
Distrib Parallel Databases (2013) 31:115–149
DOI 10.1007/s10619-012-7108-0

Intelligent search in social communities of smartphone
users

Andreas Konstantinidis ·
Demetrios Zeinalipour-Yazti · Panayiotis Andreou ·
George Samaras · Panos K. Chrysanthis

Published online: 11 September 2012
© Springer Science+Business Media, LLC 2012

Abstract Social communities of smartphone users have recently gained significant
interest due to their wide social penetration. The applications in this domain, how-
ever, currently rely on centralized or cloud-like architectures for data sharing and
searching tasks, introducing both data-disclosure and performance concerns. In this
paper, we present a distributed search architecture for intelligent search of objects
in a mobile social community. Our framework, coined SmartOpt, is founded on an
in-situ data storage model, where captured objects remain local on smartphones and
searches then take place over an intelligent multi-objective lookup structure we com-
pute dynamically. Our MO-QRT structure optimizes several conflicting objectives,
using a multi-objective evolutionary algorithm that calculates a diverse set of high
quality non-dominated solutions in a single run. Then a decision-making subsys-
tem is utilized to tune the retrieval preferences of the query user. We assess our
ideas both using trace-driven experiments with mobility and social patterns derived
by Microsoft’s GeoLife project, DBLP and Pics ‘n’ Trails but also using our real
Android SmartP2P (http://smartp2p.cs.ucy.ac.cy/) system deployed over our Smart-
Lab (http://smartlab.cs.ucy.ac.cy/) testbed of 40+ smartphones. Our study reveals that
SmartOpt yields high query recall rates of 95 %, with one order of magnitude less
time and two orders of magnitude less energy than its competitors.

Keywords Intelligent search · Peer to peer · Evolutionary computation ·
Multi-objective optimization · Smartphones · Social networks

Communicated by: Dipanjan Chakraborty.

A. Konstantinidis (�) · D. Zeinalipour-Yazti · P. Andreou · G. Samaras
Department of Computer Science, University of Cyprus, Nicosia, Cyprus
e-mail: akonstan@cs.ucy.ac.cy

P.K. Chrysanthis
Department of Computer Science, University of Pittsburgh, Pittsburgh, USA

http://smartp2p.cs.ucy.ac.cy/
http://smartlab.cs.ucy.ac.cy/
mailto:akonstan@cs.ucy.ac.cy

116 Distrib Parallel Databases (2013) 31:115–149

1 Introduction

The widespread deployment of smartphone devices and the advent of social networks
have brought a revolution in social-oriented applications and services for mobile
phones. A Smartphone Social Network is a structure made up of individuals carrying
smartphones, which is used for sharing and collaboration [1] (i.e., content, interests,
comments and places). Sites such as Google Latitude, Gowalla, Foursquare, Face-
book Places and Loopt enable users to report on Who-What-When-Where events,
check-in to favorite places, provide their location history, etc. For instance, users of
Facebook can upload geo-located photos on-the-go and tag (i.e., comment-on) photos
with the given service exceeding over 50 billion photos as of 07/2010. ABI Research1

projects that Smartphone Social Network applications will reach almost 150 million
users in 2013 while academic efforts in this direction are also underway [41].

Additionally, there is already a proliferation of innovative applications founded on
crowd-sourcing (e.g., [8]) and opportunistic/participatory sensing [5, 7, 12], where
applications can task mobile nodes in a given region to provide information about
their vicinity using their sensing capabilities (e.g., noise-maps [39], etc.). Another
example is road traffic delay estimation [45] using WiFi beams collected by smart-
phone devices rather than invoking expensive GPS acquisition and road condition
(e.g., PotHole [17]).

Currently, the bulk of social networking services, designed for smartphone com-
munities, rely on centralized or cloud-like architectures. In particular, in order to
enable content sharing and community search, the smartphone clients upload their
captured objects (e.g., images uploaded to Twitter, video traces uploaded to Youtube,
etc.) to a central entity that subsequently takes care of the content organization and
dissemination tasks. Although certain types of objects, such as text-based micro-
blogs, will behave reasonably well under this model, significant challenges arise for
captured multimedia and sensor data (e.g., data captured by the camera, microphone,
accelerometer, WiFi RSS readings, etc.). We claim that the centralization of these ob-
ject types will be severely hampered in the future due to the following constraints:

i. Data-Disclosure Constraints: Continuously disclosing user-captured objects to
a central entity might compromise user privacy in very serious ways.2 Even
Google’s CEO Eric Schmidt mentioned recently3 that “. . . every young person
one day will be entitled automatically to change his or her name on reaching
adulthood in order to disown youthful hijinks stored on their friends’ social me-
dia sites.”

ii. Energy Constraints: Smartphones have asymmetric communication mediums
with a slow up-link, thus by continuously transferring massive amounts of data to
a query processor, through WiFi/3G/4G connections, can both deplete the precious

1“Location-Based Mobile Social Networking”, Market Development, Revenue Opportunities, Applica-
tions, and Key Industry Players, ABI Research3Q.
2“Google Apologizes for Buzz Privacy”, David Coursey, PC World Business Center (online), Feb. 15th,
2010.
3“Google and the Search for the Future”, Holman W. Jenkins Jr., The Wall Street Journal (online), Aug.
14th, 2010.

Distrib Parallel Databases (2013) 31:115–149 117

Fig. 1 A visual illustration of the Multi-Objective Query Routing Tree (MO-QRT) structure proposed
in this work. Our SmartOpt Framework constructs MO-QRT structures optimized on several conflicting
objectives (i.e., energy, time and recall). Our structure can be utilized for finding objects (e.g., images,
videos, etc.) in a social neighborhood, without the necessity of having the objects disclosed to the social
network provider

smartphone battery faster, increase query response times, but can also quickly de-
grade the network health.4

In this paper, we present techniques to enable smartphone users keep their data
in-situ, for data-disclosure and performance reasons, offering at the same time high
performance search capabilities over other user’s data in the social community. When
a user invokes a search to find an object of interest, e.g., “Pictures of street artists per-
forming in Manhattan” (see Fig. 1), the user first downloads a Query Routing Tree
(QRT) X from a SmartOpt server. The X structure resembles spanning tree structures
constructed during searches in unstructured (Mobile) Peer-to-Peer (P2P) systems [19,
47, 53, 54] or aggregation trees used in sensor networks [2], but X is tuned to opti-
mize several objectives concurrently during searches in a smartphone network. The
tree structure X provides better scalability than having the query node contact all
nodes that might contain an answer. This intrinsic characteristic differentiates P2P
architectures from respective centralized architectures.

In particular, the MO-QRTs proposed in this work are optimized to (i) minimize
energy consumption during search; (ii) minimize the query response time in conduct-
ing the search; and (iii) maximize the recall rate of the user query. Most existing
works optimize the objectives (i)–(iii) individually, or optimize one and constrain the
complementation. This often results in “poor” solutions since the objectives are con-
flicting and a decision maker needs an optimal trade-off set, commonly known as the
Pareto Front (PF) in the context of Multi-Objective Optimization (MOO). Figure 2,
shows an example where each point represents a QRT solution. The x-coordinate of a
point is the QRT’s overall energy consumption, the y-coordinate is the QRT’s overall
response time in conducting the search and the z-coordinate is the QRT’s overall re-
call to the query (i.e., percentage of relevant answers returned, shall be defined more
rigorously later). A QRT X dominates a QRT Y , if X has lower energy consump-
tion, requires less response time and provides higher recall rate than Y at the same

4“Customers Angered as iPhones Overload AT&T”, Jenna Wortham, The New York Times (online), Sept.
2nd, 2009.

118 Distrib Parallel Databases (2013) 31:115–149

Fig. 2 A Pareto Front example
of the MO-QRT problem. Solid
circles represent non-dominated
QRTs

time. The Pareto Front is composed of all QRTs that are not dominated by others,
that is, the black dots in Fig. 2. A major issue in MOO is that there is no single
point (called solution thereafter) that can optimize all objectives simultaneously. The
literature hosts several approaches that can efficiently deal with multiple conflicting
objectives and provide a set of non-dominated solutions in a single run, such as the
Multi-Objective Evolutionary Algorithms (MOEAs) [14] that have been shown very
effective in the past. An operator that has the same characteristics as those of MOO,
but mainly received attention in the database community for disk-resident data and
applied to data mining problems, is the skyline operator [6, 10, 20, 35, 58]. Skyline
operators are mainly classified as centralized [10, 20, 31, 35, 44] or distributed [6,
21, 48, 49, 51, 58]. The former aims to collect all the data from multiple resources
to a centralized server, which in turn retrieves the skyline (i.e., the global set of non-
dominated solutions). In the distributed case, each source initially retrieves a local
skyline and then attempts to obtain the global skyline. However, in most cases the
skyline operators are based on systematic approaches (i.e., deterministic or exact) for
dealing with disk-resident data giving in most cases exact skyline solutions. Using a
systematic approach in our case is not efficient due to the high complexity and high
dimensionality of the proposed problem, as discussed later in Sect. 3.

This paper builds on our previous work in [30], in which we presented the pre-
liminary design of the SmartOpt framework. In this paper, we introduce several new
improvements and extensions that are summarized as follows:

– We extend the SmartOpt framework with new features including Decision Mak-
ing, during which a non-dominated QRT X can be selected from the Pareto Front
based on some user-preference; and Searching, during which the QRT solution
X is propagated to the network using a text-based Peer-to-Peer tree propagation
protocol.

– We present a detailed description of the SmartOpt architecture, including in-
sight information on all its components and internal procedures, its protocol, its
SmartP2P [26] prototype system and our SmartLab [27] platform of 40+ real
smartphones that has been utilized in our evaluation.

Distrib Parallel Databases (2013) 31:115–149 119

– We introduce an elaborate experimental study and solid experimental evidence for
the motivation and efficiency of our propositions using both a trace-driven experi-
mental methodology with mobility and social patterns derived by Microsoft’s Ge-
oLife project, DBLP and Pics ‘n’ Trails, but also using our SmartP2P real system
developed in Android and deployed over our SmartLab testbed of 40+ smartphone
devices. We also assess the optimality of our multi-objective optimizer (MOEA/D
and NSGA-II) and different peer-to-peer search techniques (breadth-first-search,
random walkers and SmartOpt trees).

– We provide background and related work on the following four areas related to
the scope of this paper: Mobile P2P Search, Query Routing Trees (QRTs), sky-
line queries (centralized, distributed) and Multi-Objective Optimization. We also
qualitatively explain the differences and similarities of the referenced techniques
compared to the SmartOpt framework.

