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Abstract—Graph partitioning and repartitioning have been
widely used by scientists to parallelize compute- and data-
intensive simulations. However, existing graph (re)partitioning
algorithms usually assume homogeneous communication costs
among partitions, which contradicts the increasing heterogeneity
in inter-core communication in modern parallel architectures
and is further exacerbated by increasing dataset sizes (i.e., Big
Data). To resolve this, we propose an architecture-aware graph
repartitioner, called ARAGONLB. ARAGONLB considers the het-
erogeneity in both inter- and intra-node communication while
rebalancing the load. Our experimental study with a turbulent
combustion simulation dataset shows that ARAGONLB can result
in up to 60% improvement against existing architecture-agnostic
graph repartitioners (which assume uniform communication
costs among partitions), and the improvement becomes more
significant as the number of computation steps, the number of
partitions, or the size of the interconnect increase.

Keywords-Architecture-Aware, Topology-Aware, Graph Repar-
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I. INTRODUCTION

There is no doubt that we are awash with data and this
affects all aspects of life, from the private lives of (socially
networked) individuals, to how businesses operate, to how
governments make decisions, to modern scientific analysis
and exploration [1], which in turn creates a lot of tech-
nical challenges [2]. In the scientific domain, Big Data is
often generated by giant instruments, such as CERN’s Large
Hadron Collider! or the Large Synoptic Survey Telescope?,
or through simulation on parallel computing infrastructures,
such as cosmological simulations or simulations of turbulent
combustion [3].

In this paper, we focus on compute- and data-intensive
applications (such as scientific simulations) that execute in
parallel computing infrastructures. The communication and
computation patterns of such applications are usually repre-
sented as a vertex- and edge-weighted graph, which needs to
be periodically repartitioned to make sure the data communi-
cation and computing resources are properly utilized. In such
a graph, each vertex corresponds to a unit of computation
work: the vertex weight represents the amount of computation
associated with the vertex, whereas the vertex size corresponds
to the amount of data the vertex represents. Furthermore, an
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edge between two vertices means that data needs to be com-
municated between them; the amount of data communicated
is reflected by the edge weight.

Due to the sheer scale of these graphs, an initial partitioning
of the graph and an assignment of the partitions to different
computing cores are usually performed at the beginning of
the simulation to parallelize the computation. This aims to
equalize the load across cores, while minimizing the data com-
munication cost among partitions. However, typical scientific
simulations run for multiple steps. During each step, a domain-
specific function is computed against each vertex based on the
messages it received from its neighbors in the previous step.
The function can change the state and the outgoing edges of
the vertex, send messages to its neighbors to be processed in
the next step, or even modify the structure of the graph.

Clearly, the load distribution and the data communication
patterns of these applications do not remain static throughout
the simulation. Hence, if this dynamism is left unchecked,
the quality of the initial partitioning will continuously de-
grade, leading to (a potentially significant) load imbalance
and additional communication overhead. In fact, the bigger the
dataset the bigger the magnitude of the problem because of
the increasing communication volume. Thus, the graph needs
to be repartitioned periodically to rebalance the load while
minimizing the data communication and migration cost.

In the literature, graph partitioning [4], [5], [6], [7] and
repartitioning [8], [9], [10], [11] have been well-studied. How-
ever, the state-of-the-art graph repartitioners, such as Zoltan [§]
and Parmetis [10], usually assume uniform communication and
uniform migration costs among partitions while repartitioning.
That is, they simply assume that the communication and
migration cost is linearly proportional only to the amount of
data communicated and migrated.

