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Abstract. In this paper, we present a novel approach for materializing dynamic 
web pages by exploiting content dependencies and user access patterns. We 
introduce two new semantic-based data freshness metrics and show that our 
approach out-performs traditional balancing QoS-QoD approaches in terms of 
server throughput, increased data freshness and scalability. In our evaluation we 
use a real-world experimental system that resembles an online bookstore web 
database application. 
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1 Introduction 

Our work focuses on e-commerce web applications such as an online bookstore. 
Those applications are implemented by dynamic web pages that are generated on-
demand by executing resource-hungry template scripts that access local or remote 
databases to produce html content. Reportedly, billions of dollars are lost every year 
due to excessive delays in e-commerce web pages that force users to abandon their 
session [1]. The study in [2] presents a comprehensive and comparative listing of 
early approaches for enhancing QoS (user-perceived latency) under heavy workload 
in the blind expense of QoD (freshness of data served). Improving on [2], the 
approaches in [3, 4, 5, 6, 7, 8] attempt to balance QoS and QoD by re-using from the 
cache as much as necessary stale content in order to spare computational resources 
and boost QoS. However, an open challenge has been the quantification of data 
freshness (QoD) of content and how this can be traded with QoS. In other words, 
which pages or parts of pages (also known as content fragments) are “less important” 
at a given time for “that particular user” so that they can be re-used from cache. 
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In this paper, we pose that current QoS-QoD balancing approaches fail to meet the 
requirements of modern Web database applications for the following two reasons: 

─ Link Dependencies. There is no consideration for the navigation needs of a 
user: If a content fragment is reused from cache, then it may be missing a 
needed valid html link for further user navigation at that given point in time. For 
example, a link on the upper right part of a web page may be recommending to 
the user to add the current book in the shopping cart, however, that link may be 
invalid since its containing fragment was reused from cache. 

─ Set-View Dependencies. There is no consideration for content fragments that 
must be synchronized (i.e., present consistent information) at the same time. For 
example, a part of the web page is showing book search results while another 
part is showing irrelevant suggested book listings from a previous search. 

Contributions. We enhance the notion of QoD with the inclusion of the above 
content dependencies (i.e., dependencies of web page content fragments). To 
encapsulate link dependencies, we introduce the metric of QoLF that considers the 
freshness of links in the content served and, thus, the ability of the user to navigate to 
the next page. To encapsulate set-view dependencies, we introduce the metric of 
QoSF that measures the degree of synchronization between content parts served. We 
present two content materialization algorithms that balance QoS with data freshness 
in terms of the proposed QoLF and QoSF metrics. Our experimental findings show 
that our algorithms outperform traditional QoS-QoD approaches in terms of 
throughput (i.e., better server-side response time), increased data freshness and 
scalability by sustaining more user sessions. Our performance evaluation is carried 
out using a real-world bookstore Web database application, which is the canonical 
example of the majority of e-commerce web applications and online stores. 

Roadmap. Next, we present the underlying assumptions of our work and existing 
content materialization approaches. In Section 3, we present our approach for QoS-
QoD balancing for materialization and in Section 4, our materialization algorithms. In 
Section 5, we discuss our performance evaluation and conclude in Section 6. 

2 System Model and Related Work 

2.1 Basic Assumptions 

The system model for user-driven, personalized e-commerce web database 
applications with infrequent database updates is based on the typical client / proxy / 
web server / application server / application database(s) architecture. All the 
components may have a cache, however, we focus on the cache of the application 
server (middle-tier) which is the module responsible for content materialization as 
well as regulating QoS by varying the quantity of cached content served [9, 10, 11]. 
Moreover, we do not assume a common shared cache across all user sessions. We 
distinguish between individual user sessions with the use of cookies in user browsers. 

