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ABSTRACT
Traditional workflow management or enactment systems (WfMS)
and workflow design processes view the workflow as a one-time
interaction with the various data sources, i.e., when a workflow is
invoked, its steps are executed once and in-order. The fundamen-
tal underlying assumption has been that data sources are passive
and all interactions are structured along the request/reply (query)
model. Hence, traditional WfMS cannot effectively support busi-
ness or scientific monitoring applications that require the process-
ing of data streams such as those generated nowadays by sensing
devices as well as mobile and web applications.

Our hypothesis is that WfMS, both in the scientific and busi-
ness domains, can be extended to support data stream semantics to
enable monitoring applications. This includes the ability to apply
flexible bounds on unbounded data streams and the ability to fa-
cilitate on-the-fly processing of bounded bundles of data (window
semantics). In our previous work we have developed and imple-
mented a Continuous Workflow Model that supports our hypothe-
sis. This implementation of a CONtinuous workFLow ExeCution
Engine (CONFLuEnCE) led to the realization that different appli-
cations have different performance requirements and hence an inte-
grated workflow scheduling framework is essential. Such a frame-
work is the main contribution of this paper. In particular, we de-
signed and implemented STAFiLOS, a STreAm FLOw Scheduling
for Continuous Workflows framework within CONFLuEnCE and
evaluated STAFiLOS based on the Linear Road Benchmark.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Scientific databases; H.4.1 [INFORMATION SYSTEMS APPLI-
CATIONS]: Office Automation—Workflow management

General Terms
Algorithms, Design, Data Streams, Continuous Queries
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1. INTRODUCTION
Many enterprises use workflows to automate their operations and

integrate their information systems and human resources. Work-
flows have also been used to facilitate outsourcing or collaboration
beyond the boundaries of a single enterprise, for example, in estab-
lishing Virtual Enterprises [6, 25]. In the context of scientific ex-
ploration and discovery, workflows have been used to orchestrate
simulations and large scale and distributed data analyses [15, 23,
31, 10] as well. More recently, they have also been used towards
supporting collaborative interactions among scientists [24, 2, 22].

A common class of applications, in both business and scientific
domains, is monitoring and reactive applications that involve the
processing of continuous streams of data (updates). Examples in-
clude financial analysis applications that monitor streams of stock
data to support decision making in brokerage firms and environ-
mental analysis applications that collect and analyze sensor data to
support discovery of air or water pollution. The use of Continuous
Queries (CQs) is the current popular approach in monitoring data
streams, both in research (e.g., [7, 4, 8, 30, 9]) as well as in indus-
try (e.g., [13, 16, 29]). However, CQs have three drawbacks if we
consider them to support a workflow execution model: (1) they are
stateless beyond a window operator’s scope, (2) have a static con-
figuration and (3) are unable to facilitate user interaction. These
make CQs unsuitable as a complete solution for enabling monitor-
ing and reactive workflow applications.

In our previous work [19, 18], we proposed a shift towards the
idea of “continuous” workflows (CWfs) . The main difference be-
tween traditional and continuous workflows is that the latter are
continuously (i.e., always) active and continuously integrating and
reacting on internal streams of events and external streams of up-
dates from multiple sources, at the same time and in any part of
the workflow network. We have implemented our proposed CWf
model as a prototype system, called CONFLuEnCE [21], which is
short for CONtinuous workFLow ExeCution Engine. CONFLu-
EnCE was built on top of Kepler, an existing workflow manage-
ment or enactment system (WfMS) [15], and can integrate back-
wardly with traditional workflows, so that it can support both tra-
ditional data sources, such as Data Base Management Systems
(DBMS), and data stream sources, such as Data Stream Manage-
ment Systems (DSMS) (Figure 1).

In the traditional workflow model, the goal is to generally pro-
cess data in a data transformation pipeline, or perform a set of re-
mote tasks which are interdependent and may involve multiple dis-
parate, and local resources (computational, data, or human). This is
achieved generally without worrying about performance, since the
processes could be easily spawned in multiple systems and each re-
quest could be handled independently. Also the application require-
ments for those workflows do not have any time-critical constraints.
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Figure 1: CONFLuEnCE Ecosystem

Scheduling in the traditional workflow model is mostly concerned
with resource allocation and availability, and is typically delegated
to the underlying Operating System.

As opposed to traditional workflow applications, CWf applica-
tions are more time-sensitive and have different performance re-
quirements. These Quality of Service (QoS) requirements range
from specifying a delay target, to keeping a fraction of results be-
low a response time target, to minimizing tardiness. We also real-
ized this fact, when implementing two applications on top of CON-
FLuEnCE, one from the business domain (a Supply Chain Man-
agement System [20]) and one from the scientific domain (As-
troShelf [22]). The ability to facilitate on-the-fly processing of
data that arrives at different rates and produces results within pre-
defined time windows mandate better resource management than
traditional WfMS. This is precisely the challenge that this work ad-
dresses by means of an integrated scheduling framework in CON-
FLuEnCE.

Specifically, in this work we focus on how to enable schedul-
ing of the actors/tasks in a workflow, in order to better utilize the
system resources and improve some metric (e.g., latency in the pro-
duction of results). As opposed to Kepler’s approach which imple-
ments a different model of computation (called Director) for every
execution and recourse management model, our approach is to en-
hance CONFLuEnCE’s CWf Director with the ability to support
multiple scheduling policies in a plug-and-play manner. Towards
this we have designed STAFiLOS, the STreAm FLOw Scheduling
for Continuous Workflows framework within CONFLuEnCE. Basi-
cally, STAFiLOS implements an abstract scheduler that enables de-
velopers of CWf applications to easily incorporate new scheduling
policies by implementing their abstract methods. The framework
exposes many types of runtime statistics to the abstract scheduler
such as actor runtime per invocation, input and output rates etc.
These runtime statistics can be used by the developers to design
new effective scheduling policies that implement smart resource
allocation decisions.