However, this uniform-cost assumption is no longer valid,
as modern parallel computing architectures often consist of
multiple compute nodes interconnected by a network, resulting
in nonuniform inter-node communication costs due to their
varying locations and link contention. In fact, even within
a compute node, the inter-core communication cost is also
variable, due to the complex, multi-level memory hierarchy.
As the core count per die area and the number of cache
hierarchy levels continuously increase, such heterogeneity is
further amplified and will only become worse in the future,
if not addressed. Thus, existing architecture-agnostic graph
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TABLE I: Sample inter-node communication cost on a 4*4 x4
3D-torus interconnect starting from one node
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repartitioners may lead to sub-optimal performance, which
could be quite significant for Big Data, i.e., as the datasets,
and hence the amount of data communication, become bigger.
Several recent works have been proposed to cope with this het-
erogeneity, but they either may cause high migration cost [12],
[13] or consider the heterogeneity only partially [14].
Contributions: To address the needs of compute- and data-
intensive scientific applications in the era of Big Data, we pro-
pose an architecture-aware graph repartitioner, ARAGONLB,
which considers both inter- and intra-node communication
costs while repartitioning (Section II-IIT). It is a two-level
repartitioner, with distinct schemes and cost models for inter-
and intra-node repartitioning (Section IV-V). Our experimental
study shows that ARAGONLB can outperform the state-of-the-
art (but architecture-agnostic) repartitioners by up to 60%, and
the improvement becomes bigger as the number of computa-
tion steps, the number of partitions, or the size of interconnect
increases (Sections VI-VII).

II. ARAGONLB

Overview: ARAGONLB, short for ARchitecture-Aware Graph
repartitiONer for Load Balancing, is a two-level hierarchical
repartitioner, that performs inter- and intra-node repartitioning.
Its design is driven by the following observations:

1. Communication costs between different nodes (i.e., inter-
node communication costs) vary greatly due to the inter-
connection network. For example, on a 4 x4 x 4 3D-torus
interconnect the distance of different compute nodes to the
same node ranges from 1 up to 6 hops as illustrated by
Table I. With bigger data sets, contention on the network
links will further increase the variability.

2. Communication costs between cores in the same node (i.e.,
intra-node communication costs) also vary a lot because
of the multilevel cache hierarchy. For example, in the
architecture described by Figure 1, cores sharing a L3
cache communicate faster than cores sharing no caches.

3. The internal node architecture (i.e., memory hierarchy) has
a greater impact on the intra-node communication cost
than on the intra-node migration cost. This is because not
all data needed in the migration phase is in the caches
(especially since the migration is performed after executing
the repartitioning algorithm) and so the different levels of
cache sharing are not going to be that important. Thus,
intra-node repartitioning should first focus on minimizing
the impact of intra-node topology on communication cost
and then the migration cost.

4. The network interconnect affects both the inter-node com-

munication cost and the inter-node migration cost, de-
manding a graph repartitioner, which considers the com-
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Fig. 1: Example Compute Node Architecture

munication and migration cost at the same time while
repartitioning.

Given the above observations, the goal of inter-node repar-
titioning is to rebalance the load across compute nodes while
minimizing the inter-node communication and migration costs.
The latter is achieved by minimizing the number of hops each
data item needs to traverse, by grouping together vertices
that communicate a lot. In contrast, the goal of intra-node
repartitioning is to equalize the load assigned to each compute
node across its different cores while minimizing the intra-node
communication and migration cost, by co-locating vertices
communicating a lot to cores sharing more cache levels.

In this paper, we assume that compute nodes used for
parallel computation have the same core count and memory
hierarchies for ease of implementation, and that the number
of partitions assigned to each node equals the core count.

III. PROBLEM STATEMENT
Architecture-Aware Graph Repartitioning (AAGR): Let

P={P,:U}P,=V and P,NP; = ¢ for any i # j} (1)

be an unbalanced partitioning of graph G = (V,E) with
n parts. AAGR aims to compute a new partitioning P’ that
satisfies the following objectives: (a) balances the load; (b)
minimizes the communication cost among partitions; and (c)
minimizes the migration cost between P and P’. A partition-
ing is said to be balanced if

w(P;) < (14¢)*xw ()

where w(FP;) is the aggregated weight of vertices in P;, € is
the user-defined imbalance tolerance (¢ = 0.05 indicates that
we allow up to 5% load imbalance among partitions), while
w is the average partition weight. The communication cost of
P’ is defined as:

>

e=(u,v)EE
and u€ P; and ve P} and i#j

7

comm(G,P') = a x

w(e) * ¢(P}, Pj)

3)
where « is the number of computation steps carried out
between two consecutive rebalancing steps, w(e) is the edge
weight, and c(P/, P}) is the unit communication cost between

the two cores holdmg P/ and P’ Existing (re)partitioners
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Fig. 2: Old Decomposition

usually assume c(P;, Pj) = 1. The migration cost between
P and P’ is defined as:

vEP; and UEP; and i#£j

mig(G, P, P') = vs(v) x (P, P))  (4)

where vs(v) is the vertex size and c(P;, P}) is the unit
migration cost between the two cores holding P; and P; .

