
Enabling Intensional Access Control via Preference-aware
Query Optimization

Nicholas L. Farnan, Adam J. Lee, Panos K. Chrysanthis1 Ting Yu2

{nlf4, adamlee, panos}@cs.pitt.edu yu@csc.ncsu.edu
1Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA

2Department of Computer Science, North Carolina State University, Raleigh, NC, USA

ABSTRACT
Although the declarative nature of SQL provides great util-
ity to database users, its use in distributed database manage-
ment systems can result in unintended consequences to user
privacy over the course of query evaluation. By allowing
users to merely say what data they are interested in access-
ing without providing guidance regarding how to retrieve
it, query optimizers can generate plans that leak sensitive
query intension. To address these types of issues, we have
created a framework that empowers users with the ability
to specify access controls on the intension of their queries
through extensions to the SQL SELECT statement. In this
demonstration, we present a version of PostgreSQL’s query
optimizer that we have modified to produce plans that re-
spect these constraints while optimizing user-specified SQL
queries in terms of performance.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—
Privacy ; H.2.4 [Database Management]: Systems—Dis-
tributed databases, Query processing

Keywords
query optimization, privacy, distributed databases, prefer-
ence SQL

1. INTRODUCTION
The declarative nature of SQL has been a major strength

of relational database systems: users can simply specify what
data they are interested in accessing and the database man-
agement system will determine the best plan for accessing
that data. Plans for query evaluation detail what operations
need to be performed to produce the result of an SQL query,
what order these operations should be completed in, and
what server should actually execute each operation. Tradi-
tionally, the best plan has been simply the plan that returns
results to the user in the shortest amount of time. When

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’13, June 12–14, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1950-8/13/06 ...$15.00.

user queries are issued to distributed database management
systems, however, two plans generating the same results for
the same query can vary greatly in how they disseminate
portions of that query during its evaluation.

In issuing a query to a database management system, the
user is specifying exactly what information she wishes to
retrieve from the system. This description is called the in-
tension of a user’s query. Users may consider some of the
intension of their queries to be sensitive and wish to keep
such sensitive intension hidden from remote servers. Hence,
in order to protect their privacy, users must be empowered
with the ability to control who is granted access to the in-
tension of their queries.

In centralized database systems, the whole of the intension
of a user’s query is disclosed to a single system that opti-
mizes and evaluates the query itself. As such, how the sys-
tem optimizes and evaluates the query has no effect on the
intensional privacy afforded to the user. With distributed
database systems, however, though the whole intension of a
user query is still disclosed to the optimizer, the optimizer
may construct an evaluation plan for the query that dis-
tributes portions of query intension to a large number of
remote servers needed to evaluate some part of that plan.
Further, the user is left completely unaware of how the in-
tension of her query is disseminated during its evaluation.
Though these servers are trusted to store data and correctly
process queries, the user may not trust them to learn sen-
sitive portions of the intension of her query. Hence, access
controls over the intension of SQL queries are needed to up-
hold user privacy.

Towards this goal, we have developed a framework for
users to author declarative constraints on the query eval-
uation plans generated by a query optimizer for resolving
SQL queries. The goal of our demonstration is to show how
our framework can be used to establish access controls and
protect the intension of SQL queries in distributed database
systems, such as by keeping sensitive join conditions from
being revealed to untrusted servers.

The remainder of this demonstration paper is structured
as follows: Section 2 will describe the system model that we
assume for this work and present a motivating example that
will be used as the core of our demonstration. Section 3
will describe our framework, the extensions to SQL that we
have developed as an interface to it, and further our imple-
mentation of this framework within PostgreSQL’s optimizer.
Finally, Section 4 will describe the details of the demonstra-
tion.

189

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2462410.2462428&domain=pdf&date_stamp=2013-06-12

Figure 1: An illustration of the workflow of distributed query processing. Here, Alice’s issuance of Query 1
and the dissemination of the query plan presented in Figure 2 is shown.

2. SYSTEM MODEL AND USE CASE
In our work, we consider the system model illustrated in

Figure 1. The distributed query evaluation process begins
when a user constructs the query she wishes to issue and
passes it to a query optimizer. The optimizer then deter-
mines the best plan for evaluating the user’s query, and dis-
tributes a portion of this plan to each server needed to eval-
uate the query. These database servers will evaluate their
assigned portions of the query, combine their intermediate
results as needed, and return the final query result to the
user.