The web server is the public entry point of the application and immediately serves 
request for static content (style sheets, images). Requests for a dynamic web page are 
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routed to an application server that executes the corresponding template file. 
Template files include script blocks that relate to web page content fragments that are 
either materialized from scratch or reused from the cache. The materialization of a 
fragment includes queries on the application database(s) and formatting/wrapping of 
their results with HTML. Finally, all the fragments, cached or freshly materialized, 
are assembled together according to the template file and transmitted to the user 
through the web server. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Breakdown of the bookstore application 

Let us take, for example, an online bookstore application with 20 different 
templates for dynamic web pages of which 4 account for the 95% of user accesses 
(Fig. 1). The most popular page is a search page (template: search.php) that provides 
search results, category listings and suggested books in various fragments. The second 
most popular page is the book viewing page (template: viewBook.php) that presents 
all information about a selected book in two fragments, related books listing in other 5 
fragments plus 1 fragment for adding the book into the shopping card with different 
options (Fadd). Typically, the user can navigate from search.php to viewBook.php by 
picking up a book link. The third book is the shopping card page (template: 
shopBox.php) that confirms the addition of a book into the shopping card and 
provides additional suggested listings for direct addition into the shopping card or for 
viewing. Typically, the user navigates from viewBook.php to shopBox.php by 
clicking on a link from within the Fadd fragment).  

Fragment materialization in our model is analogous to virtual WebViews [12]. 
However, WebViews fragments are oblivious to their contents and usage. In our 
context, the fragments are assumed to contain html form and url links with dynamic 
parameters that provide the user with the means of navigating between dynamic web 
pages. Links point statically to a target template and have appended, dynamic 
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parameters, according to the application semantics, i.e., the link 
“/doBook.php?bookid=2345& action=changeQuantity& value=-1” instructs the target 
template to perform specific tasks. We assume that a fragment reused from cache 
always contains outdated links since their parameters would refer to a previous user 
application-specific state and, therefore, would be invalid. Hence, according to our 
system model, fragments that are reused from cache do not have any freshness weight 
(importance). On the other hand, a fragment that is materialized upon a user request is 
considered fresh within is containing web page. 

Definition 1. (Freshness of a Content Fragment) A dynamic web content fragment is 
considered fresh if it has been materialized on a user request, according to the user-
submitted parameters. 

Definition 2. (Freshness of a Dynamic Web Page) A dynamic web page is considered 
fresh if all the fragments in its corresponding template are served fresh. 

2.2 Current Approach (QoIF Approach) and Shortcomings 

Current approaches balance QoS and QoD by varying the number of fresh fragments 
per template request according to the individual importance of their containing 
fragments [5, 6, 7, 8]. The “less important” fragments are the first to be reused from 
cache when server workload increases. The importance factor or weight of a fragment 
is template-specific and measures only the fragment’s contribution to the overall 
freshness of its containing template. The sum of the weights of all fragments inside a 
template sums up to 1, which is the maximum value of freshness when all the 
fragments of a requested template are materialized. A fragment F contributes to the 
freshness of a template T, if it is materialized when T is requested.  

Definition 3. (weightIF(F,T)) Let weightIF(F,T) be the freshness importance factor of 
an individual fragment F in template T. If F1, F2, ..., Fare all the member fragments 
of a template T, then weightIF(F  T) ∊  (0,  1) and  
 ෍ ,௜ܨሺܨܫݐ݄݃݅݁ݓ ܶሻ௡

௜ ൌ  1 

Definition 4. countIF(F,T) The countIF(F,T) of a fragment F in template T is 
,ܨሺܨܫݐ݊ݑ݋ܿ  ܶሻ ൌ ൜1, ,0ܶ ݊݅ ݀݁ݖ݈݅ܽ݅ݎ݁ݐܽ݉ ݏ݅ ܨ ݐ݊݁݉݃ܽݎ݂ ݂݅ .݄݁ܿܽܿ ݉݋ݎ݂ ݀݁ݏݑ݁ݎ ݂݅   
Given that the current approach focuses on the importance of individual fragments, 
we refer to their adopted QoD metric as QoIF (Quality of Individual Fragments) and 
to the current approach as the QoIF approach.  

