Exploring Content Dependencies
to Better Balance Performance and Freshness
in Web Database Applications

Stavros Papastavrou', Panos K. Chrysanthis™", George Samaras""

! Dept. of Computer Science, University of Cyprus, Nicosia, Cyprus
stavros@schoolfortheblind.net,
cssamara@ucy.ac.cy
? Dept. of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA
panos@cs.pitt.edu

Abstract. In this paper, we present a novel approach for materializing dynamic
web pages by exploiting content dependencies and user access patterns. We
introduce two new semantic-based data freshness metrics and show that our
approach out-performs traditional balancing QoS-QoD approaches in terms of
server throughput, increased data freshness and scalability. In our evaluation we
use a real-world experimental system that resembles an online bookstore web
database application.

Keywords: Caching, Dynamic Web Content, QoD, QoS, Data Freshness.

1 Introduction

Our work focuses on e-commerce web applications such as an online bookstore.
Those applications are implemented by dynamic web pages that are generated on-
demand by executing resource-hungry template scripts that access local or remote
databases to produce html content. Reportedly, billions of dollars are lost every year
due to excessive delays in e-commerce web pages that force users to abandon their
session [1]. The study in [2] presents a comprehensive and comparative listing of
early approaches for enhancing QoS (user-perceived latency) under heavy workload
in the blind expense of QoD (freshness of data served). Improving on [2], the
approaches in [3, 4, 5, 6, 7, 8] attempt to balance QoS and QoD by re-using from the
cache as much as necessary stale content in order to spare computational resources
and boost QoS. However, an open challenge has been the quantification of data
freshness (QoD) of content and how this can be traded with QoS. In other words,
which pages or parts of pages (also known as content fragments) are “less important”
at a given time for “that particular user” so that they can be re-used from cache.

f Partially Supported by the USA National Science Foundation Award OIA-1028162.
* Co-funded by the EU Project CONET (INFSO-ICT-224053) & The Project FireWatch
(#0609-BIE/09), Sponsored by the Cyprus Research Promotion Foundation.

X.S. Wang et al. (Eds.): WISE 2012, LNCS 7651, pp. 512-525] 2012.
© Springer-Verlag Berlin Heidelberg 2012

Exploring Content Dependencies to Better Balance Performance 513

In this paper, we pose that current QoS-QoD balancing approaches fail to meet the
requirements of modern Web database applications for the following two reasons:

— Link Dependencies. There is no consideration for the navigation needs of a
user: If a content fragment is reused from cache, then it may be missing a
needed valid html link for further user navigation at that given point in time. For
example, a link on the upper right part of a web page may be recommending to
the user to add the current book in the shopping cart, however, that link may be
invalid since its containing fragment was reused from cache.

— Set-View Dependencies. There is no consideration for content fragments that
must be synchronized (i.e., present consistent information) at the same time. For
example, a part of the web page is showing book search results while another
part is showing irrelevant suggested book listings from a previous search.

Contributions. We enhance the notion of QoD with the inclusion of the above
content dependencies (i.e., dependencies of web page content fragments). To
encapsulate link dependencies, we introduce the metric of QoLF that considers the
freshness of links in the content served and, thus, the ability of the user to navigate to
the next page. To encapsulate set-view dependencies, we introduce the metric of
QoSF that measures the degree of synchronization between content parts served. We
present two content materialization algorithms that balance QoS with data freshness
in terms of the proposed QoLF and QoSF metrics. Our experimental findings show
that our algorithms outperform traditional QoS-QoD approaches in terms of
throughput (i.e., better server-side response time), increased data freshness and
scalability by sustaining more user sessions. Our performance evaluation is carried
out using a real-world bookstore Web database application, which is the canonical
example of the majority of e-commerce web applications and online stores.

Roadmap. Next, we present the underlying assumptions of our work and existing
content materialization approaches. In Section 3, we present our approach for QoS-
QoD balancing for materialization and in Section 4, our materialization algorithms. In
Section 5, we discuss our performance evaluation and conclude in Section 6.