The overall contributions of this paper to the state-of-the-art are the following:

– We propose the Multi-Objective Query Routing Tree (MO-QRT) problem for
Smartphone Social Networks and formulate it as a Multi-objective Optimization
Problem (MOP), which minimizes the energy consumption and time overhead dur-
ing searches but also concurrently maximizes the recall rate of answers.

– We propose a principled framework, coined SmartOpt, for designing an efficient
algorithm for the MO-QRT problem composed of an optimizer, which is based on
a specialized Multi-Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) combined with a posterior decision maker and a Peer-to-Peer search
approach. We propose several complementary techniques for designing an efficient
and effective approach as introduced in Sect. 4. We have also developed a real
prototype system, named SmartP2P, for the ubiquitous Android Operating System
that shows how the proposed framework can be utilized in real conditions.

– We evaluate our SmartOpt Framework using mobility and social behavior patterns
derived from GeoLife [57], DBLP [13] and Pics ‘n’ Trails [42, 43] using both
a trace-driven experimental methodology and a real execution of our SmartP2P
prototype over our SmartLab testbed.

The remainder of the paper is organized as follows: Sect. 2, provides our system
model and defines the problem in a rigorous manner. Section 3 provides the back-
ground and overviews the related work. Section 4 introduces the SmartOpt frame-
work and its internal modules composed of various operators. Section 5 details our
SmartP2P prototype system and protocol as well as introduces SmartLab, our pro-
gramming cloud of 40+ Smartphones. Our experimental methodology and results are
presented in Sect. 6, while Sect. 7 concludes the paper.

2 System model and problem formulation

In this section, we outline our system model and formulate the problem SmartOpt
aims to solve. A table of respective symbols is shown in Table 1.

120 Distrib Parallel Databases (2013) 31:115–149

Table 1 Table of symbols

Symbol Description

C (Centralized) Social Networking Service.

U Users of the Social Network (i.e., {u1, u2, . . . , uM }).
P User Profiles stored by C for U s (i.e., {p1,p2, . . . , pM }).
oik Object k (images, videos, etc.) recorded by user i.

G Conceptual Graph connecting the users in U .

G′ Social Neighborhood of some arbitrary user.

Q Query conducted in social neighborhood G′ (G′ ⊆ G).

X Query Routing Tree constructed to answer Q.

U ′ Users that are connected to C during the execution of Q.

2.1 System model

Overview Let C , denote a social networking service that maintains centrally the
profiles P = {p1,p2, . . . , pM}, for each of its M subscribed users (i.e., U =
{u1, u2, . . . , uM }). The profiles record basic user details, authentication credentials,
the user interests (e.g., traveling, sports, music, etc.) and friendship relations that de-
fine the conceptual social network graph G among the M users. In our setting, a user
ui (i ≤ M) uses a smartphone (or tablet) device to both perform its day-to-day activ-
ities but also to capture objects of interest at arbitrary moments (e.g., “take a picture
of the Statue of Liberty”.) Each object oik might be tentatively “tagged” with GPS
information and other user tags (e.g., “lat: 40.689201355, long: −74.0447998047,
tags: “Statue Liberty Ellis Island”).

Connection modalities Each ui features different Internet connection modalities
that provide intermittent connectivity to C (e.g., WiFi, 2G/3G/4G). Each ui also fea-
tures peer-to-peer connection modalities that provide connectivity to nodes in spa-
tial proximity (e.g., Bluetooth, Portable WiFi or upcoming NFC available in An-
droid) [8]. We assume that when ui is connected to C , then C is aware of ui ’s absolute
location (e.g., GPS) or ui ’s relative location (e.g., the cell-ids within ui ’s range, WiFi
RSSI indicators within ui ’s range or other means utilized for geo-location). Notice
that each of the connection modalities comes at different energy and data transfer rate
characteristics. For example, we’ve profiled an Android-based HTC Hero and found
that WiFi consumes 39 mW/byte, 3G consumes 24 mW/byte and Bluetooth consumes
14 mW/byte. Additionally, Bluetooth had a symmetric data rate of 864 kbps, while
WiFi an asymmetric data rate of 123 kbps (up) and 2 Mbps (down) and 3G an asym-
metric data rate of 2.7 Mbps (up) and 7.2 Mbps (down). The nominal data rates for the
aforementioned modalities might differ significantly, as this is also validated in [22],
mainly due to the deployment environment. Moreover, while the power consumption
on the different kinds of radios can be comparable, the energy usage for transmitting
a fixed amount of data can differ an order of magnitude because the achievable data
rates on these interfaces differ significantly [36]. Finally, the availability characteris-
tics of these kinds of modalities can vary significantly. The penetration of some form

Distrib Parallel Databases (2013) 31:115–149 121

of cellular availability (e.g., WiFi or 3G) is significantly higher than Bluetooth, on
average. Thus, uploading or downloading large data items using Bluetooth can be
more energy-efficient than using a radio network, but Bluetooth may not always be
available and it is often slower.

Search techniques Let an arbitrary user uj (j ≤ M), be interested in answering a
query5 Q over its social neighborhood (i.e., nodes connected to uj either directly
or through intermediate nodes) G′ (G′ ⊆ G). For instance, let Q be a depth-bounded
breadth first search query over uj ’s neighbors in the G graph (i.e., in G′). This kind
of conceptual query can be realized in the following manners:

1. Centralized Search (CS): This algorithm assumes that the multimedia objects and
tags are all uploaded to C prior query execution. Once Q is posted, C can locally
derive the answers (using its local tag database) and return the answers to uj .
This model, which is currently utilized by all social networking sites (such as
Twitter, Youtube, Loopt, etc.), performs well in terms of query response time but
performs poor both in terms of data disclosure (i.e., oik objects and tags need to
be continuously disclosed to C) and performance (i.e., data transmission of large
objects over radio links is both energy demanding and time consuming).

2. Distributed Breadth-First-Search (BFS): This algorithm assumes that the objects
and tags are all stored in-situ (on their owner’s smartphones). In order to realize
the search task, a querying node uj downloads from the query processor the ad-
dresses (e.g., IP:PORT address) of its first line neighboring nodes (i.e., G′′ ⊆ G′).
uj then contacts the nodes in G′′ in order to conduct a depth-bounded breadth
first-search in a P2P fashion (i.e., using a pre-specified Query Time-To-Line, i.e.,

QT T L > 0). Once some arbitrary node ux ∈ G′ receives Q, it both looks at its lo-
cal tags, in order to identify an answer and also forwards the request further until
QT T L becomes zero.

Although the BFS approach improves the data-disclosure drawback of the CS ap-
proach, it is quite inefficient during search. In particular, Q has to go over a random
neighborhood rather than a neighborhood that is contextually related to the query.
For instance, in our Liberty Statue query example, we would have preferred querying
a friend living in lower Manhattan rather than a person living in California (as the
former would have a higher probability of capturing the statue). Also, if uj had two
friends, ux and uy , both living in lower Manhattan, with ux being in spatial proxim-
ity to uj during the query (i.e., within a few meters), while uy being far away, would
have made ux a better choice for posting the query (as ux could have been queried
through a local link such as Bluetooth).

2.2 Optimization problem formulation

The Multi-Objective Query Routing Tree (MO-QRT) structure, proposed in this pa-
per, improves the search operation of the BFS algorithm by optimizing the neighbor
selection process. In particular, a node downloads from C a QRT X that is optimized

5Without loss of generality we assume Boolean keyword queries over tags.

122 Distrib Parallel Databases (2013) 31:115–149

according to the following formulation: Given a social network of users U , a list of
active users U ′ and their coordinates, the profiles P of these users and a query Q,
posted by an arbitrary user uj , the query processor aims to optimize an X structure
using the following objectives:

Objective 1: Minimize the total Energy consumption of X

Energy(X) = min
∑

∀(ua,ub)∈X (X ⊆U ′)
e(ua,ub) (1)

where, e(ua,ub) denotes the energy consumption for transmitting one bit of data over
the respective edge (WiFi, Bluetooth and 3G).

Objective 2: Minimize the Time overhead of X

Time(X) = min
(

max
(ua,ub)∈X

t (ua, ub)
)

(2)

where, t (ua, ub) denotes the delay in transmitting one bit of data over the respective
edge.

Objective 3: Maximize the Recall rate of X

Recall(X , Q) = max

(
Relevant(Q) ∩ Retrieved(X , Q)

Relevant(Q)

)
(3)

where Relevant(Q) denotes the set of all objects in U ′ that are relevant to Q, formally
as:

Relevant(Q) =
⋃

∀ua∀k(ua∈U ′)
(oak),

given that ua’s profile (denoted as pa) contains terms found in Q. On the other hand,
Retrieved(X ,Q) denotes the set of objects that have been retrieved in response to Q
over structure X , formally as:

Retrieved(X , Q) =
⋃

∀ua∀k(ua∈X)

(oak),

again given that pa contains terms found in Q.
In a MOP, there is no single solution X that optimizes all objectives simultane-

ously, but a set of trade-off candidates. The set of trade-off solutions, commonly
known as the Pareto Front (PF), is often defined in terms of Pareto Optimality.
That is, considering a maximization MOP with n objectives: a solution X ∗ is con-
sidered non-dominated or Pareto optimal with respect to another solution Y , iff
∀i ∈ {1, . . . , n}, Xi ≥ Yi ∧ ∃i ∈ {1, . . . , n} : Xi > Yi , this is denoted as X � Y .

In our previous works [3, 4, 53], we have studied each of the individual objec-
tive functions in isolation. For example, in [3] and [4] we have computed the en-
ergy consumption based on the energy model of the TelosB sensor device and the

Distrib Parallel Databases (2013) 31:115–149 123

CC2420 RF Transceiver including all its power modes (i.e., receive, transmit, idle,
etc.). More specifically, the energy formula used was the following: Energy(Joules)
= Volts × Amperes × Seconds (e.g., the energy required to transmit 30 bytes at
1.8 V is: 1.8 V × 23 × 10−3 A × 30 bytes × 8 bits/250 kbps = 39 J). The exper-
imental results of these works were validated using PowerTossim, which is a well
known tool for realistically measuring energy in various embedded devices. Further-
more, in [4] the critical path objective, which is similar to the time objective of this
work, was calculated using an in-network recursive algorithm that took into account
a number of real properties such as the link activity and the number of collisions at
the MAC layer of each node. In the same manner, these works utilized a number of
other objectives (e.g., network lifetime, query response time, quality of data (accu-
racy, recall)) calculated in a realistic manner and validated through well-established
simulators. In [53], we have tackled the recall objective in P2P systems by developing
a real system, coined PeerWare.

3 Background and related work

In this section, we provide related research work that lies at the foundation of the
SmartOpt Framework.