Definition 5. (QoIF) Let F1, F2, ..., Fn be all the member fragments of template T. 
QoIF(T) is the freshness of template T whose value is 
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ሺܶሻܨܫ݋ܳ ൌ   ෍ ,௜ܨሺܨܫݐ݄݃݅݁ݓ ܶሻ  ൈ ,௜ܨሺܨܫݐ݊ݑ݋ܿ ܶሻ ௡
௜  

The problem with the traditional QoIF approach is that, it considers the templates and 
their fragments as independent by ignoring content dependencies within and across 
templates.  More specifically the problems are: 

 1) No Provision for Link Dependencies. 

Definition 6. (Link Dependency) A fragment Fsource is link-dependent on a template 
Tdest, if there is at least one link inside fragment Fsource that links to Tdest.  

The links between templates are dynamic, in the sense that their parameters are not 
hardcoded. If a fragment that includes a needed link for navigation is reused from 
cache, because of its relative low QoIF importance weight, then it does not contain 
valid links for the user to navigate. This unsatisfied dependency (also called ‘broken 
link’) stalls the user session until a fresh version of the fragment is received. 

2) No Provision for Set-View Dependencies. 

Definition 7. (Set-View Dependency) A fragment Fi in template T is set-view 
dependent on fragment Fj in the same template T if both fragments must present 
consistent (synchronized) information.  

The QoIF approach, which handles fragments independently, fails to synchronize the 
materialization of set-view dependent fragments since the importance factor 
employed is fragment-wise and does not force two fragments to be materialized or 
reused from cache at the same user request for their template. 

3 Our Approach for QoS-QoD Balancing 

Our approach for balancing QoS with data freshness takes into account link and set-
view content dependencies when materializing a dynamic page, thus reducing broken 
links and unsynchronized content. In a nutshell, our goal is to select the right set of 
fragments to materialize per page request, given the current server workload 
constrains. Under light workload, all fragments are materialized and all content 
dependencies are met. Under heavier workload, the right set of cached fragments is 
reused so that the most important-to-the-user link and set-view dependencies at met at 
that particular point in time. Our approach is broken down into the following three 
sub-goals (or components): 

─ Ensure QoS. Constantly calculate the maximum possible quantity of fragments 
per template request that must be materialized in order to keep the average 
response time below a predefined QoS threshold (measured in ms), 

─ Speculation. Employ user access patterns to ‘guess’ the next template that a 
user will request, 

─ Ensure QoD. Indicate the appropriate mixture of fragments per template 
request that satisfy link and set-view dependencies to the highest possible 
degree in order to reduce broken links and unsynchronized content. 
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Since our main focus in this paper is content dependencies, we discuss only in brief 
how we regulate QoS and the methodology of request speculation. The detailed 
descriptions on QoS regulation and user speculation can be found in [20]. 

3.1 Ensuring QoS – The QoS Controller 

Two essential parameters for ensuring QoS are the maximum tolerable response time 
(QoS-threshold) and the average response time of currently active user sessions (QoS-
average). The former defines a threshold for the latter which, when violated/crossed, 
triggers the QoS Controller to take a corrective action. At run time, the QoS-average 
of active user sessions is computed every tuning period of W seconds. If it is found 
steadily higher than QoS-threshold, the QoS Controller attempts to lower it by issuing 
a controlled decrease on the suggested maximum number of fragments that are 
materialized per template until the next tuning period. This decrease is progressively 
applied to a percentage of active user sessions per tuning period. In addition, all active 
user sessions must be affected at least once before the QoS Controller issues any 
additional decreases as necessary. As soon as the average response time is stabilized 
below the threshold, the decrease is suspended. In this case, the procedure can be 
reversed by issuing an increase on the maximum number of fragments per template 
for materialization. We refer to the action of applying a decrease to a user session as 
“degrading the user” or “dropping the user”. We refer to “upgrade” for the opposite 
action. 