IV. INTER-NODE GRAPH REPARTITIONING

Inter-node repartitioning consists of three phases: (1) A
regrouping phase in which ARAGONLB regroups partitions
currently assigned to the same compute node into a single
partition; (2) A repartitioning phase where ARAGONLB repar-
titions this regrouped graph into balanced parts using existing
topology-agnostic graph repartitioners, such as Zoltan [8]
and Parmetis [10]; and (3) A refinement phase where the
decomposition produced by the previous phase is modified
according to the current mapping of partitions to compute
nodes and the relative inter-node communication costs via
a topology-aware refinement algorithm, to further reduce the
communication and migration cost. We named this refinement
algorithm TopoFM and present it next.

The regrouping and repartitioning phases are straightfor-
ward. They take the mapping of vertices to compute nodes
(rather than the mapping of vertices to the old partition
number) as input. The mapping of partitions to compute nodes
(i.e., the mapping of vertices to compute nodes) is decided in
the initial load distribution phase, which is part of the input
to our algorithm.

TopoFM Overview TopoFM is an iterative algorithm and
is a variant of the FM algorithm [15]. Their input is two
partitions of the k-way decomposition, the current mapping of
partitions to compute nodes, and the relative communication
costs among compute nodes. During each iteration, TopoFM
tries to find a single vertex, v, such that moving it from its
current partition to the alternative partition would lead to a
maximal gain, g(v). The gain is defined as the reduction in the
communication and migration cost. This process is repeated
until all vertices are moved once or the decomposition cannot
be further improved after a certain number of vertex move-
ments. Since TopoFM can only refine one partition pair at a

Fig. 3: Better Decomposition

Fig. 4: Best Decomposition

TABLE II: Inter-node Communication Cost Matrix

N1 | Nao | N3
Ny 1 6
No 1 1
N3 6 1

time, it is repeatedly applied to all partition pairs sequentially.
Although we have parallelized the refinement phase, we do
not include it here due to space limitations.

Motivating Example Before we dive into the details of
TopoFM, we first go through a simple motivating example. Let
us assume that the graph in Figure 2 captures the computation
and communication pattern of an application. For simplicity,
we assume that all weights and sizes of the graph are 1.
Originally, the graph is partitioned into 3 partitions, and
partition P; is assigned to compute node N; for the parallel
execution of the application. Vertices of the same color belong
to the same partition, whereas the relative communication
costs among Ni, Ny, and N3 are shown in Table II.

A topology-agnostic repartitioner (i.e., assuming uniform
network communication costs) could repartition the decom-
position of Figure 2 into the one of Figure 3, reducing the
number of edges among partitions from 4 to 3. However, if
we consider the case where all network costs are not equal, i.e.,
we want to make our repartitioner architecture- and topology-
aware (e.g., using the communication costs from Table II),
then the decomposition in Figure 3 can be further improved by
moving vertex a to P» (Figure 4). Even though the movement
increases the communication cost between P; and P by 1,
it actually reduces the communication cost between a and its
neighbors in P5 by 5, since the network cost between N; and
N3 is 6, while that of Ny and N3 is 1. For the same reason,
moving a to P, also decreases the migration cost of a by 5,
since vertex a originally belonged to Nj.

Topology-Aware Gain Computation Motivated by the exam-
ple above, for the vertex gain computation, we first focus on
how the movement of vertex v will impact the communication
between v’s current partition and the refinement partner. For
notation simplicity, let P; and P; be the two partitions of the
k-way decomposition of graph G = (V| E') we want to refine,
and N; and N; be the compute nodes that hold P; and P,
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Algorithm 1: TopoFM

Data: Two balanced partitions (P;, P;), partition assignment A,
inter-node communication cost matrix ¢

1 orderedList + {}

2 unmarkVertices(F;, Pj)

3 computelnitialGain(P;, Hq, A, ¢)