2 System Model and Related Work

2.1 Basic Assumptions

The system model for user-driven, personalized e-commerce web database
applications with infrequent database updates is based on the typical client / proxy /
web server / application server / application database(s) architecture. All the
components may have a cache, however, we focus on the cache of the application
server (middle-tier) which is the module responsible for content materialization as
well as regulating QoS by varying the quantity of cached content served [9, 10, 11].
Moreover, we do not assume a common shared cache across all user sessions. We
distinguish between individual user sessions with the use of cookies in user browsers.
The web server is the public entry point of the application and immediately serves
request for static content (style sheets, images). Requests for a dynamic web page are

514 S. Papastavrou, P.K. Chrysanthis, and G. Samaras

routed to an application server that executes the corresponding template file.
Template files include script blocks that relate to web page content fragments that are
either materialized from scratch or reused from the cache. The materialization of a
fragment includes queries on the application database(s) and formatting/wrapping of
their results with HTML. Finally, all the fragments, cached or freshly materialized,
are assembled together according to the template file and transmitted to the user
through the web server.

search.dyn (S)
ﬂ Popularity 26%
' F5
Search Form
F6 F1 Fa -
viewBook.dyn (V)
Tagged Top results Suggest N .
t. Search ed \ > Popularity 50%
\r\ﬁults [=5)
F7 F2 F Search Form
Categ Allresults Sponso
E_ Search ed & F3
= results \ F7.F8 - Addé%:mp
Histo Repeat Book
v \\ Search | sumimary, = :‘
shopBox.dyn (B) |, Sponsored
i H Popularity 12.5% = =
' F2
Others /{ Related
I:fBuug 00k review basls 7:‘
F2 1
Related F6 \
E Books Card contents Checkeeut]
L Adjust ltermn
Pl Quantities
Other
F5 Pages
F3
|
l: Others / Credt
= Card
Bought F4 Offare
Book Goes with
|
]

Fig. 1. Breakdown of the bookstore application

Let us take, for example, an online bookstore application with 20 different
templates for dynamic web pages of which 4 account for the 95% of user accesses
(Fig. 1). The most popular page is a search page (template: search.php) that provides
search results, category listings and suggested books in various fragments. The second
most popular page is the book viewing page (template: viewBook.php) that presents
all information about a selected book in two fragments, related books listing in other 5
fragments plus 1 fragment for adding the book into the shopping card with different
options (F,q44). Typically, the user can navigate from search.php to viewBook.php by
picking up a book link. The third book is the shopping card page (template:
shopBox.php) that confirms the addition of a book into the shopping card and
provides additional suggested listings for direct addition into the shopping card or for
viewing. Typically, the user navigates from viewBook.php to shopBox.php by
clicking on a link from within the F,qq fragment).

Fragment materialization in our model is analogous to virtual WebViews [12].
However, WebViews fragments are oblivious to their contents and usage. In our
context, the fragments are assumed to contain html form and url links with dynamic
parameters that provide the user with the means of navigating between dynamic web
pages. Links point statically to a target template and have appended, dynamic

Exploring Content Dependencies to Better Balance Performance 515

parameters, according to the application semantics, 1i.e., the link
“/doBook.php?bookid=2345& action=changeQuantity& value=-1" instructs the target
template to perform specific tasks. We assume that a fragment reused from cache
always contains outdated links since their parameters would refer to a previous user
application-specific state and, therefore, would be invalid. Hence, according to our
system model, fragments that are reused from cache do not have any freshness weight
(importance). On the other hand, a fragment that is materialized upon a user request is
considered fresh within is containing web page.

Definition 1. (Freshness of a Content Fragment) A dynamic web content fragment is
considered fresh if it has been materialized on a user request, according to the user-
submitted parameters.

Definition 2. (Freshness of a Dynamic Web Page) A dynamic web page is considered
fresh if all the fragments in its corresponding template are served fresh.

2.2 Current Approach (QoIF Approach) and Shortcomings

Current approaches balance QoS and QoD by varying the number of fresh fragments
per template request according to the individual importance of their containing
fragments [5, 6, 7, 8]. The “less important” fragments are the first to be reused from
cache when server workload increases. The importance factor or weight of a fragment
is template-specific and measures only the fragment’s contribution to the overall
freshness of its containing template. The sum of the weights of all fragments inside a
template sums up to 1, which is the maximum value of freshness when all the
fragments of a requested template are materialized. A fragment F contributes to the
freshness of a template T, if it is materialized when T is requested.

Definition 3. (weightIF(F,T)) Let weightlF(F,T) be the freshness importance factor of
an individual fragment F in template T. If F1, F3, ..., Fr are all the member fragments
of a template T, then weight/F[F#7) €(0,1) and

n
Z weightlF(F;,T) = 1
i

Definition 4. countlF(F,T) The countlF(F,T) of a fragment F in template T is

1, if fragment F is materialized in T

countlF(F,T) = {0, if reused from cache.