In order to implement this QoS policy, we use two QoS level indexes. The first is 
called Global QoS Level and indicates the suggested number of fragments to be 
reused from cache per template request. The second is called User QoS Level and 
indicates the actual number of fragments per template to be reused from cache for a 
particular user. Initially, at light workload, the Global QoS Level is set to 0. The User 
QoS Level is also set to 0 for all currently active users. Every W seconds, the QoS-
average is checked. If it is found to be steadily below the QoS-threshold, then the 
Global QoS Level is decreased to -1. If workload continues to increase, then a 
requirement for any extra decrease to the Global QoS Level to -1 is that, all current 
users have been degraded to -1. In Section 4, we examine how the materialization 
algorithm regulates the User QoS Level and the directive flags. 

3.2 Speculation – The Usage Plans 

The second sub-goal of our approach is the speculation on the next template that a 
user will request. Since user speculation is not the main focus of this paper, we only 
briefly discuss here a simple speculation scheme based on data mining findings, 
which we use to implement the speculation module of our materialization algorithms. 

According to [13], the popularity of dynamic pages (and of templates) obeys a 
zipf-like distribution similar to static documents and media files. In other words, 
fewer templates account for more requests in a structured, almost predictable manner: 
the most popular template is accessed roughly at a rate of 50%, the second most 
popular at a rate of 25% and so on. It has also been shown that for web database 
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applications, a small set of templates (approximately four) account for almost 95% of 
the requests [14], where this set of templates is stable over time [15]. Similarly, [16], 
[17] refer to “mostly working” user sessions, in which users exhibit a very strong 
temporal locality in their request patterns on a small set of documents.   

In order to encode recurrent access patterns, we introduce the notion of Usage 
Plans (UP) that encapsulate looping user behavior. Figure 2 presents five Usage Plans 
of the bookstore application of the three most popular templates of the application. 
Note how two Usage Plans do not share the same template transition. In other words, 
every transition between two templates is a member of only one UP. This restriction 
is very important because it allows us to define a session to consist solely of a 
sequence of non-overlapping UP. For example, a user initially performs a search for a 
book three times in a row using template S, views a couple of books using V and adds 
the last viewed book in the shopping basket using B. Then, from within B, the user 
picks a suggested book to view using V, and then adds it to the shopping basket using 
B. This sequence of template requests is shown in Figure 3 along with the projected 
Usage Plans that emerge (S*, (SV)* etc.).  
 
 

 
 

 
 

 
 
 
 

 

Fig. 2. Five Usage Plans of the Bookstore Application: Three uni-usage plans S*, V*, B*, and 
two bi-usage plans (SV)* and (VB)* 

 
 
 
 
 
 

Fig. 3. A Session Illustrated as a Sequence of Usage Plans. Note that each usage plan is 
immediately followed by another one. 

Having established that a user session consists of non-overlapping UPs, we present 
in brief our simple speculation methodology. We distinguish the UPs to uni-UPs and 
bi-UPs. The former involve only one-template looping, such as S* and V*. The latter 
involve two templates such as (SV)* or (VB)*. For each user, we use a FSM Module 
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with three states: (a) “the user is on a uni-UP”, (b) “the user is on a bi-UP, and (c) 
“the user is a moving from a uni-UP to a bi-UP”. As the user links between templates, 
the state on the FSM is changed accordingly. To “speculate” on the next template that 
the user will request, we use pattern matching that encodes the typical behavior of a 
user using the FSM and the user’s pervious behavior as inputs. 

3.3 Ensure QoD – The New QoLF and QoSF Data Freshness Metrics 

To better weight the importance of content fragments, we introduce two new 
semantics-based metrics as follows: 

 
Quality of Link Fragments (QoLF): This metric quantifies the existence of freshly 
materialized fragments inside a template Ts with link dependencies toward a target 
template Td. QoLF applies importance weights on fragments toward link-dependent 
templates. 