As can be seen here, the user has no part in deciding to
or actually disseminating partial query plans to database
servers. This provides the opportunity for violations of the
user’s privacy to occur. To highlight this issue, consider the
following example:

Example 1. Alice is an astronomy researcher working at
the Polytechnic Institute of Technology (PIT). Alice has
recently decided to investigate whether combined readings
from radio and infrared telescopes viewing the same stellar
object can be used to efficiently predict the elements that
make up that object in a novel way. Towards investigating
this theory, she will query a small database of radio tele-
scope readings and the elements known to be found in those
objects that is maintained by PIT (in a table called simply
“radio”). To get infrared readings to work with as well, how-
ever, Alice will have to query a much larger database main-
tained by State University (SU), specifically their “ir” table.
For the greater good, the PIT and SU astronomy depart-
ments allow each other access to their respective databases.
In spite of this, though, Alice would like to keep her new the-
ory secret from researchers at SU to ensure she is the first to
publish it in the case that she is, indeed, on to something.

Alice is interested in the result of the following SQL query:

(1)
SELECT radio.reading, ir.reading, radio.elements
FROM radio, ir
WHERE radio.coordinates = ir.coordinates;

Without the aid of our framework, an optimizer could
produce a plan like the one shown in Figure 2. Here (and

Join,
{(radio.coordinates, =, ir.coordinates)},

SU

Scan,
{(ir)},
SU

Scan,
{(radio)},

PIT

Project,
{(radio.reading, ir.reading, radio.elements)},

SU

Figure 2: A potential plan for evaluating Alice’s
query that reveals sensitive intension to the adver-
sarial server SU. The execution location of each node
is represented by its border. Nodes with a dashed
border are to be executed by SU, while those with
a solid border are assigned to PIT.

throughout this demonstration paper) we represent a query
plans as trees of relational algebra operations where the
leaves of this tree scan the base tables containing needed
data, the root produces the result of the query, and inter-
mediate nodes process data from the relations scanned at
the leaves. The relational algebra operations that make up
the nodes of this tree can be represented as ternaries of the
following form:

〈op, params, p〉

Here, op represents the operation to be performed. We
consider valid operators to be either one of the core rela-
tional algebra operators (selection, projection, rename, set
union, set difference, and cross product), a scan, or a join.
params is a set of sets that represents the parameters to
that operation (e.g., the table to be scanned, the condition
on a join of two relations, the attributes that tuples should
be projected down to, etc.); and p represents the site anno-
tated to evaluate this operation.

It can be seen in Figure 2 that this example plan reveals
to SU sensitive aspects of the intension of Alice’s query: by
having SU evaluate the join of data from the radio and ir
tables, SU learns that Alice is interested in both radio and ir
telescope readings, the very information that she wished to

190

keep private. To solve this problem for Alice and users like
her, we provide a way for users to specify what portions of
the intension of their queries they consider to be sensitive,
and whom that sensitive intension should be kept from.

3. OUR APPROACH
To give users control over what parties are granted ac-

cess to sensitive portions of the intension of their queries, we
modify the query optimizer from our system model to accept
not only user queries, but also constraints on the plans that
can be generated to evaluate those queries. The optimizer
will then utilize these constraints during the optimization
process and produce plans that uphold them. Through this
approach, we can effectively include privacy as an optimiza-
tion metric.

3.1 SQL Extensions
Constraints can be specified as either requirements (con-

straints that must be upheld by any plan to evaluate the
query) or preferences (constraints that may not be upheld if
they conflict with other constraints or render the optimizer
unable to generate a feasible query plan). To express each of
these to the optimizer, in [1] we developed two extensions to
the SQL SELECT statement: the REQUIRING and PREFERRING

clauses.
Required constraints are fairly straightforward: Alice (from

Example 1) could require that any plan produced by the
optimizer for her query presented in Section 2 keeps her in-
terest in radio and infrared telescope readings from SU. The
REQUIRING clause takes the following general form:

REQUIRING condition HOLDS OVER node descriptors

AND another condition HOLDS OVER node descriptors

Node descriptors are used to identify the intensional re-
gion that the user wishes to constrain. Node descriptors are
defined as a mirror to our representation of query tree nodes,
ternaries consisting of op, params, and p. They are used to
“match” query tree nodes that contain sensitive pieces of
query intension. A node descriptor designed to specify the
mention of radio and infrared telescope readings as sensitive,
for example, would match against the project operation in
Figure 2 as this node operates on both the radio table’s
reading attribute and the ir table’s reading attribute. In
node descriptors, “*” is used as a general wildcard for por-
tions of the ternary that the user wishes a given node de-
scriptor to match against any value of. To construct a node
descriptor matching any query tree node that operates on
radio and infrared readings, for example, the user could in-
stantiate op and p as “*” while defining params as a combi-
nation of these two attributes. Finally, the “@” character is
used to identify free variables over which conditions can be
authored. By stating the p part of her node descriptor to
be a free variable, and authoring a condition that that free
variable should not have the value SU, Alice can inform the
optimizer of her constraint that query tree nodes matching
her node descriptor are not evaluated by SU. This constraint
could be expressed through our REQUIRING clause as follows:

(2)

SELECT radio.reading, ir.reading, radio.elements
FROM radio, ir
WHERE radio.coordinates = ir.coordinates
REQUIRING @p <> SU HOLDS OVER

<*, {(radio.reading, ir.reading)}, @p>;

Privacy notions are rarely so straightforward, however.
User conceptions of privacy are inherently personal and sit-
uationally dependent. The PREFERRING clause allows our
framework to capture such complex privacy notions. While
the PREFERRING clause is made up of the same basic con-
straint HOLDS OVER node descriptors building blocks as the
REQUIRING clause, it makes use of an additional keyword
to bind them together. Where the REQUIRING clause uses
only AND to join individual constraints together, constraints
in the PREFERRING clause can also be joined using CASCADE.
This second keyword is needed to establish the priority of
different constraints relative to one another to form partially
ordered preference structures. While two constraints joined
by AND are considered equally preferred, any constraint be-
fore a given CASCADE is considered more important by the
optimizer than any that are listed after that CASCADE.

As an example, let us say that Alice would prefer to keep
SU from learning that she is interested in both infrared tele-
scope readings and radio telescope readings. Alice would like
it if neither of those pieces of intension is revealed to SU, but
if that is not possible, she would prefer that either one or
the other is revealed as opposed to revealing her interest in
both. This relatively complex notion of query privacy can
be succinctly captured in our framework using simply the
AND keyword (as Alice does not consider the revelation of ei-
ther her interest in radio readings or her interest in infrared
readings to be more important than the other).

(3)

SELECT radio.reading, ir.reading, radio.elements
FROM radio, ir
WHERE radio.coordinates = ir.coordinates
PREFERRING @p <> SU HOLDS OVER

<*, {(radio.reading)}, @p>
AND @p <> SU HOLDS OVER
<*, {(ir.reading)}, @p>;

If Alice further wanted all join operations to be performed
by PIT’s database server, she could add this as a less im-
portant constraint using the CASCADE keyword:

(4)

SELECT radio.reading, ir.reading, radio.elements
FROM radio, ir
WHERE radio.coordinates = ir.coordinates
PREFERRING @p <> SU HOLDS OVER

<*, {(radio.reading)}, @p>
AND @p <> SU HOLDS OVER
<*, {(ir.reading)}, @p>

CASCADE @p == PIT HOLDS OVER
<Join, *, @p>;

Upon receiving this extended query specification with pre-
ferred constraints, the optimizer will attempt to construct a
plan that upholds the constraints for keeping radio.reading

and ir.reading from SU (or both). If it can construct a plan
that further executes all joins at PIT, all the better. The op-
timizer will only emit a plan that evaluates all joins at PIT
and reveals sensitive information to SU if revealing such in-
formation is unavoidable in any plan the optimizer is able to
build. Because Alice states that keeping her interests secret
from SU is more important to her than executing joins at
PIT, the optimizer will never trade off revealing information
to SU in favor of executing joins at PIT.

Such an optimization process could result in the query
plan shown in Figure 3. This query plan upholds all of the
example constraints mentioned in this section.

191

Join,
{(radio.coordinates, =, ir.coordinates)},

PIT

Scan,
{(ir)},
SU

Scan,
{(radio)},

PIT

Project,
{(radio.reading, ir.reading, radio.elements)},

PIT

Figure 3: A potential plan for evaluating Alice’s
query that protects her privacy. The execution loca-
tion of each node is represented by its border. Nodes
with a dashed border are to be executed by SU,
while those with a solid border are assigned to PIT.

3.2 Implementation
PostgreSQL is a widely-used, open-source, object-relational

database management system [3]. In all, it consists of over
700,000 lines of code. To support our extensions to SQL, we
have modified the optimizer contained within PostgreSQL.