Given that the current approach focuses on the importance of individual fragments,
we refer to their adopted QoD metric as QolF (Quality of Individual Fragments) and
to the current approach as the QolF approach.

Definition 5. (QolF) Let Fi, F2, ..., Fn be all the member fragments of template T.
QoIF(T) is the freshness of template T whose value is

516 S. Papastavrou, P.K. Chrysanthis, and G. Samaras

n
QoIF(T) = z weightIF (F;,T) X countIF(F;,T)
i

The problem with the traditional QolF approach is that, it considers the templates and
their fragments as independent by ignoring content dependencies within and across
templates. More specifically the problems are:

1) No Provision for Link Dependencies.

Definition 6. (Link Dependency) A fragment Fj,,.. is link-dependent on a template
Taess if there is at least one link inside fragment Fy,,,.. that links to Ty,

The links between templates are dynamic, in the sense that their parameters are not
hardcoded. If a fragment that includes a needed link for navigation is reused from
cache, because of its relative low QolF importance weight, then it does not contain
valid links for the user to navigate. This unsatisfied dependency (also called ‘broken
link’) stalls the user session until a fresh version of the fragment is received.

2) No Provision for Set-View Dependencies.

Definition 7. (Set-View Dependency) A fragment F; in template T is set-view
dependent on fragment F; in the same template T if both fragments must present
consistent (synchronized) information.

The QolIF approach, which handles fragments independently, fails to synchronize the
materialization of set-view dependent fragments since the importance factor
employed is fragment-wise and does not force two fragments to be materialized or
reused from cache at the same user request for their template.

3 Our Approach for QoS-QoD Balancing

Our approach for balancing QoS with data freshness takes into account link and set-
view content dependencies when materializing a dynamic page, thus reducing broken
links and unsynchronized content. In a nutshell, our goal is to select the right set of
fragments to materialize per page request, given the current server workload
constrains. Under light workload, all fragments are materialized and all content
dependencies are met. Under heavier workload, the right set of cached fragments is
reused so that the most important-to-the-user link and set-view dependencies at met at
that particular point in time. Our approach is broken down into the following three
sub-goals (or components):

— Ensure QoS. Constantly calculate the maximum possible quantity of fragments
per template request that must be materialized in order to keep the average
response time below a predefined QoS threshold (measured in ms),

— Speculation. Employ user access patterns to ‘guess’ the next template that a
user will request,

— Ensure QoD. Indicate the appropriate mixture of fragments per template
request that satisfy link and set-view dependencies to the highest possible
degree in order to reduce broken links and unsynchronized content.

Exploring Content Dependencies to Better Balance Performance 517

Since our main focus in this paper is content dependencies, we discuss only in brief
how we regulate QoS and the methodology of request speculation. The detailed
descriptions on QoS regulation and user speculation can be found in [20].

3.1 Ensuring QoS - The QoS Controller

Two essential parameters for ensuring QoS are the maximum tolerable response time
(QoS-threshold) and the average response time of currently active user sessions (QoS-
average). The former defines a threshold for the latter which, when violated/crossed,
triggers the QoS Controller to take a corrective action. At run time, the QoS-average
of active user sessions is computed every tuning period of W seconds. If it is found
steadily higher than QoS-threshold, the QoS Controller attempts to lower it by issuing
a controlled decrease on the suggested maximum number of fragments that are
materialized per template until the next tuning period. This decrease is progressively
applied to a percentage of active user sessions per tuning period. In addition, all active
user sessions must be affected at least once before the QoS Controller issues any
additional decreases as necessary. As soon as the average response time is stabilized
below the threshold, the decrease is suspended. In this case, the procedure can be
reversed by issuing an increase on the maximum number of fragments per template
for materialization. We refer to the action of applying a decrease to a user session as
“degrading the user” or “dropping the user”. We refer to “upgrade” for the opposite
action.

