
Self-managing load shedding for data stream
management systems

Thao N. Pham, Panos K. Chrysanthis, Alexandros Labrinidis
Department of Computer Science, University of Pittsburgh

{thao, panos, labrinid}@cs.pitt.edu

I. INTRODUCTION

Today the ubiquity of sensing devices as well as mobile
and web applications generates a huge amount of data in
the form of streams. Consequently, monitoring applications
have been developed based on continuous queries (CQs) that
look for interesting events over these data streams. Such
CQs are efficiently processed by a Data Stream Management
System (DSMS) (e.g., [1], [2], [3]), rather than a Database
Management System.
An important requirement of DSMS-based monitoring ap-

plications is near real-time answers: it is expected that detected
events (i.e., output tuples) for a specific input event (i.e., input
tuple) are produced within a small period after tuple arrival,
otherwise the outputs have little or no value. The length of this
period, referred to as delay target, defines how long the outputs
can be delayed and is specific to each application. However,
even with the most well-provisioned DSMS, the input rates
and value distribution of data streams usually fluctuate and
can, at times, create an input load that is unpredictably higher
than the processing speed of the DSMS, causing the DSMS
to be overloaded. Load shedding has been proposed (e.g., [2],
[1], [4]) to handle such cases. This method sheds data tuples
to meet the quality of service requirement, i.e., delay target,
assuming that data accuracy is less critical and approximated
answers are acceptable.
Previous works address four basic questions related to load

shedding: when, how much, where, and what to shed. The
works on where to shed ([5], [6], [7], [8]) discuss how to dis-
tribute the shedding to different locations in the query network
when CQs have different requirements on data accuracy. The

works on what to shed increase the usefulness of the retained
data after shedding by either considering data semantics (e.g.,
[5], [9], [10], [11]), or using other ways to shed load instead
of completely discarding tuples (e.g., [4], [12], [13]). All these
works on the where and what questions require that the amount
of load to shed, i.e., the answer to the questions of when and
how much to shed, is known and provided as an input.
A few previous works have addressed these first and crucial

questions of when and how much to shed (e.g., [14], [5], [4],
[15], [16]), but none of them provides a complete answer
to be used efficiently in a general DSMS. The method used
in Aurora [5], which is assumed in most other systems,
theoretically can calculate the excess load coming into the
system in every time unit. However, as shown in [14], this
method cannot control the average response time of query
outputs to a predefined delay target. CTRL [14] is proposed
to overcome that limitation of Aurora. However, CTRL is not
applicable for complex query networks consisting of joins,
aggregates, or shared operators.
Both CTRL and Aurora require a manually-tuned headroom

factor that represents the system processing capacity. The
headroom factor is tuned off-line in both these schemes and
used as constant, although in reality it is subject to changes
at runtime as the system environment or the query network
change. This significantly limits the applicability of these
schemes in practice, especially when the DSMS is deployed
on a shared, multi-tenant server.
Clearly, a good load shedder, like CTRL, should be able to

bound the response time of the DSMS to the specified delay
target, and like Aurora, should be applicable to all types of
query networks. Unlike both CTRL and Aurora, a good load
shedder should also automatically adjust the headroom factor
instead of relying on a manually-tuned one. In this paper we
propose a load shedder with all these three ideal properties,
which provides an efficient answer for the fundamental when
and how much questions.
Contributions: We make the following contributions:
(1) By defining the concept of queued load, we improve the

delay estimation model in CTRL to build SEaMLeSS, a
scheme that is applicable to all types of query networks.

(2) We build into SEaMLeSS another feedback loop to
automatically adjust the headroom factor at run time, and
remove the need for a manually-tuned one.

(3) We evaluate SEaMLeSS in AQSIOS, our experimental
DSMS, using multiple query networks and real and syn-

Abstract— Load shedding is an integral component in many
Data Stream Management Systems, aiming at preventing the
response time from exceeding a user-specified delay target under
overload situations. The currently best performing load shedder
determines the correct amount of load to shed by utilizing a
feedback loop for correcting the statistics-based estimations.
Although this load shedder outperforms previous works in
controlling response time as well as minimizing data loss, it
requires a manually-tuned parameter and cannot work with
complex query networks containing joins, aggregations or shared
operators. In this paper, we propose SEaMLeSS — SElf
Managing Load Shedding for data Stream management systems,
which extends and rectifies these limitations of the state-of-the-
art load shedder while making it applicable for multi-tenant
servers. We implement and evaluate our extensions in AQSIOS,
our experimental DSMS prototype, using both synthetic and real
input patterns.