4 computelnitialGain(P;, Ha, A, c)

5 while exists unmarked vertex and useless move number < LIMIT do

6 heap = FMHeapSelection(P;, P;, Hy, Ho)

7 v = heapGetMaxGain Vertex(heap)

8 mark(v)

9 append(v, orderedList)

10 updateNborGain(F;, Pj, H1, Ha, v, A, o)

1 applyMove(F;, P;, orderedList)

respectively, and P; be the partition that v currently belongs
to. We define the gain of moving v in terms of its impact on
the communication between P; and P; as:

gsta(v) = ax (dgwt(v) - im(v)) * d(Ni, Nj) &)

Here, d(N;, N. j) is the relative network cost between IN; and
Nj, whereas d’,,(v) is the relative external communication

volume of v with respect to P;, formally defined as

&, (v) = > w(e)  (6)

e=(v,u)€FE and vEP; and u€P; and i#j

Here, w(e) denotes edge weights. In contrast, di,,(v) is the
relative internal communication volume of v with respect to
P;, formally defined as

% —
dint(v) -
e=(v,u)€E and vEP; and u€P;

w(e) @)

We then consider the impact of moving v from P; to P; on
the communication between v and its neighbors which do not
belong to either F; or P;, defined as:

>

e=(v,u)€E
and vE€P; and u€ Py,
and k#¢ and k#j

gtopo(v) = vk w(e)*(d(szNk)_d(vaNk))

®)
Here, Nj is the compute node where Pj, belongs.

Next, we consider the impact of moving v from P; to P;
on migration cost. Let vs(v) be the amount of data vertex v
represents and Pj, be the partition that contained v in the old
decomposition. We formally define the gain of moving v to
P; in terms of its impact on the migration cost as:

gmig(v) = vs(v) * (d(Ni, Ni) — d(Nj, Ny)) — (9)

Thus, the total gain of moving vertex v from its current
partition to the refinement partner is:

g(”) = gstd(v) + gtopo(v) + gmig (U) (10)

TopoFM Implementation Algorithm 1 presents the basic idea
of TopoFM. The input to TopoFM includes two balanced
partitions (P;, P;) of the k-way decomposition, the current
assignment of partitions to compute nodes, A, and the relative
inter-node communication costs, c. First, TopoFM unmarks

all vertices of P; and Pj;, indicating that no vertex has been
moved. Second, it computes the initial gain of these vertices
and inserts vertices having edges connecting to the other
partitions, referred as boundary vertices, into corresponding
heaps (one heap per partition), which are sorted by the gain.

Then, the following procedure is repeated until all vertices
are moved once or the communication and migration cost
could not be further reduced after a certain number of vertex
movements. As a first step, TopoFM attempts to find an
umarked vertex v with maximum gain from P; or P;. As
long as the imbalance between P; and P; is within the user-
defined threshold (2% by default), TopoFM always selects the
max gain vertex from the partition whose max gain vertex
has the largest value. Otherwise, it will return the max gain
vertex from the overloaded partition. Then, TopoFM marks
v as moved, and appends v to the end of an ordered list.
Subsequently, TopoFM updates the gain of v’s neighbors that
are in P; or P; as if v was moved. During the update, TopoFM
checks whether any boundary vertices are no longer boundary
ones. If so, these vertices are removed from the corresponding
heaps. TopoFM also checks if any non-boundary vertices
become boundary vertices. If so, TopoFM interts them into
the corresponding heaps.

Once the procedure terminates, TopoFM finds the best
number of moves 6 in the ordered list such that >°_ g(v) is
maximized. Only if the sum is positive will these 6 vertices
be moved. Otherwise, TopoFM simply terminates.

Moreover, although TopoFM is topology-aware, it is also
topology-independent since it only requires that the relative
inter-node communication costs are available, and its im-
plementation is similar to that of standard FM algorithms,
like [16]. The key differences are as follows.

1. In standard FM algorithms, g(v) = ax(d”,,(v)—di,,(v)),
which is unaware of the communication heterogeneity.

2. The refinement between P; and P; of standard FM only
needs to consider moving boundary vertices of P;/P; with
respect to P;/P;. However, TopoFM needs to consider
boundary vertices of F;/P; with respect to all partitions.