Definition 8. (weightLF(Fi,Ts,Td)) Let weightLF(Fi,Ts,Td) be the QoLF importance 
factor of fragment Fi in template Ts toward template Td. For all Fi in Ts with a link 
dependency to template Td, weightLF(Fi, Ts, Td) ∊ (0, 1) and  

 ෍ ,௜ܨሺܨܮݐ݄݃݅݁ݓ ௦ܶ, ௗܶሻ௡
௜ ൌ  1 

In other words, weightLF(Fi,Ts,Td) measures the navigation/linking importance of 
fragment Fi in template Ts toward template Td. In this way, the importance of Fi is 
dynamic since it depends on a target template Td. If all fragments inside template Ts 
with link dependencies to Td are materialized when Ts is requested by a user, then the 
QoLF for template Ts toward Td has the maximum value of 1. 

Definition 9. (QoLF(Ts,Td)) For all fragments Fi in template Ts with link dependency 
to Td, then ܳܨܮ݋ሺ ௦ܶ, ௗܶሻ ൌ   ෍ ,௜ܨሺܨܮݐ݄݃݅݁ݓ ௦ܶ, ௗܶሻ  ൈ ,௜ܨሺܨܫݐ݊ݑ݋ܿ ௦ܶሻ ௡

௜  

If a linking fragment from Ts toward Td is not materialized, then the QoLF value is 
reduced according to the QoLF importance weight of that fragment toward Td. 

Quality of Set-view Fragments (QoSF): The metric of QoSF quantifies the overall 
set-wise consistency of set-view dependent fragments inside a template. Similarly, we 
use an importance weight that measures the importance of materializing two set-wise 
dependent fragments in a template.  

Definition 10. (weightSF(Fi,Fj,T)) Let weightSF(Fi,Fj,T) be the QoSF importance 
weight between fragments Fi and Fj in template T. For all Fi and Fj which are set-
view dependent in T, weightSF(Fi, Fj , T) ∊  (0, 1) and 
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෍ ,௜ܨሺܨܵݐ݄݃݅݁ݓ ௝ܶ , ܶሻ௡
௜,௝ ൌ  1 

Given that QoSF considers pairs of fragments, only synchronized pairs contribute to 
and counted toward the freshness of their template.  

Definition 11. (countSF(Fi,Fj,T)) The countSF(Fi,Fj,T) of a pair of fragments Fi and 
Fj in template T is  
,௜ܨሺܨܵݐ݊ݑ݋ܿ  ,௝ܨ ܶሻ ൌ ൜1, ,0ܶ ݊݅ ݀݁ݖ݅݊݋ݎ݄ܿ݊ݕݏ ݁ݎܽ ௝ܨ ݀݊ܽ  ௜ܨ ݏݐ݊݁݉݃ܽݎ݂ ݂݅ .݁ݏ݅ݓݎ݄݁ݐ݋   

Fragments Fi and Fj are synchronized in template T if both are materialized or reused 
from cache. When all set-view dependent fragments of a template T are synchronized 
then T is fully set-view consistent and its QoSF has the maximum value of 1. 

Definition 12. (QoSF(T)) For all fragment pairs Fi and Fj in template T, then 
ሺܶሻܨܵ݋ܳ  ൌ   ෍ ,௜ܨ൫ܨܵݐ݄݃݅݁ݓ ,௝ܨ ܶ൯  ൈ ,௜ܨሺܨܵݐ݊ݑ݋ܿ ,௝ܨ ܶሻ ௡

௜,௝  

4 Materialization Algorithms 

In the previous section, we examined how QoS is regulated by the increase or 
decrease of the Global QoS Level index and introduced the notion of Usage Plans and 
the new metrics of QoLF and QoSF for measuring data freshness, given the link and 
set-view dependencies of content fragments. In this section, we explain how we 
organize QoS Level index, Usage Plans and the new data quality metrics into one 
convenient structure called MP Selection Table and show how it is used by our 
materialization algorithms. 