Contibution: The contributions of this paper are summarized as
follows:

1. Examine the current scheduling techniques used in traditional
workflow systems.

2. Design a generic framework, called STAFiLOS, to enable the
implementation of multiple scheduling policies for Continu-
ous Workflows, and specifically for CONFLuEnCE.

3. Evaluate and compare the native Operating System thread-
based execution with multiple STAFiLOS-based schedulers
from the realm of Operating Systems and Data Stream pro-
cessing, on a continuous workflow implementation of the
Linear Road Benchmark.

Roadmap: In the next section, we provide background details on
our CWf model and its implementation. Then, in Section 3 we
describe how we designed and implemented STAFiLOS. In Section
4 we present our experimental evaluation of STAFiLOS. In Section
5, we discuss scalability and multiple CWf scheduling. In Section
6 we overview related work. Finally we conclude in Section 7.

2. BACKGROUND
In this section we first introduce the main aspects of the continu-

ous workflow model and then go into some implementation details
of the model into a working system. Both of these topics are de-
scribed in full detail in [18].

2.1 Continuous Workflow Model
A Continuous Workflow is a workflow that is able to support en-

actment on multiple streams of data, by parallelizing the flow of
data and its processing into various parts of the workflow. Con-
tinuous workflows can potentially run non-stop for an unlimited
amount of time, constantly monitoring and operating on data streams.

Our proposed Continuous Workflow model exhibits the above
characteristics by means of:

• Active queues on the inputs of activities which support win-
dows and wave functions to allow the definition of synchro-
nization semantics among multiple data streams.

• Pipelined concurrent execution of sequential activities.

• The ability to support push communication, i.e., receiving
push updates from data stream sources.

A wave is a set of internal events associated with an external
event and as such these internal events can be synchronized at dif-
ferent points of the workflow. A wave is initiated when an external
event ei enters the system, and is associated with a wave-tag which
is ei’s timestamp ti. When the external event ei or any internal
event in its wave is processed by a task, any new internal events
produced by this task become part of the wave as well. Specifically,
if the processing of the event with wave-tag ti creates n events then
these resulting events will have wave-tags ti.1, ti.2, ..., ti.n. The
wave-tag of the last event of the wave is marked as such. This
is useful when a task downstream needs to synchronize all of the
events belonging to a single wave. Moreover, a sub-wave may be
formed when an event which is part of a wave is processed by a
task. In this case a wave hierarchy is formed where an extra se-
rial number is attached to the wave-tag. For example, if ti.3 is
involved in a task then the resulting m events will have wave-tags
ti.3.1, ti.3.2, ..., ti.3.m.

A window is generally considered a mechanism for setting flexi-
ble bounds on an unbounded stream of data events in order to fetch
a finite, yet ever-changing set of events, which may be regarded
as a logical bundle of events. We have introduced the notion of
windows on the queues of events in workflows, which are attached
to the activity inputs. The windows are calculated by a window
operator running on the queue. The window operator will try to
produce a window whenever it is asked by the attached workflow
activity. When events expire they are pushed to an expired items
queue which are optionally handled by another workflow activ-
ity. Five parameters are required to define the window semantics



Director Actor Interaction Computation Driver Scheduling Time based QoS
SDF Director: Topology-driven Pre-compiled Pre-compiled N/A N/A
DDF Push Data-driven Iterative/Consumption Based N/A N/A
PN Push Data-driven Thread/OS N/A N/A
DE Director: Event Queue Event-driven Event Order Yes (global) N/A
CN Director: Topology-driven Pre-compiled Pre-compiled Yes (global) N/A
CI Push/Pull Data-driven Thread/OS N/A N/A
CSP Push Synchronous Data-driven Thread/OS Yes (global) N/A
DT Director: Topology-driven Pre-compiled Pre-compiled Yes(global or local) N/A
HDF Director: Topology-driven Pre-compiled Multiple Pre-compiled N/A N/A
SR Synchronous Reactive Pre-compiled Pre-compiled Yes(global tick) N/A
TM Director: Priority Queue Priority-based Pre-emptive Priority-based N/A Priority
TPN Push Data-Time-driven Thread/OS Yes (global) N/A
PNCWF Push-Windowed Data-Windowed-driven Thread/OS Yes (local) N/A

Table 1: Taxonomy of Directors found in Kepler (first group) and ProlemyII (second group) as well as our PNCWF Director

Figure 2: Window operator example.

for that operator: size, step, window_formation_timeout, group-
by functionality, and delete_used_events. The window semantics
definition along with the deleted_used_events flag can execute the
hybrid window and consumption modes described in [1], such as
unrestricted, recent and continuous, as those are combined with
tuple, time, and wave-based windows. Even though not currently
supported, wave-based windows can also be calculated according
to a more generic framework, which defines nested sets according
to nested relational algebra expressions [12]. A concrete example
of a window definition with the delete_used_events flag usage is
depicted in Figure 2.

A more detailed description of the concepts described above as
well as the complete definition of the Continuous Workflow Model
can be found in [19, 21].