In order to implement this QoS policy, we use two QoS level indexes. The first is
called Global QoS Level and indicates the suggested number of fragments to be
reused from cache per template request. The second is called User QoS Level and
indicates the actual number of fragments per template to be reused from cache for a
particular user. Initially, at light workload, the Global QoS Level is set to 0. The User
QoS Level is also set to O for all currently active users. Every W seconds, the QoS-
average is checked. If it is found to be steadily below the QoS-threshold, then the
Global QoS Level is decreased to -1. If workload continues to increase, then a
requirement for any extra decrease to the Global QoS Level to -1 is that, all current
users have been degraded to -1. In Section 4, we examine how the materialization
algorithm regulates the User QoS Level and the directive flags.

3.2 Speculation — The Usage Plans

The second sub-goal of our approach is the speculation on the next template that a
user will request. Since user speculation is not the main focus of this paper, we only
briefly discuss here a simple speculation scheme based on data mining findings,
which we use to implement the speculation module of our materialization algorithms.

According to [13], the popularity of dynamic pages (and of templates) obeys a
zipf-like distribution similar to static documents and media files. In other words,
fewer templates account for more requests in a structured, almost predictable manner:
the most popular template is accessed roughly at a rate of 50%, the second most
popular at a rate of 25% and so on. It has also been shown that for web database

518 S. Papastavrou, P.K. Chrysanthis, and G. Samaras

applications, a small set of templates (approximately four) account for almost 95% of
the requests [14], where this set of templates is stable over time [15]. Similarly, [16],
[17] refer to “mostly working” user sessions, in which users exhibit a very strong
temporal locality in their request patterns on a small set of documents.

In order to encode recurrent access patterns, we introduce the notion of Usage
Plans (UP) that encapsulate looping user behavior. Figure 2 presents five Usage Plans
of the bookstore application of the three most popular templates of the application.
Note how two Usage Plans do not share the same template transition. In other words,
every transition between two templates is a member of only one UP. This restriction
is very important because it allows us to define a session to consist solely of a
sequence of non-overlapping UP. For example, a user initially performs a search for a
book three times in a row using template S, views a couple of books using V and adds
the last viewed book in the shopping basket using B. Then, from within B, the user
picks a suggested book to view using V, and then adds it to the shopping basket using
B. This sequence of template requests is shown in Figure 3 along with the projected
Usage Plans that emerge (S*, (SV)* etc.).

S* V* B*
comf_search.dyn comi_viewBook.dyn comf_shopBaox.dyn
- -

S sy V (vBy" B
—_— —_—

Done Internet Done Internet Dane Internet

Fig. 2. Five Usage Plans of the Bookstore Application: Three uni-usage plans S*, V*, B*, and
two bi-usage plans (SV)* and (VB)*

¥ ¥ v ¥

S=25 =95 =V =2V B =V =8
tow t 4 v ey *

Fig. 3. A Session Illustrated as a Sequence of Usage Plans. Note that each usage plan is
immediately followed by another one.

Having established that a user session consists of non-overlapping UPs, we present
in brief our simple speculation methodology. We distinguish the UPs to uni-UPs and
bi-UPs. The former involve only one-template looping, such as S* and V*. The latter
involve two templates such as (SV)* or (VB)*. For each user, we use a FSM Module

Exploring Content Dependencies to Better Balance Performance 519

with three states: (a) “the user is on a uni-UP”, (b) “the user is on a bi-UP, and (c)
“the user is a moving from a uni-UP to a bi-UP”. As the user links between templates,
the state on the FSM is changed accordingly. To “speculate” on the next template that
the user will request, we use pattern matching that encodes the typical behavior of a
user using the FSM and the user’s pervious behavior as inputs.

3.3 Ensure QoD - The New QoLF and QoSF Data Freshness Metrics

To better weight the importance of content fragments, we introduce two new
semantics-based metrics as follows:

Quality of Link Fragments (QoLF): This metric quantifies the existence of freshly
materialized fragments inside a template Ty with link dependencies toward a target
template Ty. QoLF applies importance weights on fragments toward link-dependent
templates.

Definition 8. (weightLF(F;, T, Ty)) Let weightLF(F,T,T,) be the QoLF importance
factor of fragment F; in template T, toward template T,. For all F; in T, with a link
dependency to template T,, weightLF(F;, T, T,) €(0, 1) and

n
ZweightLF(Fi, T,T,) = 1
i

In other words, weightLF(F;,T,,Tq) measures the navigation/linking importance of
fragment F; in template T, toward template T,. In this way, the importance of F; is
dynamic since it depends on a target template T,. If all fragments inside template T,
with link dependencies to T4 are materialized when T is requested by a user, then the
QoLF for template T, toward T4 has the maximum value of 1.