Mobile Peer-to-Peer/MANET search can be roughly classified into: (i) Blind
Search [19, 32, 52], where mobile peers propagate the query using an unsophisti-
cated (e.g., random, TTL property) approach to as many nodes in the network as
possible, and (ii) Informed Search [9, 24, 25, 34, 40, 47], where mobile peers use
semantic or location information to forward queries to specific nodes in the network.
The proposed search approach presented in this paper belongs to the latter class with
the difference that we utilize a centralized approach where mobile peers (i.e., smart-
phone devices) subscribe to a centralized registry. Similar to [40], we utilize a content
summary mechanism (i.e., profile) for discovering mobile peers that will participate
in a query Q by the centralized node. However, in our setting, the content summary
of each mobile peer is stored at the centralized node upon its registration thus allow-
ing multiple query users to use this information without requiring the retransmission
of the content summary to each mobile peer. In PeerDB [34], the authors propose
an agent-assisted query processing approach that has the ability to reconfigure the
network based on optimization criteria (e.g., channel bandwidth). Although, this can
increase the performance of the system (e.g., minimize energy cost, increase time
performance), it imposes a high cost for maintaining the agents at each mobile node.
In Location-Aided Routing (LAR) [25], the authors take into account the physical lo-
cation of a destination mobile node, reaching in this way only a set of nodes close to
the query user, which maximizes the performance of a query (i.e., time, energy). In
SmartOpt, we additionally augment each mobile node with a profile, which further
decreases the number of participating nodes as only nodes that support a given query
will contribute to the results.

Query Routing Trees (QRTs) in smartphone networks have recently received at-
tention in the context of people-centric applications [7]. Such applications feature
continuous sharing of data that can be utilized to create a number of collaborative
scenarios (e.g., BikeNet [16]). A central component to realize such scenarios is the

124 Distrib Parallel Databases (2013) 31:115–149

availability of some high-level communication structure, such as QRTs. In [46], the
authors present a technique that profiles the activities of the user in order to mini-
mize the number of communication packets transmitted in the smartphone network.
In contrast to [46], which focuses on a single objective of energy, our proposed tech-
nique focuses on two additional objectives: time overhead and recall. In [18], the
authors form QRTs using flooding in order to continuously track mobile events and
relay data to the query user. Similarly to the BFS algorithm, presented earlier, this
approach suffers from significant energy waste as all nodes continuously and actively
participate in the smartphone network. QRTs have also been extensively studied in the
context of unstructured P2P system (e.g., IS, >RES, RBFS, Random Walkers, APS,
etc. [53]), yet none of these was taking into account the resource-constrained na-
ture of smartphone networks. Similarly query routing structures proposed for Sensor
Networks, such as TAG, ETC and MHS [2], focus on building routing trees that are
near-optimal (in respect to a single objective) but expose good aggregation and data
synchronization properties during continuous data percolation to a centralized sink.
On the other hand, our setting deals with snapshot query cases and multi-objective
query optimization for smartphone social networks.

Skyline operators are mainly used by the database community [35] to retrieve a
global set of non-dominated solutions, i.e., the skyline similar to the Pareto Front of
MOO, of a skyline (or Pareto) query in a centralized or a distributed manner. The
literature, which focuses on centralized databases, aims at collecting all information
from all resources to a centralized node, which in turn retrieves the global skyline
using systematic approaches. For example, Tan et al. [44] adopted a Bitmap-based
approach to retrieve the skyline using binary operations in a bit-string representation,
as well as a B-tree based algorithm that further improves its predecessor response
speed. Block Nested Loop and Sort-filter skyline (SFS) [10] approaches search the
points in the data set exhaustively and retrieve the skyline points based on their dom-
ination ranking, having as a main difference that the latter initially sorts the points
of the data set in an ascending order before the BNL approach is applied. Similarly,
Godfrey et al. [20] extended the work in [10], by proposing the Linear-estimation-
sort (LESS) algorithm that reduces the cost of SFS by eliminating a portion of the
database during sorting. Papadias et al. [35] and Kossman et al. [31] have tackled the
centralized skyline retrieval challenge considering R-tree nodes, using a branch-and-
bound and a NN progressive approaches, respectively.

Moreover, several attempts have been made in distributed skyline retrieval, often
using approaches for locally partitioning the data sets either vertically or horizontally
and then retrieving the global skyline after collecting all local skylines in a central
node. For example, Balke et al. [6] have proposed a vertically partitioned distributed
skyline algorithm, that performs a round-robin based sorting until finding all non-
dominated points for each particular database. Examples of distributed algorithms
that are based on horizontally partitioning a database include [48, 49, 51] and [58].
Particularly, Wu et al. [51] separates the database region into rectangular spaces and
maps each server to a region. Each server is therefore responsible for finding the sky-
line of their local data region and then by considering some precedence relations the
global skyline is obtained. Similarly, Wang et al. [49] and Vlachou et al. [48] pro-
posed an algorithm for skyline retrieval in P2P networks by organizing the peers in

Distrib Parallel Databases (2013) 31:115–149 125

an overlay network and subspaces, respectively. Zhu et al. [58] has recently proposed
a feedback-based distributed skyline (FDS) algorithm that supports horizontal parti-
tions of the data sets of geographically distant servers. All aforementioned studies,
however, process the local skylines in servers having no issues in memory and energy
consumption, a crucial resource in mobile smartphone devices that considered in our
case.

More closer to our work is [21], in which the authors study skyline retrievals on
mobile devices of Mobile Ad-hoc NETworks (MANETs). The authors propose an
algorithm that iteratively probes the mobile devices to construct a local subtree sky-
line, i.e., points that are in the skyline, rooted at each individual device. The global
skyline is retrieved after probing all mobile devices. Generally, the dimensionality of
the problems tackled in all aforementioned cases is low. For example, finding proper-
ties to optimize the distance from the beach and the price of a property is a common
problem tackled in several skyline cases [31, 35, 58]. One solution in these kinds of
problems in the decision space (e.g., the location (2-D) of a property) has a one-to-
one mapping with one solution in the objective space (e.g., distance from the beach
and price). In these cases, one can easily adopt systematic approaches, search all so-
lutions and find the real skyline. However, in our case, obtaining a QRT by selecting
some or all N active smartphones, increases the dimensionality (e.g., can be up to
2 × N , considering only the x, y coordinates of the smartphones) of the search space
for obtaining a single QRT and thereinafter a solution in the objective space (e.g., the
energy, time overhead and recall of that particular QRT). This increases the complex-
ity of these kinds of problems, including the fact that in most cases there is not even
any knowledge about the real Pareto Front that should be obtained. Therefore, it is
nearly impossible to use a systematic approach and search all QRTs (i.e., all com-
binations of smartphones) for dealing with the proposed problem. This is the major
reason why a stochastic approach, such as an Evolutionary Computation approach,
might be more appropriate.

Multi-Objective Optimization (MOO) (a.k.a. multi-criteria or multi-attribute
optimization) is the process of simultaneously optimizing two or more conflicting
objectives subject to certain constraints. MOO has numerous applications in virtu-
ally all domains of sciences, engineering and economics. MOO is a relatively new
area in mobile/wireless networks, in general, and in Smartphone Networks in par-
ticular. In MOO, it is difficult to apply an existing linear/single objective or sys-
tematic method to effectively tackle a Multi-objective Optimization Problem (MOP),
giving a set of non-dominated solutions. This is mainly due to the increased com-
plexity and high dimensionality of the search (or decision) space. Our optimizer
borrows ideas from Multi-Objective Evolutionary Algorithms (MOEAs), which have
been shown effective in obtaining a set of non-dominated solutions in a single run.
In the literature, several MOPs were proposed in the content of Wireless Sensor
Networks and Mobile Networks [23, 28, 29, 38], tackled in most cases by Pareto-
dominance based MOEAs (e.g., the state-of-the-art Non-Dominated Sorting Genetic
Algorithm-II (NSGA-II) [15], Evolutionary Multi-objective Crowding-based Algo-
rithm (EMOCA) [37], etc.) and in few cases by decompositional MOEAs (e.g., Multi-
Objective Evolutionary Algorithms based on Decomposition (MOEA/D) [56]).

126 Distrib Parallel Databases (2013) 31:115–149

4 The SmartOpt framework

In this section, we present the SmartOpt framework (see Fig. 3) that proceeds in
three phases: (i) the Optimization phase, during which a set of non-dominated QRTs
(i.e., Pareto Front) is identified; (ii) the Decision Making Phase, during which a non-
dominated QRT X is selected based on some user-preference criteria from the Pareto
Front; and (iii) the Search Phase, during which the QRT solution X is propagated to
uj and the search process is initiated.

Our framework is founded on a MOEA, during which a population of candidate
solutions (a.k.a. chromosomes), evolve into better solutions (w.r.t. the objective func-
tions), by utilizing a set of operators (e.g., selection, crossover and mutation) that
are inspired by natural evolution. The given application of operators is inherently
stochastic, but applications to numerous domains such as bioinformatics, computa-
tional science, engineering, economics and other fields, have shown that MOEAs
can be more effective to difficult multi-objective optimization problems when do-
main knowledge is incorporated to the operators [28]. In the context of SmartOpt,

Fig. 3 The SmartOpt framework with our SmartP2P prototype system. (a) A user posts a query to the
optimizer. (b) The optimizer obtains a set of non-dominated solutions (PF) and send it back to the user.
(c) The user (decision maker) chooses a Pareto-optimal solution based on instant requirements and prefer-
ences. (d) The optimizer forwards the selected Pareto-optimal QRT to the user. (e) The user searches the
P2P social network for objects of interest

Distrib Parallel Databases (2013) 31:115–149 127

we introduce both domain expertise into our operators as well as utilize well-known
operators that have been proven accurate over the years.

Specifically in the Optimization Phase, we have implemented and specialized the
MOEA/D framework, which is the state-of-the-art of the decompositional MOEAs
and the winner of the Unconstrained Multi-Objective Evolutionary Algorithm com-
petition in the Congress of Evolutionary Computation, 2009. We initially proposed
a tree-based encoding representation suitable for the MO-QRT problem and we then
designed a MOEA/D composed of our M-tournament selection approach and the
two-point crossover and random mutation genetic operators as originally proposed by
Zhang and Li in [56]. Furthermore, we hybridized MOEA/D with a problem-specific
repair heuristic for identifying infeasible solutions generated by the genetic operators
and converting them to feasible. In the Decision Making Phase, we proposed a pos-
terior approach for giving the opportunity to the user to visually choose a QRT, from
the set of Pareto-optimal QRTs obtained by the MOEA/D, based on instant require-
ments and preferences; instead of choosing a QRT a priori, without any knowledge
on the obtained Pareto Front, or interactively that consumes additional time and en-
ergy from the Smartphone users. Finally in the Search Phase, our framework uses a
fast text-based Peer-to-Peer tree propagation protocol to retrieve objects of interest
from the social network.