2.2 CONFLuEnCE
CONFLuEnCE (CONtinuous workFLow ExeCution Engine) is

the implementation of our CWf model on top of Kepler [15]. Ke-
pler is a free open-source scientific WfMS, which was built on top
of PtolemyII, a software system for modeling, simulating, and de-
signing concurrent, real-time systems. The suitability of Kepler,
for implementing our CWf model, comes from the fact that it de-
couples the specification of a workflow and the models of computa-
tion that govern the interaction between components of a workflow.
This means that a workflow can be specified once and executed un-
der different runtime environments (i.e., models of computations)
which Kepler inherited from its underlying PtolemyII system [11].
Also, Kepler’s code is inherently extensible, by providing a modu-
lar design, and this is also proven by the fact that is being actively

developed by nearly twenty different scientific projects. Further-
more, programming workflows in Kepler is made easy for domain
experts without any knowledge of programming structures. Ke-
pler provides an intuitive high-level visual language for building
workflows, where the designer can drag and drop components and
connect inputs with outputs quite easily. Configuring parameters is
easily done using dialog boxes and it also gives useful displays for
debugging the workflows. Finally, Kepler was implemented in Java
which simplifies our implementation of CONFLuEnCE.

The advantage of Kepler over other WfMS, which is to distin-
guish between the specification of a workflow and the model of
computation, enables us, on one hand, to easily expand Kepler’s
workflow specification language to capture workflow patterns of
our CWf model and on the other hand, to develop a new CWf model
of computation. A workflow in Kepler is specified as a composition
of independent components called actors. Actors have parameters
used to configure and customize their behavior, which can be set
statically, during the workflow design, as well as dynamically, dur-
ing runtime. Communication between them happens through in-
terfaces called ports. These are distinguished into input ports and
output ports and the connection between them is called a channel.
As part of the communication between the two ports, a data item
(referred to as token in Kepler) is propagated from the output port
of one actor to the input port of the receiving actor. The receiving
point of a channel has a receiver object, which controls the commu-
nication between the actors. The receiver object is not provided by
the actor but by the workflow’s controlling entity, called the direc-
tor. The director defines the execution and communication models
of the workflow. As such, the communication being synchronous or
asynchronous (buffered) is determined by the designer of the direc-
tor, not by the designer of the actor. Various models of computation
which can be found in Kepler and PtolemyII are listed along with
their characteristics in Table 1.

CONFLuEnCE was implemented within Kepler as a new model
of computation (i.e., as another module). This module implements
all the necessary constructs which enables Kepler to run contin-
uous workflows. This includes a Continuous Workflow Director,
a Windowed Receiver and Timing components (i.e., timestamped
event objects and actor timekeepers). Our Continuous Workflow
(PNCWF) director is based on Kepler’s PN, CN and DE directors.
PNCWF implements a generic interface to support the timing con-
structs (windowed receivers, timekeepers etc.) and support con-
current execution of sequential activities by means of OS threads.
Specifically, it enables concurrent execution by wrapping every ac-
tor in its own thread, allowing them to run in parallel and blocking
them whenever there are no more data to consume.



Although having queues on the inputs of actors to buffer data
is a feature already implemented in certain models of computation
in Kepler, window semantics on these queues do not exist in any
model of computation. We have implemented a new generic type
of receiver which can be associated with continuous workflow di-
rectors that implement the CWF model. This new type of receiver
defines windows by size and step, as well as other parameters such
as Group-by clauses. When adding a token into this receiver the
generic put() method is used. This method encapsulates the to-
ken into a timestamped and wave-stamped event as they are dicta-
ted by the timekeeping components. Then it inserts the event into
the appropriate queue, after evaluating the group-by clause. Within
the same call it also checks to see if a new window is produced and
if it does then it stores it into the output queue. When the actor, to
whom this receiver belongs to, calls the get() method, a window
from the output queue is returned. The timing between the put()
and get() methods depend on the director’s execution model.

Finally, in order to support push communications on continuous
workflows, we have implemented various actors which are able to
connect to external data streams (through TCP or HTTP connec-
tions). As data are pushed into those connections from the sources
these actors pump it into the workflow’s internal ports at a rate
which is again dictated by the director’s execution model.

3. STAFILOS: STREAM FLOW SCHEDUL-
ING FOR CONTINUOUS WORKFLOWS

The PNCWF director we described earlier, is thread-based, thus
resource management and allocation to the various threads is han-
dled directly by the Operating System. This leaves no margins for
QoS based optimizations, which are suitable for monitoring appli-
cations. Since in Kepler execution is dictated by the director com-
ponent, we could have implemented specific scheduling policies in
different CWf director implementations. Instead of that we adopted
a slightly different philosophy. We designed a framework to inte-
grate scheduling through a generic and pluggable scheduled CWf
director that can be plugged with different scheduling policies. We
applied what we learned from implementing the PNCWF director,
the Windowed Receiver, the time keeping method and the token en-
capsulation inside CWEvents, and reused these components within
STAFiLOS, while extending them specifically to work in this new
execution model while at the same time supporting the previous
one. We also added a more generic actor statistics module, which
can now be used by any CWf scheduler within STAFiLOS, to pro-
vide runtime statistics on a number of different metrics. Specifi-
cally the statistics module keeps track of the cost of each actor (i.e.,
time per invocation), actor input rates and actor output rates, which
are in turn used to calculate the selectivity of the actor. These statis-
tics are dynamically calculated during runtime and are updated with
each actor’s invocation.

STAFiLOS is composed of three main components:
• The Scheduled CWF Director.
• The TM Windowed Receiver.
• The Abstract Scheduler.

All three components and their interactions, described below, are
depicted in Figure 3.