978-1-4673-5304-5/13/$31.00 © 2013 IEEE ICDE Workshops 201370Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

thetic data. The experimental results confirm the expected
advantages of SEaMLeSS over CTRL and Aurora.

Roadmap: Now that we have introduced the related work
and put our contribution in perspective, in the next section we
provide a more detailed background on the “when and how
much” problem, followed by our proposal of SEaMLeSS in
Sec. III. We describe our experiment setting and results in Sec.
IV and Sec. V, respectively, and conclude in Sec. VI.

II. BACKGROUND

A. The “When and how much” problem

Definition 1: The response time of a tuple is the time
elapsed since the tuple enters the system until the related out-
put tuple is produced. The response time consists of processing
time and queuing time.
Definition 2: The delay target of a query, denoted by D, is

the worst-case response time tolerated by the stream applica-
tions using the query∗.
Definition 3: The headroom factor, denoted by H , is the

fraction of each time unit the system can spend on processing
the incoming tuples. H is normally in the range of (0,1).
Definition 4: The when and how much problem refers to the

need to determine when to apply load shedding and how much
is the minimal amount of load to shed, so that the response
time of the output tuples is upper-bounded by the delay target.

B. “When and how much” state-of-the-art

1) The Aurora approach: A first attempt to answer the
“when and how much” questions, used in Aurora [5] and im-
plied in STREAM [7], is to statistically compute the incoming
load L, compare it to the system capacity LC which estimated
by a headroom factor, and shed an amount equal to L-LC if
L > LC . The incoming load is computed by

L =
∑

i

(ri × load coefi) (1)

where ri denotes the input rate, i.e., the number of input tuples
per time unit, of the ith input stream, and load coefi is the
load coefficient of the stream. The load coefi, in the case of
a flat query, i.e., no shared operator, is given by:

load coefi =
∑

j

(cj ×
∏

1≤k<j

selk) (2)

where cj is the processing cost per tuple of the jth operator
in the path from the input stream to the corresponding output,
and selj is its selectivity. In the case of a fan-out query plan,
i.e., with shared operators, it recursively sums up the load
coefficient of every sub-path along the way.
Although the Aurora approach is theoretically sound, in

practice it has the following two problems:
(a) Ad-hoc selection of headroom factor: Aurora does not

provide a method to pick the correct headroom factor. An
incorrect value of the headroom factor will lead to either

∗Same as [14], we assume that the delay targets for all queries are either
identical or the load manager will react when the first delay target is violated.

shedding more data unnecessarily, or failing to stop the
response time from increasing beyond the delay target,
neither of which is desirable.

(b) Not delay-target-aware: Aurora is not designed to con-
sider a specific delay target. In fact, as pointed out in [14],
Aurora is unable to bound the response time to a specific
delay target, for Aurora does not use the outcome of its
previous decisions as feedback to correct current decision.

2) The Control-based approach (CTRL): In [14], the au-
thors proposed CTRL for the when and how much problem
that primarily addressed the second shortcoming of the Aurora
approach, i.e., not delay-target-aware. The CTRL approach
counts the number of tuples coming in and out of the system in
each period and keeps track of a virtual queue of tuples queued
in the system. The response time (which is called delay in the
CTRL paper) of the tuples coming to the system at the kth

period is then estimated by the following equation:

yk =
c

H
qk−1 =

c.T

H

∑

i<k

[f i
in − f i

out] (3)

where yk is the response time at the kth period, q(k−1) is the
length of the virtual queue after the (k− 1)th period, c is the
processing cost per tuple, T is the length of the period, H is
the headroom factor, fin and fout is the input and output rate.
Applying control theory on the above model, the authors

develop a feedback controller to compute the additional num-
bers of tuples allowed, and consequently, the shedding rate, for
the next period such that the response time converges quickly
to the delay target. They experimentally show that CTRL can
keep the response time around the target, which Aurora cannot,
while CTRL sheds only 1-2% more data than Aurora. CTRL,
however, has also two major shortcomings:
(a) Manual tuning of the headroom factor: In [14], the

authors manually choose the headroom factor for a given
query network so that the estimated delay given by Eq. 3
best matches the real response time of the output. This
manual tuning is not practical, because the headroom
factor can change due to events such as the starting of
a new background job or a new query. If the headroom
factor used is higher than the correct one, the response
time will converge to a value higher than the delay taget,
violating the scheme’s promise of honoring the target.
A headroom factor smaller than the correct one causes
additional data loss unnecessarily.