4.1 Pre-processing steps of SmartOpt optimizer

The pre-processing steps consists of representing a QRT and decomposing the prob-
lem into a set of scalar sub-problems.

Representation In our approach, a solution6 X is a QRT with |G′| active smartphone
users that can participate in the resolution of Q. Without loss of generality, let X be
represented as a vector in which each index i corresponds to a user ui and the value
of that position corresponds to ui ’s parent. The root of the tree is the query user (for
simplicity noted as u1). A negative value −1 in any position indicates that the given
user is not currently selected in the query routing tree X . Figure 4 illustrates a query
routing tree X representation as well as X in a smartphone network.

Decomposition Initially, the MOP should be decomposed into m subproblems by
adopting any technique for aggregating functions, e.g., the Tchebycheff approach
used here. In this paper, the ith subproblem is in the form

maximize gi
(

X |wi
j , z

∗) = max
{
wi

j

∣∣fj (X) − z∗
j

∣∣} (4)

where fj , j = 1,2,3, are the objectives of our MOP formulated earlier in Sect. 2.2,
z∗ = (z∗

1, z
∗
2, z

∗
3) is the reference point, i.e., the maximum objective value z∗

j =
max{fj (X) ∈ Ω} of each objective fj , j = 1,2,3 and Ω is the decision space. For
each Pareto-optimal solution X ∗ there exists a weight vector w such that X ∗ is the
optimal solution of (4) and each solution is a Pareto-optimal solution of the MOP

6The terms “solution”, “vector” and “QRT” are utilized interchangeably.

128 Distrib Parallel Databases (2013) 31:115–149

Fig. 4 The query routing tree X representation (left) and conceptual structure (right)

Algorithm 1 The SmartOpt Optimizer
Input:

• network parameters (e.g., Q, P , U , G);
• m: population size and number of subproblems;
• T : neighborhood size;
• weight vectors (w1

j
, . . . ,wm

j
), j = 1,2,3;

• the maximum number of generations, genmax;
Output: set of non-dominated QRTs, known as the Pareto Front (PF).
Step 0 (Setup): Set PF := ∅; gen := 0; IPgen := ∅;
Step 1 (Initialization): Uniformly randomly generate an initial set of QRTs IP0 =
{X 1, . . . , X m}, known as the initial internal population;
Step 2: For i = 1, . . . m do

Step 2.1 (Genetic Operators): Generate a new solution (i.e., QRT) Y using the genetic
operators.
Step 2.2 (Local Heuristic): Apply a problem-specific repair heuristic on Y to produce Z .
Step 2.3 (Update Populations): Use Z to update IPgen, PF and the T closest neighbor
solutions of Z .

Step 3 (Stopping Criterion): If stopping criterion is satisfied, i.e., gen = genmax, then stop
and output PF, otherwise gen = gen + 1, go to Step 2.

in Sect. 2.2. For the remainder of this paper, we consider a uniform spread of the
weights wi

j , which remain fixed for each subproblem i for the whole evolution and
∑3

j=1 wi
j = 1.

4.2 Optimization phase

In this phase, SmartOpt optimizes in an online manner the solution space using a set
of genetic operators. An outline of this phase is provided in Algorithm 1.

Initialization Step 1: In Step 1 of Algorithm 1, we adopt a random method to gen-
erate m QRT solutions for the initial Internal Population (i.e., IP0). Namely, a QRT
solution X is initiated by setting each smartphone user ui, i = 1 . . .M as a parent.
Then, mobile users uj , j = 1 . . .M are uniformly randomly selected, and ui is set as

Distrib Parallel Databases (2013) 31:115–149 129

Fig. 5 The Crossover operator
of SmartOpt optimizer

uj ’s parent iff i �= j and ui is either the root or has already a parent. If uj has already
a parent then we stop and we set as parent the user ui+1. This continues until all
users ui are set as parents once. Thereinafter, the IPgen is used to store the best QRT
solution X i found for each subproblem gi during the search, i.e., in each generation
gen.

Genetic Operator Step 2.1: The genetic operators (i.e., selection, crossover and mu-
tation) are then invoked on IP for offspring reproduction, i.e., generate a new QRT
solution Y i for each subproblem gi, i = 1 . . .m. The following steps summarize the
details of each operator:

– Selection: We utilize our M-Tournament tree selection [29] for selecting the M

closest individual QRTs from the neighborhood of each subproblem gi , which are
then added in a tournament and the two QRTs with the best fitness are selected
as parents for crossover. The given selection operator allows to easily adjust the
selection pressure, is simple to implement and works in constant time.

– Crossover (a.k.a. reproduction or recombination): allows our algorithm to gen-
erate new solutions that share many of the characteristics found in parents, yet are
different QRTs. In particular, the 2x-point tree crossover operator takes as an in-
put two parent QRT solutions, Pr1 and Pr2, and subsequently generates two new
QRTs O1,O2, the offspring. The best offspring O is finally selected as follows:
• Two crossover points x1 and x2 are uniformly randomly selected from numbers

1 to M − 1, where x1 < x2.
• The pieces of the parents Pr1 and Pr2 falling within x1 and x2 are exchanged

to produce two offspring, e.g., O1,O2.

130 Distrib Parallel Databases (2013) 31:115–149

Fig. 6 The swap mutation operator of the SmartOpt optimizer

• The best offspring O is then forwarded to the mutation operator, where O = O1
if gi(O1,w

i
j) < gi(O2,w

i
j) and O = O2 otherwise.

The procedure of the 2x-point crossover is illustrated in Fig. 5 for M = 10.
– Swap Mutation: modifies an offspring O to a solution Y with a probability rm by

uniformly randomly swapping the values (i.e., parents in the tree) of two indexes
j, z of the QRT Y . Figure 6 shows an example where a solution X of size M = 10
is processed by the mutation operator and based on the probability parameter rm
the indexes X2 = −1 and X9 = 5 are modified by swapping their values with those
of indexes X7 = 1 and X4 = 3, respectively, creating solution Y . This results in
assigning a parent to Y2, i.e., the root 1, and changing the parent of X9 to 3. Note
that, X2 had no parent, and therefore was not included in the tree, before mutation.
Mutation operator is often used for improving exploration and consequently the
diversity of the obtained solutions.The modified QRT solution Y is then forwarded
to the repair heuristic.

Repair Step 2.2: In Step 2.2 of Algorithm 1, a problem-specific local heuristic checks
a QRT solution Y and calculates a QRT Z iff:

– Case #1: there is a disconnected user ui in QRT Y (i.e., ui with or without children
that does not have a parent);

– Case #2: two or more user ids i of user ui are the same in QRT Y ;
– Case #3: there is an infinite loop in QRT Y .

In all cases (illustrated in Fig. 7), the solution Y is considered infeasible. An infea-
sible solution can be generated during reproduction (i.e., genetic operation). A local
heuristic repairs the QRT solution Y to Z by: uniformly randomly generating a parent
for the disconnected user ui in Case #1, replacing the duplicate user ui with another
user uj in Case #2, breaking the loop by connecting a random user of the loop with
another user out of the loop in Case #3. All repair techniques are shown with dotted
lines in Fig. 7. The repair heuristic continuously repairs solution Y until it does not
fall in any of the Cases #1, #2 or #3. Solution Z is then used to update the populations
of MOEA/D.

Population Update Step 2.3: In Step 2.3, the update phase of Algorithm 1 is
processed in three steps. (1) Update IP, IP/{X i} and IP ∪ {Z i} if gi(Z i |wi, z∗) <

Distrib Parallel Databases (2013) 31:115–149 131

Fig. 7 The repair operator of SmartOpt optimizer

gi(X i |wi, z∗), otherwise X i remains in IP. (2) Update the neighborhood of Z i , i.e.,
the solutions of the T closest subproblems of i in terms of their weights {w1, . . . ,wm}
are updated. If gj (Z i |wj , z∗) < gj (X j |wj , z∗), then IP/{X j } and IP ∪ {Z i}, other-
wise X j remains in IP, where j ∈ {1, . . . , T }. (3) Update the Pareto Front (PF),
which stores all the non-dominated solutions found so far during the search. PF =
PF ∪ {Z i} if Z i is not dominated by any solution X j ∈ PF and PF = PF/{X j }, for
all X j dominated by Z i . The search stops after a per-defined number of generations,
genmax.

4.3 Decision making phase

In the posterior decision making phase used in this paper, the query user uj is prompt
to decide its preference in terms of Time (i.e., Objective 2 calculated by Eq. (2)) and
Recall (i.e., Objective 3 calculated by Eq. (3)) of the query response to receive from
the Smartphone Network. The decision maker module of SmartOpt then finds the
QRT solution X of the PF that best satisfies the user’s decision and it is also the most
Energy efficient (i.e., Objective 1 calculated by Eq. (1)) at the same time. By this way,
uj is responsible to decide the user-oriented objective values (i.e., time and recall) and
the decision maker module the system oriented objective value (i.e., energy), since
it is assumed that Smartphone users will not be interested in conserving the overall
system energy of the network.

For example, consider that the SmartOpt optimizer has obtained the PF of Fig. 8
in Phase 1. The slidebar at the bottom of the figure is the query user’s decision, where
w1 = 0.3 and w2 = 0.7, s.t. w1 + w2 = 1, correspond to the user’s preference in
terms of time and recall, respectively. Then, the decision maker module calculates
and obtains the solution X that is closer (in terms of Euclidean distance) to the user’s
decision in the objective space and provides Pareto optimal energy consumption (i.e.,
E′ in Fig. 8) at the same time. In cases where there are more than one solution that
equally satisfy the user’s decision then the most energy efficient is selected to be
searched. Figure 8 also shows solutions A, B and C that represent the extreme so-
lutions of the PF. That is, solution A represents the best Pareto optimal solution in
terms of time, in case that the query user is only interested in receiving the results
fast, fully ignoring recall, i.e., w1 = 1,w2 = 0. Solution B represents the best Pareto

132 Distrib Parallel Databases (2013) 31:115–149

Fig. 8 Decision making example

optimal solution in terms of recall, in case that the query user is only interested in the
amount of information (recall), fully ignoring the time, i.e., w1 = 0,w2 = 1. Finally,
solution C represents the best Pareto optimal solution in terms of energy that the de-
cision maker module automatically selects, in case that the query user does not have
a preference with respect to the other two objectives. The Pareto optimal QRT X is
then propagated to uj and the search process is initiated in the following phase.