The Scheduled CWF (SCWF) director is the main component
that interacts with the workflow model (i.e., actors, ports, sub-
workflows) and the management modules ran by Kepler. It is re-
sponsible for initializing the actors, ports, receivers and the sche-
duler, as well as transitioning the workflow model through the var-
ious execution stages within each iteration. The SCWF director

is schedule-independent, thus a scheduling policy implementation,
which extends the Abstract Scheduler, is being enacted by it.

The TM Windowed Receiver is based upon the TM Receiver of
the TM PtolemyII domain, but extends our Windowed Receiver im-
plementation described in Section 2. The TM Windowed Receiver
interacts with the SCWF director as shown in Figure 4. When an
upstream actor produces an event on its output port it broadcasts
it to all the remote downstream receivers connected to it. The TM
Windowed Receiver extends the put() and get() methods of
the Windowed Receiver. When an event is passed to the put()
method, it is propagated to the Windowed Receiver’s put()method,
which in turn is queued in the appropriate group-by queue. During
the same call, the window semantics are evaluated on that queue
and if a window is produced it is returned to the TM Windowed
Receiver put() method. The produced window is then enqueued
at the actor’s ready queue at the SCWF director. When the director
decides to run that actor (Actor B in the example), it dequeues the
event and adds it to a buffer inside the TM Windowed Receiver, ren-
dering it available at the next get() call by the fire() method
of the actor. Besides the regular events being queued at the di-
rector, the windowed receivers that compute timed windows also
register "window timeout events" which are used to produce timed
windows before an event from the next window arrives to close and
produce the current window.

The Abstract Scheduler component implements most of the ba-
sic functionality of a scheduler but it is not a complete scheduler.
However, it can be extended and made fully functioning by an ac-
tual scheduler implementation. The Abstract Scheduler maintains
a list of the workflow’s actors, and maps them to queues of events
(sorted by timestamp) that should be propagated to each actor’s cor-
responding input ports when they are to be scheduled for execution.
It also maintains a mapping between actors and their current state
as well as a list of flags denoting whether a state is valid or not.

Three states are defined: ACTIVE which denotes that the ac-
tor can be considered for firing at the current iteration, WAITING
which denotes that the actor is waiting for something to happen
within the scheduler before it can be run, and INACTIVE which de-
notes that the actor currently has no events to process. State transi-
tion rules are implemented within each scheduler implementation.
Finally, the Abstract Scheduler keeps two priority queues. One for
the active actors (active queue) and one for the actors who are wait-
ing (waiting queue). Basically when an actor switches state from
being ACTIVE to WAITING, it is removed from the active queue
and it is placed in the waiting queue. If an actor is INACTIVE it is
not placed in any of the priority queues. The getNextActor()
method returns the next actor from the active priority queue. The
priority queues are sorted based on a function implemented inside
a QueueComparator object which is provided by the scheduler im-
plementation. This comparator could be based on actor priorities
defined by the workflow designer or some kind of dynamic priori-
ties calculated at runtime based on the actor statistics.

The Abstract Scheduler also provides hooks where the director
can signal the scheduler for the director’s state changes, such as the
start and end of a director’s iteration, the start and end of an actor’s
iteration etc.

3.1 Implemented CWF Schedulers
As first case studies, we used the STAFiLOS scheduling frame-

work to implement three schedulers with different characteristics;
the Quantum Priority Based scheduler, the traditional fair Round
Robin scheduler and a Rate Based scheduler proposed for CQs.
Our aim was to assert the expressive power of STAFiLOS in im-
plementing different scheduling policies.
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3.1.1 The Quantum Priority Based Scheduler (QBS)
The Quantum Priority Based Scheduler is largely based on the

Linux process scheduler [5]. The actors are assigned priorities by
the workflow designer and based on those priorities the scheduler
assigns a number of basic quanta, as given by Equation 1.

q =

{
(40− p)× b, for p >= 20
(40− p)× 4b, for p < 20

(1)

Where, p is the actor’s priority, b is the basic quantum (a schedu-
ler static parameter), and q is the quantum to be given to the actor
whenever a re-quantification process is initiated. Source actors are
treated independently of the rest of the actors in order to regulate
better the flow of data coming into the workflow. Correctly tuning
the scheduling policy regarding the source actors can play a signif-
icant role in the overall behavior of the QoS metrics. In the case of

QBS the source actors are being scheduled in regular intervals (i.e.,
after x internal actor invocations).

The quantum value for each actor represents its allowance in mi-
croseconds that can run before the next re-quantification period.
Actors that have events ready to be processed are divided into ac-
tive and waiting depending on wether they have a positive quantum
or not. The active actors are sorted by ascending priority. If two
actors have the same priority then they are treated as FIFO. When
an active actor runs for a while and suddenly runs out of quantum
it is moved into the waiting queue. Once all the actors with events
run out of quanta and are moved into the waiting queue, the sche-
duler initiates a re-quantification process and swaps the two queues
(i.e., the waiting queue becomes the active queue and vice-versa).
There is a possibility that an actor consumed more than its remain-
ing quantum in its last iteration and ended up having a negative
quantum. If that negative value is significant, there is a chance that
even after re-quantification, it still has a negative quantum value. In
that case it stays in the waiting queue. An actor that processed all
of its ready events transitions into the inactive state and its quan-
tum value is preserved until new events become available. The state
conditions for an actor A in QBS are shown in Table 2.