4.1 Putting It All Together: The MP Selection Table 

The MP Selection Table is a structure that summarizes all combinations of 
fresh/cached fragments, for a specific template, into groups according to a QoS Level 
Index. Those combinations are called Materialization Plans (MP). For example, at 
level -1, the table lists 4 possible MP of 3 fresh and 1 cached fragments. Figure 4 
shows the MP Selection Table for template search.php (S) (for ease of presentation 
we show only 4 fragments). The MP ‘1111’ of a template with four fragments implies 
that all fragments are materialized. The MP ‘1101’ implies that all fragments are 
materialized except the third one which is retrieved from cache. 

For each MP, a QoLF value for each template to which template S links is 
computed (see Definition 9). In our example, template S links to its self and template 
viewBook.php (V). In the right-most column (Figure 4), the QoSF for each MP is 
computed (see Definition 12). 
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For example, if a user with QoS level equals to -1 has requested template 
search.php (S), and the speculation FSM Module returns that the user will 
subsequently request template viewBook.php (V), the algorithm will examine the 
candidate MPs with QoS Level -1 index and select the MP ‘1110’ which has the 
highest QoLF value. 

The QLSV Algorithm. The QLSV variation of the QLS algorithm considers 
additionally the QoSV value of the candidate MPs toward increasing the 
synchronization of set-view dependent fragments. An additional Relax Factor is used 
to indicate the tolerance on the loss of the QoLF of the selected MP. In our example 
above, with a Relax Factor of 0%, the algorithm would have select the MP ‘1110’ 
with a relatively low QoLF value of 0.6 while with a Relax Factor of only just 10%, 
the MP ‘1011’ with much higher QoSV is selected. In other words, the QLSV 
variation increases the synchronization of content in a dynamic web page at the 
expense of linking dependencies. 

5 Evaluation  

Setup. The evaluation is performed on an experimental platform that emulates a real-
world bookstore web database application. Our main server machine (a dual CPU, 2GB 
RAM, RAID 0) hosted our Java-based web server structured according to the multi-
threaded system model. On the same machine, we deployed an application server 
according to our proposed architecture in Section IV. The application database runs on a 
separate machine (also a dual CPU, 2GB RAM, RAID 0) on the same local network and 
it is implemented on SQL Server 2008. The database holds the data for a bookstore with 
more than a hundred thousand books, in addition to data for book availability, authors, 
shopping baskets, orders etc. We prepared a mixture of templates, each containing eight 
to ten fragments. The fragments and their content dependencies are setup according to 
the bookstore application. Every fragment contains script code that manipulates the 
results of one read-only query on the application database. In addition, one fragment of 
the shopBox.php template executes one update on the application database for placing 
(or removing) a book in a user’s shopping box. 

For the client workload, on a separate machine, we developed and deployed a 
multi-threaded User Generator engine capable of emulating a large number of user 
browsers. We chose to create our own user generator engine in order to have greater 
control over our experiments in terms of user statistical traces and fragment handling. 
Specifically, our browser emulators can issue a special HTTP GET request for only 
receiving a fresh version of a fragment that was served from cache. Our synthetic 
workload follows basic principles according to the transactional web e-Commerce 
benchmark (TPC-W) [18], In particular: (a) the popularity of documents follows a 
zipf-like distribution, (b) a small set of documents (around four) account for at least 
95% of total user requests, (c) this set is stable over time, (d) consecutive user 
requests occur about every ten seconds [19]. 