3. In standard FM algorithms, refinement only happens
between partition pairs that communicate. In contrast,
TopoFM needs to refine all partition pairs even though
no communication occurs between the partition pair.

4. Unlike TopoFM, standard FM algorithms usually select
max gain vertices alternatively from P; and P;. Thus,
our maximal gain vertex selection policy has a greater
potential to improve the decomposition while satisfying
the balance requirement, and speed up the convergence of
a good decomposition.

Complexity Analysis Since the differences between TopoFM
and standard FM algorithms as outlined above do not cause
any increase in complexity, TopoFM has the same complexity
as standard FM algorithms, O(|E’|), where |E’| is the number
of edges belonging to the partition pair or having one vertex
that ends in either partition. Thanks to the balanced reparti-
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tioning phase, |E’| can be roughly approximated by l—f‘ +c,
where n, | E|, and ¢ are the number of partitions, the number of
edges of the graph and a constant. Thus, the time complexity
of TopoFM and the entire refinement phase is O(2 * £ ‘) and

O((5) x2 * ELy = O(n * | E]), respectively.

2 n

V. INTRA-NODE GRAPH REPARTITIONING

Partitions computed by the inter-node repartitioning are
treated as individual subgraphs, each of which requires one
round of parallel intra-node repartitioning. For each such
round, we offer two repartitioners: FlatCacheLB and Hier-
CachelLB, both of which try to equalize the load assigned
to each compute node across its cores, while minimizing the
communication and migration cost (by co-locating frequently
communicating vertices to cores sharing more cache levels).
HierCacheLB HierCacheLB first models the topology of each
compute node as a tree, like [12]. For example, the tree in
Figure 5 denotes a compute node with two quad-core sockets,
where two cores in the same socket share a cache, like the
one in Figure 1. Then, HierCacheLB partitions the subgraph
assigned to the compute node hierarchically according to the
tree. This automatically minimizes the communication volume
across tree nodes at each level. At the end of each level’s
partitioning, HierCacheLB remaps the new decomposition to
the old one to maximize the amount of data in place.

For instance, assume that we want to repartition a subgraph
assigned to a compute node modeled by Figure 5. Hier-
CacheLLB will first partition the subgraph into two balanced
partitions while minimizing the edge cuts, which approxi-
mately equalizes the load across the sockets while minimiz-
ing the inter-socket communication cost. Then, HierCacheLB
remaps these two partitions to the old decomposition to
minimize the migration cost. This step is recursively applied
to the next level until it reaches the leaf level.

The remapping phase can be done in an efficient way using
the Hungarian algorithm [17], because the topology tree is
small. The algorithm takes as input a cost matrix, M, where
MTi][4] denotes the migration cost of assigning partition i of
the subgraph to the jth socket/cache/core of the compute node.
Along with this input, the Hungarian algorithm will output an
assignment of partitions to sockets/caches/cores of the node
with minimal migration cost.

Since each process may monopolize a vertex portion of
each subgraph due to the parallel inter-node repartitioning, to
compute M [i][j] all processes need to iterate over its vertex
portion of partition 7 to see if the socket/cache/core originally

TABLE III: Original Combustion Simulation Dataset

Vertex Degree
Min | Max | Avg.
1, 432, 950 7 26 24

V1 |E|
115, 351

TABLE IV: Synthetic Datasets

Graph [[ Num. of Partitions | Degree of Imbalance’ | Required Compute Nodes |

G8 8 2.51 1
G64 64 2.81 8
G128 128 2.82 16
G256 256 2.85 32
G512 512 2.98 64

owning the vertex is the jth one. If not, the assignment will
lead to a migration cost of moving the vertex from its original
socket/cache/core to the jth one. The migrating cost of a
vertex is the vertex size. Then, an MPI reduce operation is
performed to aggregate the result.