We now explain the interactions between the components as de-
picted in Figure 3 which are also applicable to any scheduler imple-
mented within the STAFiLOS framework. When the execution of
the workflow begins, the director carries out the initialization of all
the components. It also signals the scheduler, in order for it to carry
out its own initialization. As part of the step, the source actors are
being registered to the scheduler, which, depending on the imple-
menting policy, it decides how to treat them. After that, the director
enters the director iteration cycle, first with the pre-fire state, again
while signaling the scheduler about it. Next, at the fire state the
director calls the scheduler’s getNextActor() method to get
the next actor to be fired. At this point the scheduler polls the next
actor from the active queue, which is sorted using the Comparator
attached to the active queue. The Comparator implements the sche-
duler’s priority function. The selected actor might be a source, an



QBS and RR Schedulers RB Scheduler

ACTIVE
A is not a source actor Has events waiting in its queue AND Has events waiting in its queue

has a positive quantum value

A is a source actor Has a positive quantum value AND Has not yet fired in the current period
has not fired yet in the current director iteration

WAITING
A is not a source actor Has events waiting in its queue AND Has no events waiting in its queue AND

has a negative quantum value has events waiting in the next period buffer

A is a source actor Has a negative quantum value OR Has fired in the current period
has fired in the current director iteration

INACTIVE A is not a source actor Has no events waiting in its queue. Has no events waiting in its queue or buffer.
A is a source actor A source actor does not transition into this state.

Table 2: State conditions for an actor A in the different schedulers.

internal or an output actor. If it is an internal or output actor then an
event from the corresponding actor’s event queue is dequeued and
placed on the actor’s input port. Then the director pre-fires the ac-
tor and if that returns true, it goes on to fire the actor while starting
the necessary timers to measure the cost of the actor.

During the actor’s firing, new events will be produced at its out-
put ports. The events go through the flow we explained in Figure 4,
and end up being enqueued at the scheduler. An event has a refer-
ence to its corresponding actor and, based on that, it is enqueued
on the actor it belongs to. At the same time, the actor’s input rate
as well as the producing actor’s output rate statistics are being up-
dated. At this point the actor’s state is updated. If it was inactive,
the scheduler will re-evaluate its state (e.g., assign a quantum to it
and put it in the active queue). Once the actor post-fires, the di-
rector notifies the scheduler in order for it to calculate its cost and
other statistics it needs to function.

The director’s iteration cycle ends when a call to the method
getNextActor() returns null. That’s when the director post-
fires, notifies the scheduler and restarts the iteration. At this point
the scheduler usually performs some maintenance tasks (e.g., re-
quantify the actors, recalculate their states, update statistics etc.)

3.1.2 Round-Robin Scheduler (RR):
The Round Robin scheduler works in similar manner with the

QPB scheduler. It does not take into account any priorities though.
At each scheduling period it gives the active actors a time slice
(quantum) on which they are allowed to run. They are then sched-
uled to process their available events in a round robin manner. If
they manage to process all of their current events they transition to
the inactive state and give up any remaining slice. If they consume
their slice they transition to the waiting state, and remain in that
state until the next period, to process the remaining of their avail-
able events. New events can be added to an actor’s ready queue
even within the current period. The actor processes them if it has
enough time to do so during the current period. If an actor is inac-
tive and new events arrive, a slice is assigned to it and the actor is
placed at the end of the Round-Robin queue. The state conditions
for an actor A in the RR Scheduler are shown in Table 2.

3.1.3 Rate Based Scheduler (RB)
The third scheduler we have implemented is the Rate Based Sche-

duler which is based on the Highest Rate scheduler described in
[28]. The Highest Rate scheduler is the best performing scheduler
for CQs with respect to average response time.

The actors are once again divided into active and waiting, and
their priorities are dynamically calculated based on their selectivity
and cost as shown in Equation 2.

Pr(A) = SA / CA (2)

Pr(A) is the dynamic priority of actor A. SA is the actor’s
global selectivity, and CA is the actor’s global average cost, as they
are defined in [28]. When an actor is shared among multiple work-
flow paths (i.e., is connected to more than one downstream actor)
then we add up the downstream global costs and global selectivities
of each path.

Event processing in this scheduler is divided into periods. At
each period the scheduler processes all the events that have been en-
queued during the previous period. Any newly enqueued events are
kept in a buffer and are put into their corresponding actor’s queues
once the current period is over. The end of a period is signaled by
the director’s end of iteration, which happens when the active actors
queue becomes empty. The active actors queue is empty when all
the actors have no more events to process and all the source actors
have executed once during the current period. The dynamic priori-
ties are re-evaluated at the end of each period. The state conditions
for an actor A in the RB Scheduler are shown in Table 2.

4. EXPERIMENTAL EVALUATION
The primary goal of our preliminary evaluation is to determine

if there are any performance penalties in implementing scheduling
policies using our STAFiLOS framework. The secondary goal was
to get a better inside on the effectiveness of a QoS-based scheduler,
compared to a native OS scheduler being used in traditional WfMS.

Almost all QoS-based schedulers utilize an optimization metric
which is defined in terms of a delay or latency target. Broadly,
these require that a specified fraction (0-100%) of results be pro-
duced under the delay target. For example, in keeping average re-
sponse time below delay target, no fraction is specified (best effort)
whereas in meeting strict deadlines, the fraction is 100%.

As a first approximation for all these metrics, we carried out a
stress test to identify the supported delay target space of each sche-
duler by varying the input rate in the context of the Linear Road
benchmark [3].

4.1 Experimental Setup
We evaluated the STAFiLOS framework by running the various

schedulers on a continuous workflow implementation of the Lin-
ear Road benchmark [3]. The Linear Road has been established
as the standard benchmark for stream processing systems and en-
dorsed by the developers of the two first DSMSs, namely, Aurora
[7] (a collaboration among Brandeis University, Brown University
and MIT) and STREAM [17] (from Stanford University). A de-
tailed description of our continuous workflow implementation of
the linear road benchmark can be found in Appendix A.