Definition 9. (QoLF(T,,Ty)) For all fragments F; in template T, with link dependency
to T, then

n
QoLF (T, Ty) = Z weightLF (F;, T, Ty) X countlF (F;,Ty)
i

If a linking fragment from T, toward Ty is not materialized, then the QoLF value is
reduced according to the QoLF importance weight of that fragment toward Td.

Quality of Set-view Fragments (QoSF): The metric of QoSF quantifies the overall
set-wise consistency of set-view dependent fragments inside a template. Similarly, we
use an importance weight that measures the importance of materializing two set-wise
dependent fragments in a template.

Definition 10. (weightSF(Fi,Fj,T)) Let weightSF(F,F,T) be the QoSF importance
weight between fragments F; and F; in template T. For all F; and F; which are set-
view dependent in T, weightSF(F;, F;, T) € (0, 1) and

520 S. Papastavrou, P.K. Chrysanthis, and G. Samaras

n
ZweightSF(Fi,Tj,T) -1
ij

Given that QoSF considers pairs of fragments, only synchronized pairs contribute to
and counted toward the freshness of their template.

Definition 11. (countSF(F;,F;,T)) The countSF(F,F;,T) of a pair of fragments F; and
Fjin template T is

1, if fragments F; and F; are synchronized in T

countSF(F, F;, T) = {O otherwise

Fragments F; and F are synchronized in template T if both are materialized or reused
from cache. When all set-view dependent fragments of a template T are synchronized
then T is fully set-view consistent and its QoSF has the maximum value of 1.

Definition 12. (QoSF(T)) For all fragment pairs F; and F; in template T, then

n
QoSF(T) = ZweightSF(Fi, F;,T) x countSF(F,F;,T)
ij

4 Materialization Algorithms

In the previous section, we examined how QoS is regulated by the increase or
decrease of the Global QoS Level index and introduced the notion of Usage Plans and
the new metrics of QoLF and QoSF for measuring data freshness, given the link and
set-view dependencies of content fragments. In this section, we explain how we
organize QoS Level index, Usage Plans and the new data quality metrics into one
convenient structure called MP Selection Table and show how it is used by our
materialization algorithms.

4.1 Putting It All Together: The MP Selection Table

The MP Selection Table is a structure that summarizes all combinations of
fresh/cached fragments, for a specific template, into groups according to a QoS Level
Index. Those combinations are called Materialization Plans (MP). For example, at
level -1, the table lists 4 possible MP of 3 fresh and 1 cached fragments. Figure 4
shows the MP Selection Table for template search.php (S) (for ease of presentation
we show only 4 fragments). The MP ‘1111 of a template with four fragments implies
that all fragments are materialized. The MP ‘1101’ implies that all fragments are
materialized except the third one which is retrieved from cache.

For each MP, a QoLF value for each template to which template S links is
computed (see Definition 9). In our example, template S links to its self and template
viewBook.php (V). In the right-most column (Figure 4), the QoSF for each MP is
computed (see Definition 12).

Exploring Content Dependencies to Better Balance Performance 521

The QLS Algorithm. We first present the QLS algorithm that considers only link
dependencies. One instance of the materialization algorithm (shown in Figure 5) is
attached to every user session. On each user request for template T, the algorithm
first secures QoS for the user by increasing or decreasing the User QoS Level, if
necessary (lines 4 to 5). Using the user’s new QoS level, the algorithm isolates the
group of candidate MPs from the MP Selection Table (line 6).

To ensure QoD, the algorithm uses the FSM Module to speculate on the next
template that the user will link to from template T, (line 8-9). Then, the algorithm
selects the MP from the group of candidate MPs with the user’s QoS Level that
maximizes QoLF toward the speculated template. Finally, the fragments that
correspond to ‘1’ in the selected MP are materialized from scratch while the
fragments with ‘0’ are reused form cache.