4.4 Search phase

In the final phase, the query user u1 receives the Pareto-optimal tree X from the
decision maker module of SmartOpt and proceeds with a recursive execution of Al-
gorithm 2 on all smartphone devices participating in the tree X . Recall that X is a
vector in which each index i corresponds to a user ui (IP address and port) and the
value of that position corresponds to ui ’s parent (IP address and port).

As soon as a smartphone device uj receives Q it creates a set Oj of all objects
oji that satisfy Q (line 4). Immediately then, uj transmits these objects to the query
user u1 (line 6) using the most efficient communication technology (i.e., bluetooth,
3G). In the final step, the smartphone device uj forwards Q to all its child nodes
(lines 8–14). This is done by checking each parent entry in X with its own (line 11).
If a match ui is found, uj transmits Q and X to ui (line 12). This process executes
recursively until all smartphone devices in X receive the query.

4.5 Summary of SmartOpt architecture

The proposed SmartOpt framework aims at obtaining a diverse and high quality set
of non-dominated QRT solutions (PF) by using a MOEA in the Optimization Phase
(detailed in Sect. 4.2). Then it opts for the best suited Pareto-optimal QRT X ∗ ∈ PF
based on instant requirements and preferences of the query user uj (decision maker)

Distrib Parallel Databases (2013) 31:115–149 133

Algorithm 2 Search Phase
Input: The Query User u1, A Pareto-optimal Query Routing Tree X , A Query Q
Output: A set of objects Oj = {oj1 . . . ojk}.

1: procedure SEARCH(u1,X ,Q)
2: if (j �= 1) then
3: //Step 1: Find a set of local objects Oj that satisfy Q
4: Oj = ⋃

∀i oji , satisfy(oji, Q)

5: //Step 2: Send local objects Oj to query user u1
6: Send(Oj ,u1);

7: end if

8: //Step 3: Forward query u1 to all children smartphone devices
9: for i = 1 to |X | do

10: //if j is the parent of i

11: if (X [i] == j) then
12: Search(u1, X , Q);
13: end if
14: end for
15: end procedure

in the Decision Making Phase (Sect. 4.3). The query user uj then downloads and
utilizes QRT X ∗ to search the mobile social network and find objects of interest oik

recorded by users ui ∈ X ∗ and related to query Q in the Search Phase (detailed in
Sect. 4.4).

5 The SmartP2P prototype system

In this section, we describe our prototype system, coined SmartP2P,7 developed for
the ubiquitous Android Operating System to demonstrate the applicability of the
SmartOpt framework. We particularly overview the GUI and protocol of the frame-
work as well as its evaluation on our programming cloud of Smartphones, coined
SmartLab testbed.

5.1 Overview

Our client-side software is developed around the SDK Tools r12 of Android 2.2 and
its installation package (i.e., APK) has a size of 327 KB. Our code is written in
JAVA and consists of around 7500 lines of code. In particular our server-code (i.e.,
optimizer) uses 5000 LOC and runs over JDK 6 and Ubuntu Linux, our smartphone
code uses 1600 LOC plus 250 lines of XML elements. The server side also includes
a Microsoft SQL server R2 and utilizes the JMATH-PLOT package for drawing the
Pareto Front images.

7Available at: http://smartp2p.cs.ucy.ac.cy/.

http://smartp2p.cs.ucy.ac.cy/

134 Distrib Parallel Databases (2013) 31:115–149

5.2 Graphical user interface

The Graphical User Interface of our system provides a primitive interface for a user
to query the active users in the community (the details of the protocol are presented in
the next paragraph). Figure 9(b) shows the GUI through which a query is formulated
in order to find objects of interest. The group of algorithmic choices provided by the
SmartP2P framework is shown below the search box. SmartP2P provides (i) two sim-
ple distributed choices, i.e., Random Search and Breadth-First Search, as well as (ii)
two MOO choices, i.e., the MOEA based on Decomposition (MOEA/D) and the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II). The user selects an algorithm
and presses the “Go” button. Then the SmartP2P optimizer calculates a QRT in case
(i) or a Pareto Front in case (ii). In both cases, the result is returned to the query user.
The decision maker is only enabled when the query user selects an algorithm from
case (ii) to perform the search. In this case, the Pareto Front is forwarded and dis-
played to the query user as shown in Fig. 9(c) (note that the image can zoom in/out
for better visualization). Then the query user makes use of the slide bar below the
Pareto Front image to set a desired level of time and recall of the search to be initi-
ated. Note that if the user does not choose a desired level of those two objectives, the
solution with the minimum energy consumption is automatically chosen. By pressing
the “Go” button, the decision maker finds the QRT that is closer to the user’s choice
and downloads it from the optimizer to the user’s smartphone. Finally, the query user
initiates the search. The results of the search as well as the selected QRT are both
displayed on the user’s smartphone as shown in Figs. 9(d) and (e), respectively.

5.3 Protocol

We shall next provide an abstraction of the peer-to-peer protocol that lies at the foun-
dation of our prototype system. We chose to implement a text-based protocol, as op-
posed to a binary protocol, for portability (i.e., endianness) reasons. We also did not

Fig. 9 The SmartP2P Android GUI. (a) The intro screen. (b) The keyword search optimization with four
algorithmic choices screen and (c) the resulted Pareto Front screen for decision making. (d) The results
retrieved after initiating a P2P search on the smartphone network. (e) The QRT selected by the query user
and utilized to retrieve the objects of interest

Distrib Parallel Databases (2013) 31:115–149 135

chose an XML-based protocol implementation for performance reasons (i.e., min-
imize annotations). At a high level, a smartphone user, denoted as QP, starts out in
Step 1 by registering its obfuscated location (e.g., vector of intercepted cell tower IDs
or MAC addresses of WiFi access points) to a well-known host-cache (i.e., the Smar-
tOpt SERVER in our case). The above function is carried out using the following
message exchange:

- STEP 1: REGISTRATION
SERVER: +OK READY - welcoming message
QP CLIENT: REGISTER APPROX_LOCATION
SERVER: +OK 8734e604-0f79-45ee-9126-f71eaee540f5
<close connection to SERVER>

After this exchange, the client is considered to be “connected” to the service for
a pre-specified amount of time (i.e., k seconds in our setting, after which the lease
can be renewed). The Globally Unique Identifier (i.e., GUID or UUID) returned by
the server provides an easy mechanism to enforce registration with the host-cache
prior to any other function as explained next and requires only minimal state on the
server.

Now assume that a “connected” client QP wants to query the active nodes in the
network. QP first issues a GET command to the SERVER, in step 2, in order to ob-
tain a tree that captures its optimization criterions (with respect to time, energy and
recall). Notice that the SERVER is already aware of the social graph and other statis-
tics used in the optimization process. The issued command is supplemented by a
GUID token returned during the registration step 1. The returned tree is serialized in
the following format “NodeIP:NodePort(ParentIP:ParentPort)”, with
-1 denoting no-parent but is shorten below for ease of exposition. The message ex-
change proceeds as follows:8

- STEP 2: TREE RETRIEVAL
SERVER: +OK READY
QP CLIENT: GET T 8734e604-0f79-45ee-9126-f71eaee540f5
SERVER: P0(-1), P10(P0), P15(P0), P30(P10), NULL
<close connection to SERVER>

Once T is obtained by QP, QP connects to P0=root(T) in step 3 and submits its
query Q (i.e., {k1, k2, . . . , kn}), its HOME_ADDR address (i.e., IP:PORT) as well
as a hop count parameter. P0 then forwards these parameters to its own children (i.e.,
P10 and P15), in a recursive manner for N levels (using a predetermined Time-To-
Live (TTL) value enforced by the hop count). The messaging for the first three hops
(assuming Depth-First-Search propagation), is as follows:

- STEP 3: P2P SEARCH
P0 CLIENT: +OK READY
QP CLIENT: SEARCH 0 | HOME_ADDR | k1,k2,...,kn |
P10(-1)|P30(P10)|NULL
- next hop
P10 CLIENT: +OK READY

8Our system also supports command pipelining as opposed to utilizing separate connections for each step.

136 Distrib Parallel Databases (2013) 31:115–149

P0 CLIENT: SEARCH 1 | HOME_ADDR | k1,k2,...,kn |
P30(-1)|NULL
- next hop
P30 CLIENT: +OK READY
P10 CLIENT: SEARCH 2 | HOME_ADDR | k1,k2,...,kn |NULL

Any peer receiving Q, conducts a local search and informs QP directly on
HOME_ADDR about possible answers. If a peer in T is not responding for what-
ever reason the given branch of the tree is disregarded. The fact that the query tree is
optimized for minimum delay, minimum energy and maximum recall provides an ad-
vantage of our approach compared to other approaches for unstructured P2P search,
like Breadth-First-Search, Random Walks [33], as this is presented in our experimen-
tal evaluation. In particular, we found that the MO-QRT structure can greatly reduce
the number of search nodes, by exploiting meta-relations captured in the social net-
working graph and the user interests matrix.

5.4 SmartLab: a programming cloud of smartphones

Experimenting with a large number of devices can be a tedious process as each de-
vice needs to be connected to the programming station, the application needs to be
installed separately and the operator needs to manually launch the instances on each
device and collect the results. In order to overcome the inherent problems of this setup
we have implemented SmartLab [27], an innovative programming cloud of approxi-
mately 40+ Android smartphones and tablets, which is deployed at the University of
Cyprus (see Fig. 10). SmartLab is inspired by both PlanetLab [11] and MoteLab [50].
Its intuitive web-based interface is easy to use and provides the ability to reserve and
use Android devices for a desired amount of time. Users are able to reboot, list, trans-
fer and remove files, change Android device settings by using the interactive Android
Debugging (ADB) shell session. Additionally, registered users can upload and install
executable APK files on their reserved Android devices simultaneously. The Smart-
Lab users are also able to extract application data, output and results automatically
from all reserved devices, take screenshots as well as watch the display of all re-
served devices during runtime. Users are also granted access to log files for error and
exception handling.

SmartLab supports four (4) modes of user interaction: (i) Remote Control Ter-
minals (RCT), which support our in-house implementation of an ajax-based web-
based remote screen terminal for Android that can mimic user clicks and gestures
such as sliding in order to unlock devices and conduct other functionalities, (ii) Re-
mote Shells (RS), which supports our in-house implementation of an ajax-based web-
based shell that can be utilized to issue a wide variety of known UNIX commands
(e.g., ls, ps, df, pwd, date, etc.) to the Linux kernels that are found at the
core of each Android device; (iii) Remote Scripting Environment (RSE), which al-
lows users to author Android MonkeyRunner automation scripts (written in python)
in order to quickly perform repetitive tasks on selected devices; and (iv) Remote De-
bug Tools (RDT), which provides web-based debugging extensions to the Android
Debug Bridge (ADB) that are used during development. In this work, we have used
SmartLab to evaluate our SmartOpt framework under real conditions. A more de-
tailed description of SmartLab can be found in [27].

