectors of our economy are now
moving to a data-driven decision mak-
ing model where the core business
relies on analysis of large and diverse
volumes of data that are continu-
ally being produced. This data-driven
world has the potential to improve the
efficiencies of enterprises and improve
the quality of our lives. However, there
are a number of challenges that must
be addressed to allow us to exploit the
full potential of Big Data. This article
highlighted key technical challenges
that must be addressed, and acknowl-

94 COMMUNICATIONS OF THE ACM | JULY 2014

edge there are other challenges, such
as economic, social, and political, that
are not covered in this article but must
also be addressed. Not all of the tech-
nical challenges discussed here arise
in all application scenarios. But many
do. Also, the solutions to a challenge
may not be the same in all situations.
But again, there often are enough simi-
larities to support cross-learning. As
such, the broad range of challenges
described here make good topics for
research across many areas of com-
puter science. We have collected some
suggestions for further reading at
http://db.cs.pitt.edu/bigdata/resources.
These are a few dozen papers we have
chosen on account of their coverage
and importance, rather than a com-
prehensive bibliography, which would
comprise thousands of papers.
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