FlatCacheLLB Unlike HierCacheLLB, FlatCachel.B first parti-
tions the subgraph assigned to each node directly into the cor-
responding number of partitions. Then, it explores all possible
assignments of the partitions to the cores of each compute node
to find the one with minimal cost. The exploration phase takes
two cost matrices M and C as its input. As with HierCacheL.B,
MTi][4] denotes the migration volume of assigning partition i
of the subgraph to core j of the node. C[i][j] reflects the
communication volume between partition ¢ and j, defined as
the aggregated weights of edges crossing partition ¢ and j.
The computation of C[i][4] is similar to that of M [i][4] except
that we are visiting edges of the subgraph now. The cost of
an assignment, A, where partition ¢ is assigned to core A[i]
of the compute node, is defined as:

Z MI)[A[i]] «2% Dy, +ax Y Y Clil[j] *c(Ali], Alj])

i=1 j=i+1
(1T)

where n is the number of subgraph partitions, while
c(Ali], Alj]) is the communication cost of 64B data within
a compute node (648 is the typical cache line size), which
is approximated by the access latency to the first cache level
shared by core A[i] and A[j]. The inter-socket communication
cost and the intra-node migration cost of 645 data within a
compute node are both approximated by 2 times of the access
latency to the highest cache level. Although FlatCacheLB
needs to explore all possible combinations to figure out the
optimal assignment, this is feasible since in practice each
compute node only has dozens of cores at most.

VI. EVALUATION SETUP

Workload For our experimental study, we used data provided
by the authors of [3]. The dataset (Table III) is a 26-degree
mesh, which models the computation and communication
pattern of the large eddy simulation (LES) of Sandia Flame
D [18]. Out of this dataset, we constructed 5 synthetic graphs

3The ratio of the maximal partition load to the average partition load.
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Fig. 6: Varying Num. of Partitions (RR)

(Table IV) in order to evaluate a range of workloads. For each
new graph, we first randomized its edge weights to between
20% and 50% of the sum of the pairwise vertex sizes, and then
partitioned the graph into balanced parts using the partitioner
from [8]. Later, 20% of the partitions are selected and the
weights and sizes of vertices in these partitions are randomly
increased to between 1.5 and 7.5 times of their original values,
to simulate load fluctuations of the simulation.

Architecture The evaluation was performed with a simulated
supercomputer, whose compute nodes are interconnected by a
3D-torus interconnect (5*5%*5 by default). Each compute node
has 2 quad-core sockets with shared L3 caches and private
L1/L2 caches. Partitions of each graph are mapped to cores
of the supercomputer at the beginning of each experiment as
follows. We first sort the randomly allocated compute nodes
by their x coordinates, then by their y coordinates and finally
by their z coordinates. Then, we either map partitions of
each graph to cores sequentially starting from cores of the
first compute node as in the SMP policy* or place sequential
partitions to the compute node next in the list following the
RR policy*. In the end, the partitioned graph along with the
mapping of partitions to cores and the relative inter-node
communication costs serves as the input to repartitioners.
The relative inter-node communication costs were estimated
by the number of hops (the Manhattan Distance) among
compute nodes. We need to clarify here that we do not aim to
simulate a full-featured supercomputer. Instead, we just want
to evaluate the impact of inter- and intra-node topology on
graph repartitioners.

Algorithms We compared ARAGONLB with two widely
used architecture-agnostic repartitioners: ZoltanRepart [8] and
ParmetisRepart [10]. For ARAGONLB, we evaluated 4 differ-
ent combinations of our inter- and intra-node repartitioners
(Table V). For intra-node repartitioning, we only considered
the partitioner from [8] because Parmetis [10] kept failing
due to an error originating from its code with our dataset.
Supposedly, both inter- and intra-node repartitioning can be

“http://www.nics.tennessee.edu/computing-resources/kraken/
mpi-tips-for-cray-xt5
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TABLE V: Four flavors of ARAGONLB

[ ARAGONLB ][ InterNode Repartitioner [ IntraNode Repartitioner ]
PTF ParmetisRepart + TopoFM FlatCacheLB
PTH ParmetisRepart + TopoFM HierCacheLLB
ZTF ZoltanRepart + TopoFM FlatCacheLB
ZTH ZoltanRepart + TopoFM HierCacheLB