MP Selection Table for template search.dyn (S)
QoLF Index Values
I QoSF
QoS | Materialization Plan - - "
Level| F1|F2[F3|F4 UP: § UP: (SV) | ndex
Target: S Target: V alues
4] 1111 1 1 1
-
o 1110 08 —= 1 06 =5r
@ . 1101 1 0.7 04 z
s 1011 07 —* 09 1 «
5 0111 05 04 0 g
° 17100 ne 07 0 F
2 17010 05 na 0B o]
E 2 1001 nr 0B 04 a
s 0101 05 0.1 0 g
E o110 03 04 0 4
o o011 0z 0.3 0 o
1000 05 06 0
3 0100 03 0.1 0
o010 o] 03 0
¥ 0001 032 0 o |+
Fig. 4. The MP Selection Table for template search.php
QLS Materialization Algorithm (foruser X) - QVERVIEW --
1 while (the user requests templates)
2 user has requested template Tx
4 . server workioad,fom the Firs
5 Eodr r upgrade user X, if neces Jser QoS Level) Secures
6 ndidate MPs from the MP S ion Table Q0S
8 getthe next speculated template of user X, Then
9 fromthe FSM Module LI :‘_"IE":T‘I"I
10 select the MP from the candidate MPs to materialize o torms of
11 that mapamize QolLF QoSF
12

materialize the selected fragments of template Tx
serve the user with the matenalized content
end while

Fig. 5. The QLS Materialization Algorithm

£

522 S. Papastavrou, P.K. Chrysanthis, and G. Samaras

For example, if a user with QoS level equals to -1 has requested template
search.php (S), and the speculation FSM Module returns that the user will
subsequently request template viewBook.php (V), the algorithm will examine the
candidate MPs with QoS Level -1 index and select the MP ‘1110’ which has the
highest QoLF value.

The QLSV Algorithm. The QLSV variation of the QLS algorithm considers
additionally the QoSV value of the candidate MPs toward increasing the
synchronization of set-view dependent fragments. An additional Relax Factor is used
to indicate the tolerance on the loss of the QoLF of the selected MP. In our example
above, with a Relax Factor of 0%, the algorithm would have select the MP ‘1110’
with a relatively low QoLF value of 0.6 while with a Relax Factor of only just 10%,
the MP ‘1011° with much higher QoSV is selected. In other words, the QLSV
variation increases the synchronization of content in a dynamic web page at the
expense of linking dependencies.

5 Evaluation

Setup. The evaluation is performed on an experimental platform that emulates a real-
world bookstore web database application. Our main server machine (a dual CPU, 2GB
RAM, RAID 0) hosted our Java-based web server structured according to the multi-
threaded system model. On the same machine, we deployed an application server
according to our proposed architecture in Section IV. The application database runs on a
separate machine (also a dual CPU, 2GB RAM, RAID 0) on the same local network and
it is implemented on SQL Server 2008. The database holds the data for a bookstore with
more than a hundred thousand books, in addition to data for book availability, authors,
shopping baskets, orders etc. We prepared a mixture of templates, each containing eight
to ten fragments. The fragments and their content dependencies are setup according to
the bookstore application. Every fragment contains script code that manipulates the
results of one read-only query on the application database. In addition, one fragment of
the shopBox.php template executes one update on the application database for placing
(or removing) a book in a user’s shopping box.

For the client workload, on a separate machine, we developed and deployed a
multi-threaded User Generator engine capable of emulating a large number of user
browsers. We chose to create our own user generator engine in order to have greater
control over our experiments in terms of user statistical traces and fragment handling.
Specifically, our browser emulators can issue a special HTTP GET request for only
receiving a fresh version of a fragment that was served from cache. Our synthetic
workload follows basic principles according to the transactional web e-Commerce
benchmark (TPC-W) [18], In particular: (a) the popularity of documents follows a
zipf-like distribution, (b) a small set of documents (around four) account for at least
95% of total user requests, (c) this set is stable over time, (d) consecutive user
requests occur about every ten seconds [19].

Evaluation of the QLS Algorithm. Our first set of experiments compares QLS to the
current QolF approach on the percentage of pages served with broken links. The
results of the experiment (Figure 6a, dotted lines) show that this percentage is

Exploring Content Dependencies to Better Balance Performance 523

proportional to the workload. This is because increased workload implies that more
users are dropped toward lower QoS levels, and therefore more fragments are served
from cache with outdated links. Moreover, the results clearly state that QLS generates
approximately 50% less pages with broken links than the QolF approach, even at high
workload. This is because QLS selects the fragments for materialization with link
dependencies on the next speculated template of the user. Our analysis has shown that
the Speculation Module used by QLS has a hit ratio of 86% in speculating correctly
the next template that the user will request. However, Figure 6a (solid lines) plots the
performance of QLS by setting the speculation hit ratio manually. The results suggest
that our QLS outperforms QolF even at such a low speculation hit ratio of 40%.