(b) Not applicable in complex query networks: The way
CTRL estimates the virtual queue based on the inflow and
outflow rates does not work when the query network has
join, aggregation, or shared operators, because the one to
one mapping of an input to an output tuple would fail.
Fig. 1 gives an example of this, with a join operator (��1)
and the result from the Select operator σ2 being shared by
two queries. The output flow also includes those tuples
discarded along the query network (e.g., tuples that do
not satisfy a selection). In this case, simply increasing
the length of the virtual queue by 1 for each incoming

71Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A query network with joins and shared operators, for which the
queuing estimation model of CTRL would not work. The selectivity of ��1
equals 2, meaning on average an input tuple (from either side of ��1) produces
two output tuples.

tuple from the two sources and decreasing 1 for each
tuple output or discarded would not work. The reason is,
for instance, one tuple coming in stream S2 actually goes
out of the system only if it is discarded at the operator
σ2 or discarded/output along both branches downstream.
Further, the selectivity of a windowed join (as ��1 in
Fig. 1) can be greater than 1, thus one tuple coming to
the join can result in multiple output tuples at the query
output 1.

3) Other existing schemes: In [16], the method to estimate
the excess load is similar to Aurora without considering the
headroom factor (i.e., assuming that the headroom factor
always equals 1). Another approach, as mentioned in [4] and
[15], is to monitor the input queue(s) to decide when the
system is overloaded. However, the approach in [4] did not
discuss how the number of queued tuples can be used to infer
whether the system is overloaded. The approach in [15] puts
a threshold on the number of tuples in the queue as a signal
that the system is overloaded, but it is also not specified how
to select such a threshold.

III. SEAMLESS

We propose SEaMLeSS (SElf Managing Load Shedding for
data Stream management systems) which achieves the three
ideal properties: (1) being able to honor the delay target, (2)
applicable to all types of query networks, and (3) adjusting
the headroom factor automatically.
SEaMLeSS follows the design of CTRL in applying a

delay estimation model to estimate the response time from
the number of queued tuples, and using control theory to
determine the shedding amount for the next cycle. This design
allows SEaMLeSS, like CTRL, to effectively manage the
response time of the DSMS to honor the delay target. However,
SEaMLeSS has the following improvements over CTRL:
• Instead of simplifying the details of the queued tuples by
using the virtual queue, we propose the concept of queued
load and use that in SEaMLeSS to exactly estimate the
response time without any assumption on the type of the
query network. This improvement enables SEaMLess to
be applicable to all types of query network, including
those containing joins, aggregations or shared operators.

• SEaMLeSS uses the actually response time of the outputs
as feedback to automatically adjust the headroom factor,
thereby removing the need for manually-tuned one.

A. Handling complex query networks

One possible solution for overcoming CTRL’s inadequacy in
handling complex query networks could be to time the inflow
rate and outflow rates with the number of paths sharing an
operator, and the selectivities of join and aggregate operators.
However, this gives an approximation of the length of the
virtual queue in each period rather than the accurate value.
The error, even though it could be negligible in a single period,
accumulates to a considerable amount over time and degrades
the performance of the system.
We propose the concept of queued load and use it in our

solution. In a kth period, SEaMLeSS estimates the queued
load based on the number of tuples in the physical queue
of each operator. Because the tuples in different queues
contribute unequally to the total queued load, we consider the
load coefficient of the query branch fed by each queue. In
particular, up to the kth period, each operator’s input queue
contributes to the total queued load qLk an amount equal to the
queue’s length times the load coefficient of the query branch
rooted at that operator, as in the following equation:

qLk =
∑

i

(qkoi × load coefoi) (4)

where oi denotes an operator in the query network, qkoi is the
length of the physical input queue of oi at the kth period, and
load coefoi is the load coefficient of the query branch rooted
at oi, which is calculated following Eq. 2 in Sec. II-B1.
Assuming that the query processing task of the system is

carried out sequentially and the DSMS is using a fair scheduler
such as Round Robin, then a tuple coming to the system at
time k has to wait for all queued tuples in the system up to
time k-1. Therefore, the estimated response time for the tuples
coming during the kth period is given by Eq. 5, which is a
modification of Eq. 3 in [14]:

yk =
qLk−1

H
(5)