Distrib Parallel Databases (2013) 31:115–149 137

Fig. 10 The SmartLab programming cloud of smartphone devices. Available at: http://smartlab.cs.
ucy.ac.cy/

6 Experimental evaluation

In this section we present the experimental methodology and results of our evaluation.

6.1 Evaluation methodology

Our experimental methodology consists of two distinct scenarios: (i) Trace-driven
Simulation, during which we assess the quality of the SmartOpt optimization process
and also assess the quality of the SmartOpt search algorithm; and (ii) Trace-driven
Real Deployment, during which we deploy our SmartP2P real prototype system im-
plemented in Android over up to 138 users using SmartLab and the traces described
next.

Datasets and queries In our experimental studies, we have constructed two mobile
social scenarios from the following three real datasets:

GeoLife [57] (mobility): This real dataset by Microsoft Research Asia includes 1,100
trajectories of a human moving in the city of Beijing over a life span of two years

http://smartlab.cs.ucy.ac.cy/
http://smartlab.cs.ucy.ac.cy/

138 Distrib Parallel Databases (2013) 31:115–149

(2007–2009). The average length of each trajectory is 190,110 ± 126,590 points,
while the maximum trajectory length is 699,600 points. Notice that 95 % of the Geo-
Life dataset refers to a granularity of 1 sample every 2–5 seconds or every 5–10 me-
ters.

DBLP [13] (social): This real dataset by the DBLP Computer Science Bibliogra-
phy website, includes over 1.4 million publications in XML format. In particular,
the dataset records the paper titles, paper urls, co-authors, links between papers and
authors and other useful semantics. In order to map this dataset to our problem, we
assume that each object is an author’s paper. We also assume that each object is
“tagged” by the keywords found in the paper title.

Pics ‘n’ Trails [42, 43] (mobility and social): This is a real dataset composed of
around 75 GPS traces of a user moving in Tokyo, Japan during 2007 and a collection
of geotagged photos taken along with a short description. In particular, the dataset
is comprised of 4179 photos in Japan as well as trajectories with a granularity of 1
sample every 10–15 seconds.

In order to link the above datasets we have constructed two mobile social scenarios:

Mobile-Social Scenario 1 (MSS-1): uses the DBLP social dataset and GeoLife mobil-
ity dataset. The DBLP dataset is used to construct a social graph G of authors that are
related based on their research interests (i.e., keywords of their articles’ titles) as well
as their co-authorships that are attributes of the DBLP dataset. Then we have mapped
each DBLP author to a trajectory of the Geolife dataset. Particularly, we have ex-
tracted 1,100 authors from the DBLP dataset and we have mapped them to the 1,100
trajectories of the Geolife dataset using a 1:1 correspondence. This resulted in a social
graph with 1,100 mobile DBLP authors moving in the city of Beijing, China.

Mobile-Social Scenario 2 (MSS-2): uses the Pics ‘n’ Trails social and mobility
dataset. The Pics ‘n’ Trails dataset is initially used to construct a social graph G
of 75 users that are connected based on their interest in taking photos of sightseeing
in Japan (i.e., similar tags on their photos taken). Each user is, therefore, carrying a
random number of photos tagged with a short description that describes a particular
sightseeing in Japan and is associated with a GPS trajectory from the Pics ‘n’ Trails
dataset. This resulted in a social graph with mobile users that carry photos with tags
and move in the city of Tokyo, Japan.

In our experiments, we utilize the following three queries:

- Query 1
SELECT S.title, S.url
FROM SmartphoneUsers S, Query Q
WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)
AND S.Title LIKE ’%optimization%’;

- Query 2
SELECT S.title, S.url
FROM SmartphoneUsers S, Query Q
WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)
AND S.Title LIKE ’%networks%’;

Distrib Parallel Databases (2013) 31:115–149 139

Table 2 Experimental execution scenarios and test instances

Scenario Test instance Q Time G′ # Objects Relevant objects

MSS-1 T1 Query1 Morning 49 3877 82

T2 Query1 Noon 58 5504 73

T3 Query1 Night 95 8884 121

T4 Query2 Morning 49 3877 319

T5 Query2 Noon 58 5504 477

T6 Query2 Night 95 8884 695

MSS-2 T7 Query3 Morning 26 744 43

T8 Query3 Noon 66 1877 115

T9 Query3 Night 47 1456 92

- Query 3
SELECT S.title, S.url
FROM SmartphoneUsers S, Query Q
WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)
AND S.Title LIKE ’%kyoto%’;

where “S.x,S.y” represent the (x, y) coordinates of a Smartphone user in S and
“Q.x,Q.y” represent the (x, y) coordinates of the query user.
We execute nine different test instances using the two Mobile-Social Scenarios and
the three queries, Query 1, Query 2 and Query 3 as shown on Table 2. Our scenar-
ios are executed for various time periods (i.e., during the morning, during noon and
during night), in order to capture different mobility patterns that are inherent in the
GeoLife and Pics ‘n’ Trails datasets.

Algorithms and evaluation metrics We have implemented both the (i) optimization
and (ii) search algorithms, analyzed earlier in this paper, as described next:

– Search Algorithms: We have implemented (i) the Centralized Search algorithm
(CS), presented in Sect. 2.1, which collects all data and metadata tags at the cen-
tralized query processor prior query execution; (ii) the Distributed Breadth-First-
Search Search (BFS), which conducts a distributed search using a random tree that
is generated with a BFS process which visits all nodes in the network, as pre-
sented in Sect. 2.1; (iii) the Random Walker (RW) Search [33], which conducts
a distributed search using a list structure that captures a randomly chosen neigh-
bor on each step but that eventually visits all nodes in the network. and (iv) the
SmartOpt Search, which conducts a distributed search using an optimized QRT
obtained from the application of ideas presented in this paper. SmartOpt trees are
inherently smaller in size, than their other alternatives, as this structure visits with a
higher probability the nodes having more relevant objects (i.e., based on the social
graph and the metadata stored for each node). We evaluate the search algorithms,
in Experimental Series 1 (simulation) and Series 4 (real deployment), using the
following metrics: Time, Energy and Recall, as these were defined in Sect. 2.2. For
the simulation we use the time and energy profiles for our Smartphone devices we

140 Distrib Parallel Databases (2013) 31:115–149

have presented in Sect. 2.1. For the real deployment, we utilize wall clock time
along with the PowerTutor [55] power (energy) measuring tool by the University
of Michigan, USA. In particular, PowerTutor is a component power management
and activity state introspection based tool that uses an automated power model
construction technique for accurate online power estimation in Android.

– Multi-Objective Optimization Algorithms: In order to assess the efficiency of
the tree construction process, we have implemented SmartOpt using two alter-
native approaches: (i) the MOEA/D approach, as this was described in Sect. 4;
and (ii) the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [15], which
maintains a population IPgen of size m at each generation gen, for genmax genera-
tions. NSGA-II adopts the same evolutionary operators for offspring reproduction
as SmartOpt-MOEA/D. The key characteristic of SmartOpt-NSGA-II is that it uses
a fast non-dominated sorting and a crowded distance estimation for comparing the
quality of different solutions during selection as well as to update the IPgen and the
PF. The optimization algorithms are evaluated with respect to: (i) Execution Time
for Generating X (Experimental Series 2); and (ii) Multi-Objective Optimization
Quality for Generating X (Experimental Series 3).
For the former case (execution time), we measure the CPU time required for the
optimizer to derive X using both MOEA/D and NSGA-II. For the latter case (qual-
ity), we use the following combination of metrics:
• C(A,B)-metric [60] (quality), which calculates the ratio of the non-dominated

solutions in set B dominated by the non-dominated solutions in A, divided by
the total number of non-dominated solutions in B . Hence,

C(A,B) = |{x ∈ B|∃y ∈ A : y � x}|
|B| .

Therefore, C(A,B) = 1 means that all non-dominated solutions in B are domi-
nated by the non-dominated solutions in A. Note that C(A,B) �= 1 − C(B,A).

• S(A)-metric [59] (diversity), which measures the diversity of A’s solutions, for-
mally the hyper-volume in the objective space that is dominated by the Pareto
optimal solutions of set A. Again a lower S(A), denotes that algorithm A has
better diversity.

• NDS(A)-metric (cardinality), which measures the number of non-dominated
solutions in A’s PF. The higher the NDS(A) score, the better algorithm A is.

6.2 Series 1: Evaluating SmartOpt search

In the first experimental series, we evaluate the performance of the SmartOpt search
phase against the CS, BFS and RW on 100 consecutive timestamps in Mobile-Social
scenario 1 (GeoLife+DBLP) using our model-driven simulator. At each timestamp
(ts) we compare the energy consumption, time overhead and recall of all algorithms.

Figure 11 illustrates the results of our experiment for all performance metrics. In
Fig. 11 (top/left) we observe that the energy consumption of SmartOpt is one to two
orders of magnitude smaller than its competitor CS, BFS and RW in all timestamps.
BFS seems more efficient than CS as it does not communicate all metadata to the
centralized query node. On the other hand, RW is worse than all approaches as the

Distrib Parallel Databases (2013) 31:115–149 141

Fig. 11 Evaluation of the CS, BFS, RW and SmartOpt search algorithms using the energy, time and recall
performance. The bottom/right figure shows SmartOpt compared to the solutions of CS and BFS in the
objective space at timestamp ts = 70 of Mobile-Social Scenario-1 (MSS-1)

sequential visit to all nodes in the network drains considerable energy (i.e., in each
communication only 1 message is sent, as opposed to the rest techniques that com-
municate with several nodes in a single round).

Similar observations apply for Fig. 11 (top/right) where we demonstrate the time
overhead for all algorithms. This happens as the energy is proportional to the time
interval the communication transceiver is in active mode. Moreover in Fig. 11 (bot-
tom/left), we show that the recall rate for the SmartOpt framework is close to 95 %
consistently. Consequently, although we consume less time and less energy, we are
able to identify all expected answers.

In Fig. 11 (bottom, right), we demonstrate the results for a single timestamp
(ts = 70) for all algorithms. The various solutions generated by SmartOpt optimizer
are represented by open squares. The single solutions supplied by the CS, RW and
BFS algorithms are represented by a solid triangle, a solid square and a solid circle,
respectively. We observe that the solution provided by the CS algorithm is the worst
w.r.t. BFS and RW in all three performance metrics.