QLS Algorithm (various speculation hit

ratios) Vs. QolF Approach

QLSV Vs. QolF Approach

50 .5 100
w e .
x -
< QLS: 20% K QolF Approach R
| et
§ - - —
= [QolF Approach ., . ;/ = =" QLSV with Relax
:gn o 5o OLS: 40% i - Factor 0%
- &
s - _
s _— 2 50 1 QLSV with Relax ——
F;' 25 OLS: 60% E Factor 10%
w \- b 3 -
g E QLSV with Relax
o o Factor 20%
o
s E QLSV with Relax Factor 30% o
= QLS: 100% ———"" S 0 . . T T T T T T]
o : T T T T T T -

25 50 75 100 125 150 175 200 225 250

25 50 75 100 125 150 175 200 2256 280 R .
User Sessions (as time progresses)

Concurrent User Sessions (as time progresses)

QLSV Vs. QolF Approach

(c)

40

QolF Approach i

aLsv
with Relax Factors
0%, 10%, 20/%, 30%

% of pages with broken Links

25 80 78 100 125 160 175 200 225 250
User Sessions (as time progresses)

Througk and Sessi S ined m Maximurn Throughput (d)
(Minimum Global QoS Level Index -5) (processed requestsisac)
O aximum Concurrent Users
287 284
300 — T —
Bl 236 227
200
100
278
25 248 21 194
o . | . . |

aLs QoSY Relax QoSY Relax QoSY Relax QalF
Algorithm 10 20 a0 Approach

Fig. 6. The Performance Results

524 S. Papastavrou, P.K. Chrysanthis, and G. Samaras

Evaluation of the QLSV Variation. In this set of experiments, we compare our
QLSYV algorithm to the QolF approach. First, we compare the two approaches on the
percentage of unsatisfied set-view dependencies. That is pairs of set-view dependent
fragments that are served to the user unsynchronized. Then, we compare them on the
percentage of broken links. For these experiments, we run QLSV with relax factors
for QoLF equal to 0%, 10%, 20% and 30%. Recall that, the relax factor reduces the
maximum possible QoLF of materialization plans in order for the algorithm to select
the plan with the maximum possible QoSF value. The results (Figure 6b) show that
QLSV serves less unsynchronized set-view dependent fragments than the QolF
approach that has no related provision whatsoever. The gains are greater by using a
higher QoLF relax factor of 30%. However, the results come at a cost for the QoLF.
Figure 6¢ plots the percentage of broken links for the four runs of QLSV. The obvious
reductions on the previous gains of QLS are attributed to the reduced QoLF imposed
by the QoLF relax factor.

Throuput and Maximum Sessions Sustained. Our last experiment measures the
maximum throughput and concurrent users that can be sustained by the QolF
approach, QLS algorithm and its QLSV variation using QoLF relax factors of 0%,
10%, 20% and 30%. In other words, this experiment measures the “industrial
potential” of our algorithms. This experiment differs from the previous since it
provides support for handling broken links in cached fragments. To implement this,
we alter the normal request sequence of a user when a template with a cached
fragment containing a needed link is received. When this occurs, the user issues an
extra special HTTP GET special request to the server in order to receive fresh only
the missing fragment that contains valid links. Subsequently, the user resumes its
template request sequence. The results of this experiment (Figure 6d) show that both
QLS and QLSV outperform the QolF approach. QLS in particular achieves higher
throughput by sustaining about 25% more concurrent users than the QolF approach.
This is attributed to 50% less extra load at the server to handle the special HTTP GET
request issued by users for missing fragments. Subsequently, the gains are reduced for
QLSV since a higher relax factor generates more broken links than QLS.