The Eq. 6 presents the SEaMLeSS’ feedback controller, which
is an adjustment of the one in [14]. In each control period
this feedback controller is used to determine uk, which is the
amount of load that can be added to the queue in the next
period without violating the delay target.

uk = H × [b0e
k + b1e

k−1]− auk−1 (6)

where ek = yk−D and a, b0, b1 are the controller parameters.
Details on the design of the controller and the derivation of
these parameters can be found in [14].
In each control period of length T, the DSMS can process

(i.e., take from the queues) a load of H×T , so the input load
that can be accepted in the next period is vk = uk +H × T .
Thus the amount of load to shed in the next period is Lk−vk,
where Lk is the incoming load in the next period. Since Lk

has not been observed yet, it is approximated by Lk−1.

72Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

B. Headroom factor auto-adjustment

The number of queued tuples reflects the intermediate
outcome of the shedding decision: if the shedder sheds the
right load, the number of tuples in the queues should remain
at a level such that the time to process these tuples does
not exceed the delay target. Therefore, the number of queued
tuples, in the form of a virtual queue as in CTRL or our queued
load, is used as feedback to help the load shedders adjust their
shedding decisions. However, the schemes cannot make the
inference directly from the length of the virtual queue or the
amount of queued load, but rather apply a delay estimation
model over it. The delay estimation model in turn needs an
estimation of the headroom factor, so that it can compute the
time needed to process the queued tuples. The problem in
CTRL is that there is no feedback about the correctness of the
headroom factor, so it depends on a manually-tuned one.
This motivated us to add to SEaMLess another feedback

loop to automatically adjust the headroom factor. Since the
headroom factor is used in the delay estimation model to
estimate the response time based on the number of queued
tuples, the feedback that can be utilized to adjust the headroom
factor should be the different between the estimated response
time and the actual response time. The question is how this
difference suggests the correct headroom factor.
The obvious solution of using the difference between the

estimated response time (i.e., estimated delay) and the real
one would not work, because this difference does not always
indicate that the current headroom factor is not correct. The
difference might be caused by the lag between the time of
the measurement and that of the estimation. This can happens
when the system is overloaded but the response time is still
below the delay target. In that case, the load manager does
not shed the excess load so the response time keeps increasing
quickly. This is also true for the case when the system comes
from an overloaded state to a non-overloaded one, causing the
response time to decrease quickly. Therefore, in both of these
cases, it is hard to use the difference to adjust the headroom
factor. In addition, when the system is in normal state (i.e.,
not overloaded), the response time is small and hence factors
such as system environment fluctuations and statistics errors
can cause a difference that is relatively significant. Therefore,
the difference between real and estimated response time during
normal state is also not a good clue to adjust the headroom
factor.
Because the basic goal of CTRL, and SEaMLeSS, is to keep

the response time around the delay target when the system is
overloaded, if the headroom factor is correct the response time
should converge to the target whenever the load is being shed.
Therefore, by monitoring the actual response time when the
shedding decision is in effect and comparing it with the target,
we can figure out whether the headroom factor is correct or not
and how to adjust it. More specifically, a wrong value of the
headroom factor causes the error in the estimated response
time, which finally results in the response time converging
to a value D′ that is higher or lower than the target D. The

difference between the target delay D and this value D′ tells
how much the headroom factor should be:

Hadjusted = Hcurrent × D

D′

where Hadjusted is the new value of the headroom factor, and
Hcurrent is the current one. D′ is the average real response
time over a number of periods when shedding is applied.

IV. EXPERIMENTAL PLATFORM

We experimentally evaluated SEaMLeSS, CTRL, and Au-
rora load shedders in AQSIOS, our DSMS experimental pro-
totype.