Evaluation of the QLS Algorithm. Our first set of experiments compares QLS to the 
current QoIF approach on the percentage of pages served with broken links. The 
results of the experiment (Figure 6a, dotted lines) show that this percentage is 
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proportional to the workload. This is because increased workload implies that more 
users are dropped toward lower QoS levels, and therefore more fragments are served 
from cache with outdated links. Moreover, the results clearly state that QLS generates 
approximately 50% less pages with broken links than the QoIF approach, even at high 
workload. This is because QLS selects the fragments for materialization with link 
dependencies on the next speculated template of the user. Our analysis has shown that 
the Speculation Module used by QLS has a hit ratio of 86% in speculating correctly 
the next template that the user will request. However, Figure 6a (solid lines) plots the 
performance of QLS by setting the speculation hit ratio manually. The results suggest 
that our QLS outperforms QoIF even at such a low speculation hit ratio of 40%. 

 

Fig. 6. The Performance Results 
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Evaluation of the QLSV Variation. In this set of experiments, we compare our 
QLSV algorithm to the QoIF approach. First, we compare the two approaches on the 
percentage of unsatisfied set-view dependencies. That is pairs of set-view dependent 
fragments that are served to the user unsynchronized. Then, we compare them on the 
percentage of broken links. For these experiments, we run QLSV with relax factors 
for QoLF equal to 0%, 10%, 20% and 30%. Recall that, the relax factor reduces the 
maximum possible QoLF of materialization plans in order for the algorithm to select 
the plan with the maximum possible QoSF value. The results (Figure 6b) show that 
QLSV serves less unsynchronized set-view dependent fragments than the QoIF 
approach that has no related provision whatsoever. The gains are greater by using a 
higher QoLF relax factor of 30%. However, the results come at a cost for the QoLF. 
Figure 6c plots the percentage of broken links for the four runs of QLSV. The obvious 
reductions on the previous gains of QLS are attributed to the reduced QoLF imposed 
by the QoLF relax factor. 

Throuput and Maximum Sessions Sustained. Our last experiment measures the 
maximum throughput and concurrent users that can be sustained by the QoIF 
approach, QLS algorithm and its QLSV variation using QoLF relax factors of 0%, 
10%, 20% and 30%. In other words, this experiment measures the “industrial 
potential” of our algorithms. This experiment differs from the previous since it 
provides support for handling broken links in cached fragments. To implement this, 
we alter the normal request sequence of a user when a template with a cached 
fragment containing a needed link is received. When this occurs, the user issues an 
extra special HTTP GET special request to the server in order to receive fresh only 
the missing fragment that contains valid links. Subsequently, the user resumes its 
template request sequence. The results of this experiment (Figure 6d) show that both 
QLS and QLSV outperform the QoIF approach. QLS in particular achieves higher 
throughput by sustaining about 25% more concurrent users than the QoIF approach. 
This is attributed to 50% less extra load at the server to handle the special HTTP GET 
request issued by users for missing fragments. Subsequently, the gains are reduced for 
QLSV since a higher relax factor generates more broken links than QLS. 

6 Conclusion 

In this paper, we considered the problem of meeting user QoS expectations in 
dynamic web database applications under heavy load and we identified the 
shortcomings of current approaches, which trade QoD for QoS. To mitigate these 
shortcomings, we proposed two new materialization algorithms, namely QLS and 
QLSV, for dynamic web pages that can meet user QoS requirements while incurring 
less impact on the QoD compared to previous QoS-QoD balancing methods.  As 
opposed to QLSV, the QLS algorithm is more suitable in situations characterized by 
more frequent user clicks - more impatient users - where response time matters the 
most. Our proposed algorithms achieve their performance by considering content 
dependencies and user access patterns when selecting which fragments to materialize 
and which to reuse from the cache when generating a web page. The performance 
advantages of our two materialization algorithms, including their scalability, were 
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experimentally demonstrated by using a real web database application of an online 
bookstore. Although the online bookstore is the canonical example of the majority of 
e-commerce web applications and online stores, our next step is to evaluate our 
approach in the context of other web database applications with larger web sites and 
larger databases such as technical forums and newsgroups. 
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