As PostgreSQL is not a distributed database management
system, the first step in adapting its optimizer to our needs
was to modify the optimizer to reason about execution lo-
cations of the individual operations that make up an overall
query plan. This required modifying all query plan data
structures to incorporate execution location state, iterating
through possible execution locations of all operations added
to a query plan, and revising the plan cost estimator to ac-
count for parallel operations occurring at different sites and
data transfer times.

Once this was done, we adapted the optimization process
to utilize REQUIRING clauses to prune the optimization search
space. Any sub-plan that violates a required constraint can-
not be emitted as part of a final query plan and can hence be
discarded from further consideration during plan construc-
tion. To support the PREFERRING clause, we have modified
PostgreSQL’s dynamic programming approach to query op-
timization to maintain only the most highly preferred plans
over the course of optimization. This heuristic allows us in-
clude user preferences and intensional access controls as op-
timization metrics while offering optimization performance
near that of the unmodified optimizer. All together, our
modifications to PostgreSQL touched a subset of the code
base totaling over 60,000 lines of code.

4. DEMONSTRATION
In this demonstration, we first illustrate the how easily

a user with knowledge of SQL can specify constraints on
her queries and second, the effect of such constraints on the
query optimization process. We show how, when passed into
our modified query optimizer alongside a user query, inten-
sional access controls specified through such constraints can
drastically change the makeup of the plan devised by the
optimizer to protect user privacy with little overhead to op-
timization time. We present the example scenario and query
shown in Section 2, and the different query plans produced
by our optimizer when different constraints are issued with
the query. In doing so, we present only a small subset of the
expressive power available through our framework.

To set up this demonstration, we establish databases sim-

ulating PIT and SU’s stores of telescope readings. Specifi-
cally, we seed two databases with samples of data gleaned
from the Astroshelf project [2], and then adjust their catalog
metadata to simulate the optimization of queries over large
scale astronomical databases without having to maintain a
large scale data store for this demonstration. We assume
that SU stores around 4TB of data, while PIT maintains
only 1TB, and scale the metadata accordingly.

As we demonstrate only the query optimization process,
only the catalog metadata for these databases is accessed in
our demonstration. By seeding these databases with sample
data from Astroshelf, we can ensure that our demonstration
presents realistic examples of query optimization.

We begin our demonstration by presenting the optimiza-
tion of Alice’s query without any constraints on the resulting
plan. We present a graphical representation of the result-
ing evaluation plan, as well as the time required to opti-
mize the query and the estimated run time of the evaluation
plan. With this baseline in hand, we then show how the
addition of the required constraints shown in Query 1 in
Section 3.1 causes the generation of structurally different
plans and the minimal effect that the addition of such con-
straints has on optimization time and estimated runtime.
We further demonstrate how our optimizer can detect the
presence of conflicting requirements (e.g., Alice requires that
all joins happen at PIT and also that no joins happen at
PIT), and inform the user of such.

From here, we show the effect of preferred constraints on
the optimization process by optimizing Queries 3 and 4 from
Section 3.1. We further show how conflicting preferred con-
straints are of no consequence to our optimizer. If they are
separated by a CASCADE, the optimizer will produce a plan
upholding the one given before the CASCADE. If they are sepa-
rated by an AND, the optimizer will support whichever allows
for the creation of a faster evaluation plan.

Finally, we demonstrate how other policies idioms can be
expressed using our framework. For example, we show how
separation of duty controls can be implemented through our
constraints (e.g., do not allow any server that scans the in-
frared readings table to perform any join operations).

Acknowledgments. This work was supported in part by
the National Science Foundation under awards CCF–0916015,
CNS–0964295, CNS–0914946, CNS–0747247, and OIA-1028162.
This work was further partially supported by a gift from
EMC/Greenplum.

5. REFERENCES
[1] N. L. Farnan, A. J. Lee, P. K. Chrysanthis, and T. Yu.

Don’t reveal my intension: Protecting user privacy
using declarative preferences during distributed query
processing. In ESORICS, pages 628–647, 2011.

[2] P. Neophytou, R. Gheorghiu, R. Hachey, T. Luciani,
D. Bao, A. Labrinidis, E. G. Marai, and P. K.
Chrysanthis. Astroshelf: understanding the universe
through scalable navigation of a galaxy of annotations.
In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’12, pages 713–716, 2012.

[3] The PostgreSQL Global Development Group.
Postgresql. http://www.postgresql.org/, Dec. 2012.

192