6 Conclusion

In this paper, we considered the problem of meeting user QoS expectations in
dynamic web database applications under heavy load and we identified the
shortcomings of current approaches, which trade QoD for QoS. To mitigate these
shortcomings, we proposed two new materialization algorithms, namely QLS and
QLSV, for dynamic web pages that can meet user QoS requirements while incurring
less impact on the QoD compared to previous QoS-QoD balancing methods. As
opposed to QLSV, the QLS algorithm is more suitable in situations characterized by
more frequent user clicks - more impatient users - where response time matters the
most. Our proposed algorithms achieve their performance by considering content
dependencies and user access patterns when selecting which fragments to materialize
and which to reuse from the cache when generating a web page. The performance
advantages of our two materialization algorithms, including their scalability, were

Exploring Content Dependencies to Better Balance Performance 525

experimentally demonstrated by using a real web_database application of an online
bookstore. Although the online bookstore is the canonical example of the majority of
e-commerce web applications and online stores, our next step is to evaluate our
approach in the context of other web database applications with larger web sites and
larger databases such as technical forums and newsgroups.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Olshefski, D.P., Nieh, J., Nahum, E.: Ksniffer: Determining theremote client perceived
response time from live packet streams. In: OSDI 2004, pp. 333-346 (2004)

Papastavrou, S., Samaras, G., Evripidou, P., Chrysanthis, P.K.: Adecade of dynamicweb
content: A structured survey on past and present practices and future trends. IEEE CS &
T 8(2), 52-60 (2006)

Schroeder, B., Harchol-Balter, M.: Web servers under overload: Howscheduling can help.
ACM Trans. Inter. Tech. 6(1), 20-52 (2006)

Guirguis, S., Sharaf, M.A., Chrysanthis, P.K., Labrinidis, A., Pruhs, K.: Adaptive
scheduling of web transactions. In: ICDE, pp. 357-368 (2009)

Bright, L., Raschid, L.: Using latency-recency profiles for datadelivery on the web. In:
VLDB, pp. 550-561 (2002)

Labrinidis, A., Roussopoulos, N.: Exploring the tradeoff between performance and data
freshness in database-driven web servers. VLDB J. 13(3), 240-255 (2004)

Li, W.S., Po, O., Hsiung, W.P., Candan, K.S., Agrawal, D.: Engineeringand hosting adaptive
freshness-sensitive web applications on data centers. In: WWW, pp. 587-598 (2003)

Qu, H., Labrinidis, A.: Preference-aware query and update scheduling in web databases.
In: ICDE, pp. 1-10 (2007)

Larson, P.-A., Goldstein, J., Zhou, J.: Mtcache: Transparent mid-tier database caching in
sql server. In: ICDE, pp. 177-189 (2004)

Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B.G., Naughton,
J.F.: Middle-tier database caching for ebusiness. In: SIGMOD 2002, pp. 600-611 (2002)
Labrinidis, A., Luo, Q., Xu, J., Xue, W.: Caching andMaterialization in Web Databases.
Foundations and Trends in Databases 3(2), 169-266 (2009)

Labrinidis, A., Roussopoulos, N.: Webview materialization. SIGMOD Rec. 29(2),
367-378 (2000)

Wang, Q., Makaroff, D., Edwards, H.K., Thompson, R.: Workloadcharacterization for an
e-commerce web site. In: CASCON, pp. 313-327 (2003)

Arlitt, M.: Characterizing web user sessions. SIGMETRICS Perform. Eval. Rev. 28(2),
50-63 (2000)

Padmanabhan, V.N., Qiu, L.: The content and access dynamics of a busy web site:
findings and implications. SIGCOMM Comput. Commun. Rev. 30(4), 111-123 (2000)
Cunha, C., Bestavros, A., Crovella, M.: Characteristics of www client-based traces. Boston
University, Tech. Rep. TR-95-010 (1995)

Oke, A., Bunt, R.B.: Hierarchical workload characterization for abusy web server. In:
OOLS, pp. 309-328 (2002)

Menasce, D.A.: Testing e-commerce site scalability with tpc-w. In: CMG Conference, pp.
457-466 (2001)

Mah, B.A.: An empirical model of http network traffic. In: INFOCOM, p. 592 (1997)
Papastavrou, S.: Semantics-based metrics and algorithms for dynamic content in web database
applications. PhD dissertation, LC: TK5105.5.P37, CSD, University of Cyprus (2009)

	Exploring Content Dependencies to Better Balance Performance and Freshness in Web Database Applications
	Introduction
	System Model and Related Work
	Basic Assumptions
	Current Approach (QoIF Approach) and Shortcomings

	Our Approach for QoS-QoD Balancing
	Ensuring QoS – The QoS Controller
	Speculation – The Usage Plans
	Ensure QoD – The New QoLF and QoSF Data Freshness Metrics

	Materialization Algorithms
	Putting It All Together: The MP Selection Table

	Evaluation
	Conclusion
	References