We used the workload generator provided on the Linear Road
website1 to generate car position reports for 0.5 expressways (Fi-
gure 5). All the experiments were ran three times each (results
1http://www.cs.brandeis.edu/∼linearroad/



Workload L-rating 0.5 highways
Experiment duration 600 sec
QBS Source scheduling interval 5 internal actor iterations
Basic Quantum (QBS) (µs) 500, 1000, 5000, 10000, 20000
Basic Quantum (RR) (µs) 5000, 10000, 20000, 40000
Priorities used (QBS) 5, 10

Table 3: Experimental setup

show the average of the three runs) on the same machine configu-
ration, always one at a time with the system being exclusively used
for our experiments. The system used was a dual Pentium Intel
Xeon E5345 at 2.33GHz with a total of 8 cores of 4MB cache each
and 16GB of main memory. Since CONFLuEnCE is implemented
in Java, the virtual machine was allocated 8GB of heap space.

The schedulers used in our evaluation are the ones implemented
within the STAFiLOS framework and described in the previous
section, namely, the Round-Robin (RR), Quantum Based Source
(QBS) and the Rate Based (RB) schedulers. As a baseline for our
comparison we use the Thread Based (PNCWF) scheduler which is
implemented in the PNCWF Director described earlier in Section
2.2. The PNCWF scheduler uses the director developed in [21] and
everything needed to support it (such as an extension of the Win-
dowed Receiver adjusted to run in a threaded environment). During
initialization of a workflow each actor is associated with a thread
based controller to transition it through the iteration phases (initial-
ize, pre-fire, fire, post-fire). The actor thread blocks, when trying
to read from its input ports which have no events available, until a
window or event is produced. The timeout of timed windows (de-
scribed in [21]) is handled by the actor thread that is waiting to read
from an input port, by waiting only for the amount of time defined
by the timeout. Once the timeout is reached, without the Windowed
Receiver producing a window, the thread raises the timeout flag on
the receiver and forces it to produce a window.

The different parameters we used for configuring the experi-
ments are listed in Table 3. The source scheduling interval listed for
QBS means that for every five internal actor firings one source actor
firing is scheduled. This ensures that the input data are smoothly in-
serted into the workflow. The basic quantum values listed for QBS
and RR correspond to the q value and slice values respectively as
described in Sections 3.1.2 and 3.1.1. The priorities correspond to
individual priorities given to the actors, that are taken into account
when QBS is running. The highest priority of 5 is given to the
actors that handle the immediate output of the workflow. Regard-
ing the tolls those are the TollCalculation and TollNotification, and
regarding the accident notifications those are the AccidentNotifica-
tion and AccidentNotificationOut. A priority of 10 was given to the
actors relevant to statistics maintenance and accident detection.

4.2 Experimental Results
Experiment 1: Sensitivity Analysis of RR. Figure 6 shows how
Round Robin behaves when setting different quantum values. Ge-
nerally, the scheduler behaves almost the same for the various time
slots with the best being 20,000µs which keeps a generally lower
response time throughout the experiment until eventually thrashes
with the 40,000µs case.

Experiment 2: Sensitivity Analysis of QBS. Figure 7 shows how
the Quantum Priority Based Source scheduler behaves with differ-
ent basic quantum values set. As you may recall, the basic quantum
is the value of b in Equation 1.

From the results we see that a basic quantum of 500µs performs
the best throughout the experiment compared to the other values.
This is due to the fact that having high quantum values given to the
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Figure 5: Workload of 0.5 highways.
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Figure 6: Response Times of the RR scheduler using varying
basic quantum values.

actors results in having just a priority based FIFO queue, where
each priority class is a FIFO queue with each actor exiting the
queue only when it is done processing all of its current events. So
a small enough value in this case is adequate.

What is interesting here is that a basic quantum of 5000µs per-
forms worse than one with 10000µs. We attribute this to the fact
that in the case of 5000µs the re-quantification of all actors happens
more often, resulting in low priority actors accumulating quantum,
thus when it is their turn to run, and having also accumulated many
events, they will end up starving higher priority actors, such as the
output actors which we use to measure the average response time.

Experiment 3: STAFiLOS-based schedulers Vs. OS thread-
based scheduler. Figure 8 shows the QBS and RR with the best
performing parameters of 500µs and 40,000µs, respectively, from
the previous two experiments, along with RB and PNCWF.

The figure shows that QBS and RR exhibit the best response
times (under 2sec) until they thrash. The thread-based PNCWF has
much lower capacity in terms of input rates, since it thrashed at
320sec when the input rate is about 120 updates/sec, as opposed to
the rest of the schedulers which thrash at about 440sec where the
input rate is 160 updates/sec. RB exhibits worst average response
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Figure 7: Response Times of the QBS scheduler using varying
basic quantum values.
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times because of the fact that it does not distinguish the source
actors as high priority and neither independently schedules them
in regular intervals, like the other schedulers. Thus tokens suffer
from waiting for a longer period of time to enter the workflow.

4.3 Discussion
The above experiments clearly show that the schedulers imple-

mented within the STAFiLOS framework have a higher rate toler-
ance and generally lower response times than Kepler’s own Thread-
Based director which relies on the underlying OS.