TABLE VI: Cache Access Latencies

[ Cache [ L1IJL2]L3]
[Latency (ns) [ 1 [ 7 [ 15 ]

any (re)partitioners. All the results presented are the means
of 5 trials with 8 MPI processes on an 8-core machine with
our simulated architecture. Initially, the graph was evenly
distributed across processes for parallel repartitioning.
Metrics The quality of a decomposition in terms of the
expected communication and migration cost is defined by
Equation 3 and 4. Throughout the evaluation, the cost of
communicating or migrating 645 data among compute nodes
is approximated by 2 times the access latency to the highest
cache level weighted by the number of hops. In contrast, the
communication cost of 648 data between two cores of the
same compute node was estimated by the access latency to
their first shared cache level. In cases where cores of the same
node share no caches, we used 2 times the access latency to
the highest cache level as an approximation. The same process
was used for the intra-node migration cost. Table VI shows the
cache access latencies used.

VII. EVALUATION RESULTS

Varying Number of Partitions (Figures 6 & 7) Our first
experiment investigated ARAGONLB’s robustness to graphs
(Table IV) of varying partitions with @ = 500 (number of
computation steps). The results in Figures 6 & 7 indicate
that if only a few compute nodes are needed, Parmetis may
obtain decompositions of similar quality as ARAGONLB (i.e.,
PTF/PTH/ZTF/ZTH) and sometimes even better, especially
when ARAGONLB uses Zoltan for its inter-node repartitioning
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(i.e., ZTF/ZTH). We believe this was caused by the limited
heterogeneity among a small number of compute nodes al-
located on a relative small sized 3D-torus (providing limited
refinement space for TopoFM). In contrast, with more compute
nodes, ARAGONLB can outperform Zoltan and Parmetis by up
to 60% and 46%, respectively, and the improvement became
bigger as the number of partitions increased (due to the
increasing heterogeneity). Since scientific computation usually
requires hundreds of compute nodes, we believe that our
approach will be beneficial for most applications.

The difference between PTF/H and ZTF/H was probably
caused by the fact that Zoltan embraces the hypergraph model
rather than the graph model like Parmetis. Thus, before Zoltan
starts to (re)partition a graph, it first needs to convert the graph
to a hypergraph, which may result in information loss from
the original graph, leading to decompositions of lower quality.

Finally, we found that the improvement underthe RR place-
ment policy was bigger than that of SMP, which further
confirms the general belief that SMP usually produces better
partition mappings than RR, thus offering a smaller refinement
space for TopoFM. Except for this difference, the results under
both polices were similar. As such, given the space limitation,
for the rest of this paper we only present results under SMP
policy, although the RR policy consistently showed bigger
gains for ARAGONLB over its competitors in our experiments.
Varying Number of Computation Steps (Figure 8) This
experiment evaluated the influence of « values (number of
computation steps) using G512. The results in Figure 8 show
that PTF/H and ZTF/H improved the decomposition quality by
around 30% and 17%, respectively. We also observed that the
improvement became more evident as « increased. As was the
case in our previous experiment, the results of PTF/PTH were
similar and always outperformed those of ZTF/ZTH. As such,
for the rest of this paper, we only present the results of PTH
against Zoltan and Parmetis. The reason we prefer PTH over
PTF is that PTH does not require any quantitative information
about the cache architecture (i.e., cache access latency).
Varying Sized 3D-Torus (Figure 9) This experiment eval-
vated the impact of different-sized interconnects using G512
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with a = 500. Figure 9 shows that PTH outperformed Zoltan
and Parmetis by 26%-32%, and that the expected communi-
cation and migration time of PTH increased slower than that
of Zoltan and Parmetis, as the size of interconnect increased,
indicating PTH’s robustness to increasing heterogeneity.
Also, we expect a bigger difference between PTH and
its competitors if the evaluation was carried out with a
real application on a real supercomputer. This is because
in our simulation-based evaluation, we did not consider the
contention for the memory bandwidth and interconnect links,
which usually plays a critical role in communication cost.
This contention would further favor PTH due to its ability to
reduce the communication cost (and the resulting contention).
We expect the network link contention (and therefore the
difference of PTH with the state-of-the-art) to increase further,
as the size of the datasets becomes bigger.
Breakdown of Communication and Migration Volume
(Figure 10) To pinpoint the source of the improvement, we
computed the breakdown of the communication and migration
volume of G512 decompositions output by different algorithms
over the different network distances (i.e., number of hops that
the data needs to travel) with a« = 500. Figure 10 presents the
overall communication and migration volume distribution in
terms of the number of hops each byte traversed, normalized
to that of PTH>. As shown, PTH produced lower inter-
node volume than Zoltan and Parmetis in all cases, and the
reduction in inter-node volume became more significant as