However, the CS algorithm demonstrates higher recall (10 %) than all solutions
provided by the SmartOpt framework. This occurs because, CS dictates global partic-
ipation by all smart objects in the network (i.e., all smart objects forward their results
to the query user). However, this has a significantly negative impact on both energy

142 Distrib Parallel Databases (2013) 31:115–149

Fig. 12 Evaluation of
SmartOpt-MOEA/D vs.
SmartOpt-NSGA-II in terms of
CPU performance in all nine test
instances of MSS-1
(GeoLife+DBLP) and
MSS-2(Pics ‘n’ Trails)

and performance. Specifically, compared to the SmartOpt best solutions, CS, BFS
and RW feature an increase of two orders of magnitude in energy and one order of
magnitude in time.

6.3 Series 2: Execution time for generating X s (PF)

In the second experimental series, we aim to identify whether SmartOpt generates the
expected tree solutions quickly enough. We consequently evaluate the performance of
the SmartOpt-MOEA/D and SmartOpt-NSGA-II approaches in terms of CPU time.
We benchmark each algorithm by recording the time required to execute the four
steps of the optimization phase described in Sect. 4.2, on all nine test instances. The
results of our experiment are illustrated in Fig. 12.

We observe that SmartOpt-MOEA/D always outperforms SmartOpt-NSGA-II in
terms of CPU performance. This is more evident in test instances T4, T5, T6 where
the performance increases of SmartOpt-MOEA/D reaches as high as 56 %. This is
because the decomposition of SmartOpt-MOEA/D naturally maintains the diversity
of the population, thus balancing the effort required for generating solutions in op-
timal areas of the objective space. In contrast, the crowding distance mechanism of
SmartOpt-NSGA-II used for maintaining diversity, may result in additional effort for
obtaining solutions in the optimal areas of the objective space. Moreover, the overall
CPU effort required in mobile social scenario 2 (i.e., T7, T8 and T9) is lower for
both MOEAs, since the size of the Pics ‘n’ Trails dataset is smaller than the Geo-
Life+DBLP datasets.

6.4 Series 3: Multi-objective optimization quality of generated X s (PF)

In the third experimental series, we study the quality of the QRT trees generated with
the SmartOpt-MOEA/D and SmartOpt-NSGA-II optimizers. In our experiments, we
have used the following algorithm setting: population size m = 200, crossover rate
rc = 1, mutation rate rm = 0.1, genmax = 250 and T = 12.

Distrib Parallel Databases (2013) 31:115–149 143

Fig. 13 Evaluation of MOEA/D vs. NSGA-II using the energy, time and recall performance metrics in
Mobile-Social Scenario-1(MSS-1)

Figure 13 compares the performance of the two algorithms in combinations of two
of the three objectives as well as all together in a 3D view. The results indicate the
superiority of SmartOpt-MOEA/D along the direction of all the three objectives, giv-
ing non-dominated solutions of higher recall, of lower energy consumption as well
as of lower time overhead. Besides, the 3-D subfigure (d) of Fig. 13 indicates that
SmartOpt-MOEA/D searches the space more efficiently giving better diversity. More-
over, we observe that SmartOpt-NSGA-II obtains a higher number of NDS compared
to SmartOpt-MOEA/D. However, these solutions are of inferior quality due to its low
convergence speed.

Furthermore, the statistical results summarized in Table 3 compare the two ap-
proaches in all nine test instances of Table 2, supporting the observations just
mentioned. That is, the non-dominated solutions obtained by SmartOpt-MOEA/D
are of higher quality (i.e., C-metric) compared to those obtained by SmartOpt-
NSGA-II in all cases. For example, none of the solutions obtained by SmartOpt-
MOEA/D are dominated by those of SmartOpt-NSGA-II’s and all of the solutions
in SmartOpt-NSGA-II’s PF are dominated by those of SmartOpt-MOEA/D’s (C-
metric) in MSS-1. Furthermore, the hyper-volume S-metric indicates that SmartOpt-
MOEA/D searches the objective space more effectively and provide a more diverse

144 Distrib Parallel Databases (2013) 31:115–149

Table 3 SmartOpt-MOEA/D (denoted as M) versus SmartOpt-NSGA-II (denoted as N) in terms of qual-
ity, diversity and cardinality of the PF, in all nine test instances of Table 2. The best performance in each
case is given in bold. The mean and the standard deviation (SD) is provided for each metric

TIs C(M,N) C(N,M) NDS(M) NDS(N) S(M) × 10−4 S(N) × 10−4

T1 1.00 0.00 112 188 0.10 3.62

T2 1.00 0.00 125 200 0.01 0.57

T3 1.00 0.00 172 200 0.07 6.31

T4 1.00 0.00 200 200 0.70 15.02

T5 1.00 0.00 200 200 3.45 81.17

T6 1.00 0.00 200 200 0.80 127.25

T7 0.96 0.04 49 95 0.294 0.304

T8 0.95 0.04 95 200 0.4403 1.47

T9 0.89 0.1 58 200 0.523 1.77

Mean (μ) 0.98 0.02 134.56 187.00 0.71 26.39

Stddev (σ) 0.04 0.03 60.82 34.73 1.06 45.82

Fig. 14 A screenshot of the SmartP2P on SmartLab

PF in all nine test instances. NSGA-II, however, provides a higher number of NDSs
for the decision maker to choose, but they are of inferior quality.

6.5 Series 4: SmartP2P prototype evaluation on SmartLab

In the last experimental series 4, we evaluate our SmartP2P prototype Android im-
plementation, presented in Sect. 5, over our distributed SmartLab infrastructure as
illustrated in Fig. 14. For the evaluation, we focus only on the distributed search al-
gorithms: BFS, RW and SmartP2P. We present the query response time, measured
in seconds and energy consumption, measured with PowerTutor in Watts and pre-

Distrib Parallel Databases (2013) 31:115–149 145

Fig. 15 Evaluating our SmartP2P prototype system in Android using the SmartLab Testbed for different
network sizes in both Mobile Social Scenarios 1 (GeoLife+DBLP) and Mobile Social Scenarios 2 (Pics
‘n’ Trails) with respect to time and energy

sented in Joules. We utilize five different network sizes in Mobile Social Scenario
1 (MSS-1): 20, 49, 58, 95 and 138 and five different network sizes in Mobile So-
cial Scenario 2 (MSS-2): 20, 35, 50, 61 and 75 to show the scalability aspects of the
different search algorithms. In order to accommodate these instances over a physical
infrastructure, which was considerably smaller (i.e., 40+ smartphones), we had to run
several instances on each of the available physical smartphones (using separate socket
servers). For example, an HTC Desire smartphone could easily host tens of instances
without any particular performance penalty (recall that these are 1 GHz smartphones
with 512 MB of RAM) while the lower-end HTC Hero devices (with a 512 MHz
processor and 288 MB of RAM) were excluded from our experiments as they were
considerably slower and could not host tens of instances. For practical reasons we
did not utilize the Blue-tooth connection between instances and considered as a local
link the socket communication of instances on the same physical smartphone host.

Figure 15(a), presents the response time for the different executions given that all
algorithms obtain the complete result set (i.e., maximum recall) in mobile-social sce-
nario 1. We observe that SmartP2P obtains the expected answer in little anywhere
between 1.5 seconds and 6 seconds while both BFS and RW require in many cases
as much as 10 seconds. The competitive advantage of SmartP2P over both BFS and
RW is considerably better for larger network sizes. This is very encouraging as Smart-

146 Distrib Parallel Databases (2013) 31:115–149

phone Networks might consist of thousands of nodes in an area of interest (i.e., within
the spatial boundary of a query). Figure 15(b), presents the energy consumption in
mobile-social scenario 1 as this was measured by PowerTutor (i.e., only the energy
related to CPU and Networking without taking into account costs related to LCD
utilization). The given figure shows that SmartP2P manages to locate the complete
answer set utilizing 25 % and 33 % less energy than RW and BFS, respectively. We
also noticed that by bringing down the recall expectation to ≈80 %, would allow us
to obtain great energy savings considerably faster (≈50 %). Similarly, Figs. 15(c) and
(d) show that the SmartP2P search approach is more efficient than the BFS and the
RW in MSS-2 as well. In particular, SmartP2P conserves up to 30 % time and 25 %
energy for max recall.

7 Conclusions

In this paper, we present the SmartOpt framework for searching objects captured
by the users in a mobile social community. Our framework, is founded on an in-
situ data storage model and searches then take place over the MO-QRT structure we
propose in this paper. Our structure concurrently optimizes several conflicting objec-
tives (i.e., energy, time and recall). Our experimental assessment uses a trace-driven
experimental methodology with mobility and social patterns derived by Microsoft’s
Geolife project, DBLP and Pics ‘n’ Trails, but also uses our real SmartP2P system
developed in Android and deployed over our SmartLab testbed of 40+ smartphone
devices. Our study reveals that our framework yields high query recall rates of 95 %,
with one order of magnitude less time and two orders of magnitude less energy than
its competitors. Additionally, our study reveals that the MO-QRT structure is highly
appropriate for content search and retrieval in Smartphone Networks. In the future,
we plan to fine-tune our peer-to-peer search application and experiment with larger
communities of users.

Acknowledgements This work was supported in part by the second author’s Startup Grant, funded by
the University of Cyprus, EU’s FP7 CONET project, EU’s FP6 Marie Curie TOK “SEARCHiN” project
and EU’s FP7 “MODAP” projects and US NSF IIS-10503. We would like to thank Mr. Christos Aplitsiotis
for helping out with the development of SmartP2P and its experimentation on SmartLab.