A. DSMS platform

We developed AQSIOS [17], our experimental DSMS platform
by extending the STREAM source code [2]. Our extensions
include new operator implementation, optimization schemes
[18], new scheduling policies [19], and load shedders.
Data streams coming to the system are read and translated

to an internal representation format by source operators. In
the STREAM engine, a source operator is considered part
of a query and the query networks. We embed the shedding
functionality to the source operators, so that they will discard
an incoming tuple with a probability equal to the shedding
rate determined by the load manager.

B. Experimental Settings

Query networks: We use two query networks as follows:
• QN-complex: is a big query network containing about
1140 operators (select, project, source and output). Some
operators are shared between two to four queries. We
used this big query network to create experiments that
are close to real-world applications.

• QN-flat: is a flat query of 8 select and project operators,
together with a source operator and an output operator.
We add delay to the operators to increase the processing
cost per tuple, so that the total cost of this query network
is approximate to that of QN-complex. This QN-flat query
network is similar to the one used in the CTRL paper
[14]. We use this query network in our experiments
to create a setting when CTRL can achieve its best
performance: the simple, flat query network enables the
correct calculation of the virtual queue in CTRL, even
if such a query network is not representative of real
applications.

Input data: We use one stream of synthetic data, denoted Sc,
and one of real data Sr, as described below:
• Sc: has a constant input rate of 200 tuples/sec, which is
within the system capacity, for the first 10 seconds, and
then goes to 350 tuples/sec, which overloads the system,
until the end of the experiment at the 400th second. Sc

is used when we want to keep the input rate constant to
clearly examine the effect of the factor of interest.

73Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Input rate of the real data Sr .

• Sr: is a trace of TCP packets coming in and out of
the Lawrence Berkeley Laboratory (Dataset LBL-PKT-
4/lbl-pkt-n.tcp is publicly available at the following URL:
http://ita.ee.lbl.gov/html/contrib/LBL-PKT.html)

Parameters: We choose the delay target D = 2s, which is
the same to that used in the CTRL paper. We use the control
period T = 0.5s (The CTRL paper experimentally shows that
T= [250ms-1000ms] is the best range given that D = 2s).
In order to choose an appropriate headroom factor for

CTRL, following the method used in [14] we run the CTRL’s
module that estimates the output delay based on the length of
the virtual queue. We manually change the headroom factor
used in the model and plot the estimated value together with
the real one until they match with each other. This tuning gave
us 0.99 as the best value of headroom factor for CTRL for the
QN-flat query network. For the QN-complex query network,
as anticipated, we cannot find suitable headroom factor for
CTRL since the estimation of the virtual queue by CTRL is
no longer correct. Thus in this case we have to run CTRL with
the headroom factor obtained with the QN-flat query network,
and some other values down to 0.8. For SEaMLeSS, we set
the initial value of the headroom factor to 0.8.
We set the headroom adjustment period P to 30 control

periods (i.e., 15s) for SEaMLeSS. A sensitivity analysis of
SEaMLeSS on P are presented in Sec. V-B

V. EXPERIMENTAL RESULTS

In this section we report the results of our performance eval-
uation of SEaMLeSS compared to CTRL and Aurora, showing
the advantages of SEaMLeSS in adjusting the headroom factor
automatically and handling complex query network. We also
analyze the sensitivity of SEaMLeSS to the headroom factor
adjustment period. For all the experiments, the results reported
are the average of 5 runs.

A. Performance evaluation

1) Under system environment changes (Fig. 3): Selecting
a correct headroom factor for CTRL is a daunting task, but
despite being carefully selected, the headroom factor is not
guaranteed to be correct for the whole execution time. In this
experiment we illustrate this by launching background jobs
while the DSMS is running. We use the input Sc and the QN-
flat query network.
Fig. 3 shows the response time under CTRL, which used a

fixed, manually-tuned headroom factor, and our SEaMLeSS,
which automatically adjusts the headroom factor at runtime. At

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

SEaMLeSS CTRL delay target

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

SEaMLeSS CTRL

Fig. 3. Effect of environment changes on CTRL and adaptation of SEaM-
LeSS. Top plot shows the response time, bottom plot shows the headroom
factor recognized by each scheme. Total data loss for SEaMLeSS and CTRL
is 62.98% and 62.69%.