S5The first and second group of columns represent the aggregated communi-
cation and migration volume among partitions within and across each socket in
each compute node, whereas groups 3-8 denote the aggregated communication
and migration volume among partitions that require 1-6 hops, respectively.
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the number of hops increased. All these reductions added
together contributed to around 30% and 35% reduction in
the overall inter-node volume of PTH against Zoltan and
Parmetis, respectively. The reduction is mainly due to the
ability of TopoFM in grouping the most communication-heavy
vertices to nodes as close as possible and the design of the
two-tier architecture offering more freedom for inter-node
repartitioning to group the frequently-communicating vertices
into a single partition.

The reduction in inter-node volume also explained the
increase in intra- and inter-socket volume. The improvement
in intra-socket volume also demonstrated the effectiveness
of FlatCacheLLB and HierCacheLB in clustering the vertices
communicating a lot to cores sharing more cache levels. Also,
we noticed that PTH maintained the same total communica-
tion and migration volume as Zoltan and Parmetis, implying
that PTH can improve the communication mapping without
deteriorating the decomposition.

TABLE VII: Degree of Imbalance

[ Algorithms ][ Average [ Std. Deviation |
PTH 1.0340 0.0053
ZoltanRepart 1.0428 0.0156
ParmetisRepart 1.0525 0.0163

Degree of Imbalance (Table VII) In terms of the imbal-
ance degree, PTH produced decompositions slightly better
than Zoltan and Parmetis. The average imbalance degree of
different algorithms over all the experiments we ran and their
standard deviations are presented in Table VII.

Repartition Time Currently, PTH is 4 to 10 times slower
than Zoltan due to the sequential refinement phase. However,
this time is negligible compared to the actual simulation time,
because scientific simulations often run for a very long time,
and repartitioning is not a frequent operation as load changes
during each computation step are often negligible but the
accumulated changes across computation steps are usually
significant. Besides, we plan to further parallelize and evaluate
the refinement phase with a real workload in the future.

VIII. RELATED WORK

Parallel Graph Repartitioning Although there exists a lot
of graph (re)partitioners, such as Metis [6], Parmetis [10],
Scotch [7], and Zoltan [8], only Parmetis and Zoltan support
parallel repartitioning. However, they are oblivious of the
nonuniform communication costs. Although [19], a Metis
variant, consider the heterogeneity, it is a sequential graph
partitioner and no implementation details about how it takes
the heterogeneity into account are presented.

Topology-Aware Dynamic Load Balancing Paper [12]
proposes two architecture-aware dynamic load balancers
for computation-/communication-bound applications. How-
ever, the communication-bound one only considers minimizing
the communication cost while ignoring the migration cost,
and the computation-bound one prioritizes the communication
cost over the migration cost. As we mentioned, inter-node

communication and migration cost should be considered at
the same time, while intra-node communication cost should
be prioritized over intra-node migration cost. HwTopoLB [13]
and NucoLB [14] are two other architecture-aware dynamic
load balancers. However, HwTopoLB has the same problem
as the computation-bound rebalancer of paper [12], whereas
NucoLB only considers the nonuniform inter-node commu-
nication and migration costs while ignoring the asymmetric
intra-node communication and migration costs.

IX. CONCLUSIONS

In this paper, we proposed an architecture-aware graph

repartitioner, ARAGONLB, that is particularly suited for data-
and compute-intensive applications on modern parallel com-
puting infrastructures, i.e., typical Big Data scientific applica-
tions. ARAGONLB considers both the inter-node interconnect
and the intra-node computer architecture (i.e., memory hierar-
chy) during repartitioning. For compute-intensive applications
that are also data-intensive, such considerations are extremely
crucial. In fact, we showed that ARAGONLB outperforms the
state-of-the-art (Parmetis and Zoltan) by up to 60% using data
derived from a real dataset.
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