We generally based our CWf implementation of the Linear Road
Benchmark on off-the-shelf actors that come with Kepler, which as
can be seen from Figures 10-15 adds a great deal of complexity.
Furthermore, the off-the-shelf actors lack any performance opti-
mizations found in the CQ operators. As a result the RB scheduler
did not perform as well as expected. Adding asynchronous I/O calls
as well as implementing schedulers which are able to combine pri-
orities with flow information would greatly improve performance.
Moreover, providing a set of stream optimized atomic as well as
composite actors, which can accumulate and compensate tokens
which are added and expired from a sliding window, would help
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Figure 9: Multi-workflow execution framework

in avoiding redundant multiple aggregate computations and would
greatly improve the performance of window-based actors.

Our experiments also reveal that STAFiLOS offers the schedul-
ing flexibility required by monitoring applications within a Con-
tinuous Workflow Management System (CWMS) without compro-
mising performance, since the STAFiLOS-based schedulers per-
formed better than the Thread-Based one. The use of the Linear
Road Benchmark further show that a CWMS by offering more
functionality and flexibility compared to a DSMS might not ex-
hibit the same scalability. However, scalability can be achieved by
strategically integrating multiple DSMSs (as in Figure 1), that can
be viewed as specialized source actors, to build more complex mon-
itoring solutions, while being able to satisfy any application SLAs.
The integrated DSMSs can potentially be tuned to also support load
shedding under overloading situations [27, 26].

5. FUTURE WORK: SCALABILITY AND
MULTIPLE CWF SCHEDULING

The current implementation of SCWF Director focused on opti-
mizing a single workflow on a single node. To achieve higher levels
of scalability we are considering two directions. First, the SCWF
Director is made aware of the CPU cores topology in modern ma-
chines to balance the distribution of the ready actors queue to each
core while considering data dependencies. The second one is a dis-
tributed version of SCWF. This version distributes the processing
of a workflow among multiple computing nodes in a cluster or the
Cloud by placing specific actors to specific nodes.

Beyond scaling a single workflow, we are also working on a
multiple CWF processing model. Our current design for a sin-
gle node is based on the idea of two-level scheduling (Figure 9).
At the low-level, each individual workflow director implements its
own local scheduler. At the top-level, the global scheduler man-
ages the different workflow instances based on an appropriate CPU
capacity distribution policy. It achieves this by allocating CPU re-
sources to the different instances of the Manager class, a Ptole-
myII/Kepler module which manages the execution of a sinle work-
flow. It switches between the workflows using the Manager meth-
ods initialize(), pause(), resume(), stop().

The ConnectionController is a new module we propose for con-
trolling the execution of multiple workflows externally. When Ke-
pler/Confluence is started in multi-workflow mode from the com-
mand line then the ConnectionController is instantiated and is lis-
tening for commands to manage running workflows as well as add
and remove them from the running list.

Our plan is to first confirm our hypothesis that our proposed
scheme is able to handle workflows with different priorities and
different optimization metrics. Once we achieve scaling up, we
will consider scaling out.

6. RELATED WORK
In current workflow management systems the scheduler defines

a static schedule, which based on historical data and activity con-



sumption rates, should optimize the resource utilization of the sys-
tem. Static approaches work well with the traditional workflow
model since workflows are considered one-time interactions. In the
more complex case of pipelined execution in data-flow based work-
flows, the activities run on their own threads and are managed by
the operating system (usually by employing a Round Robin pol-
icy), which is oblivious to any special characteristics of each activ-
ity (e.g., token productivity, time to execute etc.)

Many WfMSs consider the task of running a workflow as com-
bining a set of external services, choreographed using the work-
flow patterns. In order to do that the system has to find appro-
priate services that carry out the task of each activity, e.g., [14].
The external services, in addition to a description of their task, also
carry a Quality of Service (QoS) characterization. In the context
of WfMS and Operating Systems in general, the QoS metric mea-
sured is response time. Using this profile, the WfMS can compose
the workflow instance in a way which satisfies the overall workflow
request’s QoS requirements (e.g., finish the whole workflow within
the time limit). Similarly, [32] breaks the workflow into subsec-
tions, by categorizing the activities into branch or synchronization
activities. It then distributes the remaining deadline to the subsec-
tions making sure that the workflow will finish before the deadline
give a minimum execution time for each task.

The challenges here include the dynamic nature of the external
resources and the unpredictable nature of the execution of the var-
ious patterns which the workflow is composed of. Considering a
network of tasks composed as a workflow, each task is in a ready
state once it has all the necessary data in its input ports that will
make it complete one iteration. This decision of weather to run a
task or not is made by processing a set of task preconditions. Then
according to a priority function the scheduler will decide which
task to execute next.

7. CONCLUSIONS
In this paper, we presented a generic framework, called STAFi-

LOS, that supports the implementation of different scheduling poli-
cies to meet the QoS requirements of continuous workflows in CON-
FLuEnCE (a CONtinuous workFLow ExeCution Engine). We eval-
uated STAFiLOS by compared the native OS thread-based execu-
tion with three STAFiLOS-based schedulers from the realm of OS
and Data Stream processing on a continuous workflow implemen-
tation of the Linear Road Benchmark. The results of these exper-
iments in conjunction with the implementation of the Linear Road
Benchmark show that STAFiLOS enhances the expressive power
and functionality of CONFLuEnCE by providing the means to meet
the QoS requirements of a continuous workflow.
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APPENDIX
A. LINEAR ROAD BENCHMARK

Linear Road simulates a toll system for the motor vehicle ex-
pressways of a large metropolitan area. The tolling system uses
“variable tolling”: an increasingly prevalent tolling technique that
uses such dynamic factors as traffic congestion and accident prox-
imity to calculate toll charges. Linear Road specifies a variable
tolling system for a fictional urban area including such features as
accident detection and alerts, traffic congestion measurements, toll
calculation and historical queries. For the purpose of our evaluation
we only focused on the stream processing aspect of the benchmark
and thus we excluded the historical queries.