References

1. Allen, S.M., Colombo, G., Whitaker, R.M.: Cooperation through self-similar social networks. ACM
Trans. Auton. Adapt. Syst. 5(1), 1–29 (2010)

2. Andreou, P., Zeinalipour-Yazti, D., Pamboris, A., Chrysanthis, P., Samaras, G.: Optimized query rout-
ing trees for wireless sensor networks. Inf. Syst. 36(2), 267–291 (2011)

3. Andreou, P., Zeinalipour-Yazti, D., Chrysanthis, P.K., Samaras, G.: Power efficiency through tuple
ranking in wireless sensor network monitoring. Distrib. Parallel Databases 29(1–2), 113–150 (2011)

4. Andreou, P., Zeinalipour-Yazti, D., Pamboris, A., Chrysanthis, P.K., Samaras, G.: Optimized
query routing trees for wireless sensor networks. Inf. Syst. 36(2), 267–291 (2011). doi:10.1016/
j.is.2010.06.001

5. Azizyan, M., Constandache, I., Choudhury, R.R.: Surroundsense: mobile phone localization via am-
bience fingerprinting. In: MobiCom (2009)

http://dx.doi.org/10.1016/j.is.2010.06.001
http://dx.doi.org/10.1016/j.is.2010.06.001

Distrib Parallel Databases (2013) 31:115–149 147

6. Balke, W.T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web information systems.
In: EDBT, pp. 256–273 (2004)

7. Campbell, A., Eisenman, S., Lane, N., Miluzzo, E., Peterson, R., Lu, H., Musolesi, M., Fodor, K.,
Ahn, G.: The rise of people-centric sensing. IEEE Internet Comput. 12(4), 12–21 (2008)

8. Chatzimilioudis, G., Konstantinidis, A., Laoudias, C., Zeinalipour-Yazti, D.: Crowdsourcing with
smartphones. In: IEEE Internet Computing, IEEE Press, New York (2012)

9. Chen, S.K., Wang, P.C.: Design and implementation of an anycast services discovery in mobile ad
hoc networks. ACM Trans. Auton. Adapt. Syst. 6(1), 2 (2011)

10. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting: theory and optimization. In:
Int. Inf. Sys. Conference, pp. 593–602. Springer, Berlin (2005)

11. Chun, B.N., Culler, D.E., Roscoe, T., Bavier, A.C., Peterson, L.L., Wawrzoniak, M., Bowman, M.:
Planetlab: an overlay testbed for broad-coverage services. Comput. Commun. Rev. 33(3), 3–12 (2003)

12. Das, T., Mohan, P., Padmanabhan, V., Ramjee, R., Sharma, A.: Prism: platform for remote sensing
using smartphones. In: MobiSys (2010)

13. DBLP: DBLP Computer Science Bibliography (2010). http://dblp.uni-trier.de/xml/
14. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2002)
15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:

NSGA II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
16. Eisenman, S., Miluzzo, E., Lane, N., Peterson, R., Seop-Ahn, G., Campbell, A.: Bikenet: a mobile

sensing system for cyclist experience mapping. ACM Trans. Sens. Netw. 6(1), 1–39 (2009)
17. Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H.: The pothole patrol: using

a mobile sensor network for road surface monitoring. In: MobiSys, pp. 29–39 (2008)
18. Gahng-Seop, A., Musolesi, M., Lu, H., Olfati-Saber, R., Campbell, A.: Metrotrack: predictive tracking

of mobile events using mobile phones. In: DCOSS, pp. 230–243 (2010)
19. Gnutella: Gnutella peer-to-peer network (14 March 2000). http://gnutella.wego.com
20. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: Proceedings

of the 31st International Conference on Very Large Data Bases (VLDB’05), VLDB Endowment,
pp. 229–240 (2005)

21. Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries against mobile lightweight devices in
manets. In: Proc. of ICDE (2006)

22. Inamura, H., Montenegro, G., Ludwig, R., Gurtov, A., Khafizov, F.: TCP over second (2.5G)
and third (3G) generation wireless networks. RFC 3481 (Best Current Practice) (Feb 2003).
http://www.ietf.org/rfc/rfc3481.txt

23. Jia, J., Chen, J., Chang, G., Wen, Y., Song, J.: Multi-objective optimization for coverage control in
wireless sensor network with adjustable sensing radius. Comput. Math. Appl. 57(11–12), 1767–1775
(2009)

24. Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A local search mechanism for peer-to-peer
networks. In: 11th International Conference on Information and Knowledge Management (CIKM’02),
McLean, VA, USA, pp. 300–307 (2002)

25. Ko, Y.B., Vaidya, N.H.: Location-aided routing (lar) in mobile ad hoc networks. Wirel. Netw. 6(4),
307–321 (2000)

26. Konstantinidis, A., Aplitsiotis, C., Zeinalipour-Yazti, D.: SmartP2P: a multiobjective framework for
finding social content in P2P smartphone networks. In: 13th International Conference on Mobile Data
Management (MDM’12) (2012)

27. Konstantinidis, A., Costa, C., Larkou, G., Zeinalipour-Yazti, D., Demo: a programming cloud of
smartphones. In: 10th International Conference on Mobile Systems, Applications, and Services (Mo-
biSys’12), pp. 465–466 (2012)

28. Konstantinidis, A., Yang, K.: Multi-objective energy-efficient dense deployment in wireless sensor
networks using a hybrid problem-specific MOEA/D. Appl. Soft Comput. 11(6), 4117–4134 (2011)

29. Konstantinidis, A., Yang, K., Zhang, Q., Zeinalipour-Yazti, D.: A multi-objective evolutionary algo-
rithm for the deployment and power assignment problem in wireless sensor networks. New Netw.
Paradig., Elsevier Comput. Netw. 54, 960–976 (2010)

30. Konstantinidis, A., Zeinalipour-Yazti, D., Andreou, P., Samaras, G.: Multi-objective query optimiza-
tion in smartphone social networks. In: 12th International Conference in Mobile Data Management
(2011)

31. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries.
In: VLDB, pp. 275–286 (2002)

http://dblp.uni-trier.de/xml/
http://gnutella.wego.com
http://www.ietf.org/rfc/rfc3481.txt

148 Distrib Parallel Databases (2013) 31:115–149

32. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-peer
networks. In: 16th International Conference on Supercomputing (ICS’02), New York, USA, pp. 84–
95 (2002)

33. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-peer
networks. In: ICS, pp. 84–95 (2002)

34. Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.: Peerdb: a p2p-based system for distributed data sharing. In:
International Conference on Data Engineering, p. 633 (2003)

35. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries.
In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (SIG-
MOD’03), pp. 467–478. ACM, New York (2003)

36. Ra, M.R., Paek, J., Sharma, A., Govindan, R., Krieger, M.H., Neely, M.J.: Energy-delay tradeoffs in
smartphone applications. In: MobiSys, pp. 255–270 (2010)

37. Rajagopalan, R., Mohan, C.K., Mehrotra, K.G., Varshney, P.K.: Emoca: an evolutionary multi-
objective crowding algorithm. J. Intell. Syst. (2006)

38. Rajagopalan, R., Mohan, C.K., Varshney, P.K., Mehrotra, K.: Multi-objective mobile agent routing in
wireless sensor networks. In: Proc. IEEE CEC’05, Edinburgh, Scotland, September 2005

39. Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N., Hu, W.: Ear-phone: an end-to-end participatory
urban noise mapping system. In: IPSN, pp. 105–116 (2010)

40. Repantis, T., Kalogeraki, V.: Data dissemination in mobile peer-to-peer networks. In: 6th International
Conference on Mobile Data Management (MDM’05), Ayia Napa, Cyprus, pp. 211–219 (2005)

41. Sarigöl, E., Riva, P., Alonso, G.: A tuple space for social networking on mobile phones. In: ICDE
(2010)

42. de Silva, G.C., Aizawa, K.: Retrieving multimedia travel stories using location data and spatial
queries. In: The 17th ACM International Conference on Multimedia, pp. 785–788. ACM, New York
(2009)

43. de Silva, G.C., Yamasaki, T., Aizawa, K.: Sketch-based spatial queries for retrieving human locomo-
tion patterns from continuously archived gps data. IEEE Trans. Multimed. 11(7), 156–166 (2009)

44. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In: Proceedings of the 27th
International Conference on Very Large Data Bases (VLDB’01), pp. 301–310. Morgan Kaufmann,
San Francisco (2001)

45. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S., Eriksson, J.:
Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones. In: SenSys’09:
Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, pp. 85–98. ACM,
New York (2009)

46. Tomiyasu, H., Maekawa, T., Hara, T., Nishio, S.: Profile-based query routing in a mobile social net-
work. In: 7th International Conference on Mobile Data Management, May 2006, p. 105 (2006)

47. Tsoumakos, D., Roussopoulos, N.: Adaptive probabilistic search for peer-to-peer networks. In: Third
International Conference on Peer-to-Peer Computing (P2P’03), 1–3 September 2003, pp. 102–109
(2003)

48. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: Skypeer: efficient subspace skyline com-
putation over distributed data. In: International Conference on Data Engineering, pp. 416–425 (2007)

49. Wang, S., Ooi, B.C., Tung, A.K.H.: Efficient skyline query processing on peer-to-peer networks. In:
IEEE International Conference on Data Engineering (ICDE), pp. 1126–1135 (2007)

50. Werner-Allen, G., Swieskowski, P., Welsh, M.: Motelab: a wireless sensor network testbed. In: Infor-
mation Processing in Sensor Networks. Fourth International Symposium on IPSN 2005, pp. 483–488
(2005)

51. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D., Abbadi, A.E.: Parallelizing skyline queries for
scalable distribution. In: EDBT’06, pp. 112–130 (2006)

52. Xu, B., Wolfson, O., Naiman, C.: Machine learning in disruption-tolerant manets. ACM Trans. Auton.
Adapt. Syst. 4(4), 23 (2009)

53. Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: Exploiting locality for scalable information
retrieval in peer-to-peer systems. Inf. Syst. 30(4), 277–298 (2005)

54. Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: Pfusion: an architecture for internet-scale
content-based search and retrieval. IEEE Trans. Parallel Distrib. Syst. 18(6), 804–817 (2007)

55. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accurate online power
estimation and automatic battery behavior based power model generation for smartphones. In: Pro-
ceedings of the eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis (CODES/ISSS’10), pp. 105–114. ACM, New York (2010)

Distrib Parallel Databases (2013) 31:115–149 149

56. Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE
Trans. Evol. Comput. 11(6), 712–731 (2007)

57. Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw gps data for geographic
applications on the web. In: WWW (2008)

58. Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth consumption. IEEE Trans.
Knowl. Data Eng. 21, 384–400 (2009)

59. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms—A Comparative
Case Study, pp. 292–301. Springer, Berlin (1998)

60. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the
strength Pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999)

	Intelligent search in social communities of smartphone users
	Abstract
	Introduction
	System model and problem formulation
	System model
	Overview
	Connection modalities
	Search techniques

	Optimization problem formulation
	Objective 1:
	Objective 2:
	Objective 3:

	Background and related work
	The SmartOpt framework
	Pre-processing steps of SmartOpt optimizer
	Representation
	Decomposition

	Optimization phase
	Decision making phase
	Search phase
	Summary of SmartOpt architecture

	The SmartP2P prototype system
	Overview
	Graphical user interface
	Protocol
	SmartLab: a programming cloud of smartphones

	Experimental evaluation
	Evaluation methodology
	Datasets and queries
	Algorithms and evaluation metrics

	Series 1: Evaluating SmartOpt search
	Series 2: Execution time for generating Xs (PF)
	Series 3: Multi-objective optimization quality of generated Xs (PF)
	Series 4: SmartP2P prototype evaluation on SmartLab

	Conclusions
	Acknowledgements
	References