H Max delay Average delay Data loss
violation violation

SEaMLeSS auto 0.73s 0.09s 32.85%
CTRL 0.99 41.10s 23.33s 0.00%
Aurora 0.92 1.16s 0.09s 37.59%
Aurora 0.93 1.80s 0.19s 36.82%

TABLE I
DELAYS AND DATA LOSS WITH QN-COMPLEX AND Sr .

the beginning, the headroom factor tuned for CTRL is correct
so it manages to keep the response time at the delay target.
SEaMLeSS does not have such a well-tuned headroom factor,
yet it quickly picks up the correct value and can control the
response time as efficiently as CTRL. When some background
jobs are launched and share the processor with the DSMS
at the 100th second, the headroom factor used for CTRL is
no longer correct, making the response time twice as high as
the delay target. SEaMLeSS, however, is able to adapt very
quickly to the change, and still honor the delay target. Fig. 3
shows the headroom factor adjustment made by SEaMLeSS
in response to the change in the system environment.
When the query network is flat, which is the case in this

experiment, [14] has shown that CTRL outperforms Aurora.
Therefore the fact that SEaMLeSS performs equivalent or bet-
ter than CTRL in this experiment also means that SEaMLeSS
outperforms Aurora with a flat query network.
2) With a complex query network (Fig. 4 and Table I):

In this experiment we use a complex query network (QN-
complex) for which CTRL’s estimation is no longer correct.
Since [14] does not compare CTRL’s performance to Aurora
for complex query networks, we include Aurora in this eval-
uation to confirm that SEaMLeSS also outperforms Aurora in
this case.

74Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

SEaMLeSS
CTRL

Aurora (H = 0.92)
delay target

Fig. 4. Response times with QN-complex and Sr . The X-axis plots the input timestamps, showing that within the specified experiment time the system
under CTRL was only able to process tuples coming in the first 66 seconds. Note that the Y-axis is in logarithmic scale.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

P=1
P=30

P=60
delay target

Fig. 5. Effect of different headroom adjustment periods on SEaMLeSS.

Since the Aurora scheme does not suggest a way to pick a
correct value for the headroom factor, we ran it with a range
of possible values. However, in this setup no value of the
headroom factor could enable it to perform equivalently to
SEaMLeSS. If the headroom factor is too small, the response
time is kept well below the target at all time by dropping much
more data unnecessarily. When the headroom factor equals
0.92 (Fig. 4), the average delay violation of Aurora is roughly
the same as SEaMLeSS but Aurora drops considerably more
data (Table I). Increasing the headroom factor to 0.93 makes
the delay violation to be significantly higher (due to the higher
peak in the response time) and the data loss is still higher than
SEaMLeSS. This is consistent with the properties of Aurora
analyzed in [14]: the Aurora method is not aware of the delay
target and cannot recover from a previous wrong decision since
it does not look at its outcomes.

The method given by CTRL to tune the headroom factor
cannot be applied with the complex query network: no matter
how we change the value of the headroom factor, the delay
estimated by CTRL does not match the real output delay.
Because the query network contains a shared operator, an
input tuple actually corresponds to several tuples in the output
flow. CTRL cannot recognize this mapping and hence it
miscalculates the length of the virtual queue. We still tried

to run CTRL with the headroom factor equal 0.99 (i.e., the
value we tuned for QN-flat). As we show in Fig. 4, CTRL
totally fails to control the response time: it does not realize
that the system is overloaded and does not apply any shedding,
letting the response time of the query output exceed the delay
target quickly (the Y-axis is in log scale). As a result, when
the experiment stops (for all schemes, we let the experiment
run for 420s), the system with CTRL has only been able to
process input tuples coming in the first 66s (out of 400s). We
tried some other values of the headroom factor from 0.8 - 0.99
as well, but they do not make any observable difference to the
performance of CTRL compared to that in this case.

B. Sensitivity analysis (Fig. 5)

In this section we show the sensitivity level of SEaMLeSS
to the headroom adjustment period, denoted P.
We ran SEaMLeSS’s headroom adjustment algorithm vary-

ing P from 1 to 60 control periods with the experiment
presented in Sec. V-A1, in which the headroom factor changes
significantly at the 100th second. We expect that when P
is large, it takes SEaMLeSS longer to adjust the headroom
factor but it is more stable. When P is smaller SEaMLeSS
starts adjusting earlier but it tends to make more inaccurate
adjustments and hence becomes less robust against fluctuation
caused by system events.

75Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

The sensitivity analysis shows that in this case SEaMLeSS
works best (in term of both delay violation and data loss) with
P in the range of [20-40]. To provide more insight, we show in
Fig. 5 the three cases with P equals 1, 30 and 60. As expected,
when P = 1 the adjustment decision is much less accurate so
it has to adjust it many times before getting to the appropriate
value. And its response time afterward also fluctuates more
than the others. With P=60 the load shedder has to wait for a
long time unnecessarily before adjusting the headroom factor.
In other experiments when we keep the headroom factor

unchanged during the execution time, there is no considerable
difference for P in [20-60] (the auto-adjustment of the head-
room factor at the beginning is too small to observe the effect
of P), and we have shown the results with P = 30.

VI. CONCLUSIONS

Motivated by the shortcomings of the state-of-the-art load
shedders, namely CTRL and Aurora, we have proposed SEaM-
LeSS to efficiently answer the “when and how much” ques-
tions of the DSMS load shedding problem. SEaMLeSS, like
CTRL, is able to bound the response time of the system to a
specified delay target and outperforms Aurora. Yet SEaMLeSS
overcomes CTRL’s limitations: it is applicable to all types
of query networks and does not require a manually tuned
headroom factor. We confirmed the addvantages of SEaMLeSS
over CTRL and Aurora through an extensive set of experi-
ments on AQSIOS, using both real and synthetic input streams.

Acknowledgments: We would like to thank Profs. Tu and
Prabhakar for providing us the code from their CTRL paper.
This work was partially supported by NSF awards IIS-0534531
and IIS-0746696, by an Andrew Mellon Fellowship, and a gift
from EMC/Greenplum.

REFERENCES

[1] D. J. Abadi et al., “Aurora: a new model and architecture for data stream
management,” in VLDB Journal, 12(2): 120–139, 2003.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in PODS ’02.

[3] S. Chandrasekaran et al., “Telegraphcq: continuous dataflow processing,”
in SIGMOD ’03.

[4] F. Reiss and J. M. Hellerstein, “Data triage: An adaptive architecture
for load shedding in telegraphcq,” in ICDE ’05.

[5] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker,
“Load shedding in a data stream manager,” in VLDB ’03.

[6] N. Tatbul, U. Çetintemel, and S. Zdonik, “Staying fit: efficient load
shedding techniques for distributed stream processing,” in VLDB ’07.

[7] B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation
queries over data streams,” in ICDE ’04.

[8] B. Mozafari and C. Zaniolo, “Optimal load shedding with aggregates
and mining queries,” in ICDE ’10.

[9] Y. Chi, H. Wang, and P. S. Yu, “Loadstar: load shedding in data stream
mining,” in VLDB ’05.

[10] J. H. Chang and H.-C. M. Kum, “Frequency-based load shedding over
a data stream of tuples,” Inf. Sci., 179(21): 3733–3744, 2009.

[11] R. Dash and L. Fegaras, “Synopsis based load shedding in xml streams,”
in EDBT/ICDT ’09 Workshops.

[12] R. V. Nehme and E. A. Rundensteiner, “Clustersheddy: load shedding
using moving clusters over spatio-temporal data streams,” in DAS-
FAA’07.

[13] B. Gedik, K.-L. Wu, and P. S. Yu, “Efficient construction of compact
shedding filters for data stream processing,” in ICDE ’08.

[14] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao, “Load shedding in stream
databases: a control-based approach,” in VLDB ’06.

[15] W. Kleiminger, E. Kalyvianaki, and P. Pietzuch, “Balancing load in
stream processing with the cloud,” in ICDEW’ 11.

[16] B. Kendai and S. Chakravarthy, “Load shedding in mavstream: Analysis,
implementation, and evaluation,” in BNCOD ’08.

[17] P. K. Chrysanthis, “Aqsios - next generation data stream management
system,” CONET Newsletter, June 2010.

[18] S. Guirguis, M. Sharaf, P. Chrysanthis, and A. Labrinidis, “Three-level
processing of multiple aggregate continuous queries,” in ICDE’12.

[19] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs, “Algo-
rithms and metrics for processing multiple heterogeneous continuous
queries,” ACM TODS, 33(1): 5.1–5.44, 2008.

76Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