The application provides a single feed of car position updates.
Each car updates its position every 30 seconds. That includes its
position (expressway id, direction, lane, segment of the highway)
and current speed. While the workflow processes this feed, it is
required to provide notifications to the cars about their toll charges
every time they switch segment, based on a set of conditions. It also
needs to alert them of any accidents which happened down the road
in order for them to exit the highway and choose another route.

Our workflow implementation of the Linear Road benchmark
consists of two levels of workflow hierarchy. The top level con-
sists of all the major tasks and wiring between them, required by
the application, and is governed by a Continuous Workflow director
(either a STAFiLOS based one or the thread based PNCWF Direc-
tor). The second level of the hierarchy consists of sub-workflows of
main tasks in the top level and represent tasks like detecting stopped
cars, calculating the number of cars in each segments etc. These are
all governed either by SDF directors (if the consumption and pro-
duction rate is constant) or by DDF directors (if the consumption
and production rates are more fluid, e.g., if the sub-workflow in-
cludes decision points and does not have constant production rates
at the internal actors.) Our implementation also requires the sup-
port of a relational database to store statistics on the road conges-
tion as well as the recent accidents detected.

The workflow, as shown in Figure 10, is divided into three main
areas. One to take care of the accidents, one for calculating the
segment statistics, and one for calculating and notifying the cars
about their tolling charges.

A.1 Accident Detection and Notification
The accident detection consists of three composite actors. The

first one is for detecting stopped cars. If a car reports the same loca-
tion in 4 consecutive position reports then it is considered stopped.

Figure 10: The Linear Road Benchmark top level workflow.

Figure 11: The Linear Road Benchmark accident detection
sub-workflow.

Figure 12: The Linear Road Benchmark accident detection
sub-workflow.

The sub-workflow defining this functionality is depicted in Figure 11.
The input port of this actor has the following window semantics:
{Size: 4 token, Step: 1 token, Group-by: car ID}. When fired, this
actor processes a window of the last four position reports of each
car and compares the positions. If it is stopped then the actor out-
puts the first of those position reports and sends it to the Accident
Detection actor.

The Accident Detection actor is the second one in this pipeline,
and the implementation is shown in Figure 12. This actor takes
windows of two position reports, which represent the same posi-
tion, and compares the car IDs. If the car ids are different, and they
are not in an exit lane, that means a car accident is in progress. The
input port of this actor defines the following window semantics:
{Size: 2 tokens, Step: 1 token, Group-by: position}. If an acci-
dent is detected then this is propagated to the Insert Accident actor
which records the incident into the relational database. We omit the
description of the third actor, because it just consists of constructing
an INSERT statement and submitting it to the database.

The application also requires that any car entering a range of
segments upwards an accident, be notified within 5 seconds of the
position report. The notification is generated by the Accident No-
tification composite actor which, for each position report of a car,
checks in the database to see if there is a car accident registered
within four segments downstream of each car. The actor is shown
in Figure 13.

A.2 Segment Statistics
The Toll Calculation formula relies on the system keeping some

statistics regarding each segment of the expressway. Specifically,



Figure 13: The Linear Road Benchmark accident notification sub-workflow.

the tolls depend on the number of cars present in a segment in the
previous minute and the “Latest Average Velocity” (LAV) value for
the segment. LAV is the average of the average speed of all the
cars that passed through that segment every minute, for the past five
minutes. In order to calculate the LAV value, we first calculate the
average speed per car, for each segment, (Avgsv composite actor in
Figure 14), and then the average speed of all the cars in the segment
(Avgs composite actor).

The actor that calculates the average speed of a car has the fol-
lowing window semantic definition: {Size: 1 minute, Step: 1 minute,
Group-by: Car ID, Expressway, Direction, Segment number}. The
output from this actor is propagated to the Avgs actor which calcu-
lates the overall average speed per segment, per minute, and has the
following semantics: {Size: 1 minute, Step: 1 minute, Group-by:
Expressway, Direction, Segment number}.

The actor that calculates the number of cars per segment (cars),
per minute, has the following window semantic definition: {Size:
1 minute, Step: 1 minute, Group-by: Expressway, Direction, Seg-
ment number}.

A.3 Toll Calculation and Notification
The toll calculation is initiated for each car whenever it switches

from one segment to the next. To achieve this it has the following
window semantics: {Size: 2 tokens, Step: 1 token, Group-by: Car
ID}. Each time it is fired it processes a window containing the
last two position reports of a car. If those reports have a different
segment id then a new toll has to be calculated for that car. The

calculation is done by querying the relational database table which
keeps the segment statistics. The SQL query used to calculate the
toll, for a specific car is the following:

SELECT
CASE

WHEN LAV < 40 AND numOfCars > 50 AND (
SELECT COUNT(*)
FROM accidentInSegment AS ais
WHERE ais.xway = xway

AND ais.direction=dir
AND ((dir=1 AND seg <= ais.segment+4
AND seg >= ais.segment) OR

(dir=0 AND seg >= ais.segment-4
AND seg <= ais.segment))

AND ais.timestamp>=330-60
) = 0
THEN 2*POWER((numOfCars - 50),2)
ELSE

0
END as "Toll"

FROM ‘segmentStatistics‘
WHERE xway=$xway

AND seg=$segment AND dir=$direction



Figure 14: The Linear Road Benchmark car average speed sub-workflow (Avgsv).

Figure 15: The Linear Road Benchmark car count sub-workflow (cars).


