Database Preferences — A Unified Model

Roxana Gheorghiu
University of Pittsburgh

roxana@cs.pitt.edu

ABSTRACT

In this work we present a new model that combines two
different types of preferences, qualitative and quantitative.
We show how our model can support different types of pref-
erences at different granularity levels and how can an ap-
plication use these preferences to retrieve a list of tuples.
The new model takes advantage of graph representation of
preferences where nodes in the graph are SQL predicates,
edges between two nodes describe a qualitative preference
and edges from a node to the same node capture quantita-
tive preferences. Each edge is labeled with a numeric value,
between -1 and 1, to express the intensity of each prefer-
ence. Using this graph representation we further show how
two different preferences can be combined and applied to
the existing query result set to filter the result and identify
the most relevant tuples first.

1. INTRODUCTION

Preferences have been studied for many years and they
were traditionally applied to philosophy, psychology and
economics. In the Artificial Intelligence domain they were

applied to decision making problems, capturing agents’ goals.

With the rapid increase of the Web and personal communi-
cation technologies on one hand and the explosion of avail-
able data on the other hand, preferences have become a re-
quirement for scalable processing of large volumes of data.
Query personalization techniques have been proposed both
by academia and industry, showing the real interest for tech-
niques that can cope with virtually an unlimited amount of
data.

The literature classifies the preferences in two types: quan-
titative and quantitative. Pitoura et al. [6] describe the ex-
isting work in this area in terms of preference representation,
preference composition, and preference query processing.

Quantitative preferences are described by scores attached
to each tuple, for which a preference was expressed. As an
example, consider the following preference: 71 like comedies

Alexandros Labrinidis
University of Pittsburgh

labrinid@cs.pitt.edu

Panos K. Chrysanthis
University of Pittsburgh

panos@cs.pitt.edu

very much”. This can be translated in the following quan-
titative preference: (”I like comedies”, score =1) The score
denotes users’ interest in one or multiple data tuples. Using
these scores we can define a total order over a part of the
database tuples.

Qualitative preferences are expressed as pairs of tuples.
As an example, consider the preference "I like comedies
more than dramas”. This can be translated into the fol-
lowing qualitative preference: (”comedies”, preferred over,
?dramas”). When put together, these pairs create a partial
order between the tuples in the database.

When all database tuples have a score attached to them
they can be ranked from the most preferred to the least pre-
ferred. The tuples that do not match any preference can be
divided into two categories: equally preferred and incompa-
rable. In the first case, tuples equally preferred can be seen
as having attached the same score, whereas, in the second
case, tuples that are incomparable cannot be included in the
partial or total order defined by the preferences.

Each type of preferences — quantitative and qualitative —
has its advantage over the other. However, there are exam-
ples when a user’s preference can be conveniently expressed
using one approach but not the other. For example, it is
very easy to express a negative preference in the quantita-
tive model by assigning a negative weight to that particular
tuple or to a set of tuples that match a given condition. How-
ever, there is no easy way to express a negative preference
in the qualitative model, since this will require to explicitly
list all tuples that are preferred over the non-preferred ones.

In this work we propose a unified model that is based on
graphs and integrates qualitative and quantitative prefer-
ences by means of preference intensity values and user pro-
files. This approach benefits from creating a global view of
preferences that will be further used to correctly rank the
query results.

Another approach to combine preferences is using Prefer-
enceSQL [2]. This can be seen as a local view of preferences
because each preference is given by the user at query time.
Preference SQL does not allow different levels of intensity
in the preference definition which can lead to an unexpected
ordering of results (see example in the next section).

The formal underpinning of our proposed unified model
is a preference graph. Each node in the graph represents a
query condition; a directed link between two nodes is used
to define a preferred order between tuples. We express quan-
titative preferences using edges that have the same starting
and ending point. Qualitative preferences are represented by
edges between two different nodes, and each edge is labeled

with a value that represents the intensity of the preference.

In our model, preferences are stored in a user profile and
are expressed in the form of a preference graph stored as an
adjacency matrix. Each user submits her own preferences,
both qualitative and quantitative, along with an intensity
value. In this way, users create their own profile by incre-
mentally adding or removing preferences over the database
tuples or attributes. Once the profile is created, preferences
are used to filter the output result when user’s query returns
many tuples or arrange the result from the most preferred
to the least preferred tuple. In out work the user does not
have to decide which preferences are acceptable to her spe-
cific query since they are all stored in her profile and the
system determines their applicability.

Contributions: The contributions of our work are as
follows:

e We propose a new model that incorporates qualitative
and quantitative preferences expressed as a preference
graph. Our model can be used to define both tuple-based
and predicate-based preferences and can easily support
negative preferences.

e We handle preferences at different levels of granularity
(e.g., tuple level vs. attribute level). Preferences are
defined by the user and they will be used by our system
anytime they apply.

e The preference graph is used to create an order over the
tuples in the database based on intensity of preference.

Roadmap: Section 2 covers the related work and the dif-
ferences between out proposed model and similar existing
models. Section 3 defines our unified model for preferences,
its implementation and preference specifications through ex-
amples. Section 4 introduces the composition techniques
used to combine the two preference types. Section 5 gives a
brief overview about how can the model be used and Section
6 summarizes our contributions and states the future work.

2. RELATED WORK

In the database domain preferences are seen as soft cri-
teria, used to rank the results in terms of how well they
match the query predicate. In contrast, the predicates in
the SQL WHERE clause are seen as hard constraints and
a non-empty result is returned only when all conditions are
met.

Many solutions have been proposed for working with pref-
erences[6]. In most of the cases the designed systems can
handle only one type or preference (e.g., qualitative or quan-
titative). Our proposed model combines these two different
approaches into a unified model.

Kiessling et al.[1] propose a framework that can support
a hybrid version of both qualitative and quantitative pref-
erences. PreferenceSQL system introduces a new clause,
PREFERRING, in which the user can state their preferences
relative to the current query. All preferences are connected
with an AND operator except for the case when a qualitative
preference is defined, in which case a PRIOR TO operator
is used. In this framework users need to fully describe their
preferences for each query.

Assume the following preferences: "I like white cars slightly
better than yellow cars and I prefer cars around 5 years
old”. Also assume that we have the following tuples in
the database: t1: (color=yellow, age=4), t2: (color=white,
age=20) and t3: (color=red, age=5). Using PreferenceSQL

we have two ways to write this preference. First way is to say
we prefer (color=white PRIOR TO color=yellow) PRIOR
TO (age around 5). This will result in the following order:
t2, t1, t3. Another way is to say we prefer (age around
5) PRIOR TO ((color=white) PRIOR TO (color=yellow)).
This will return tuples in the following order: t3, t1, t2.
However when submitting the query, we expect the follow-
ing ranking of the results: {t1, t2, t3} or {t1, t3, t2} because
both preferences can be applied on tuple t1 whereas tuple
t2 is preferred only in the first preference and tuple t3 is
preferred only in the second preference. Our system can
correctly rank tuple t1 as the first tuple. The reason for this
is because our system takes a global view of all preferences
which, in the end, will create an explicit ranking. As op-
posed to our work, Preference SQL takes a local restricted
view of preferences, creating an implicit ranking induced by
PRIOR TO function.

To summarize, our work differs from Kissling et al. be-
cause each preference is enhanced with intensity information
to allow an ordering over the database tuples in the query
result. Our work also handles both qualitative and quantita-
tive preferences through user profiles. Both dimensions are
important when we consider preferences because, together,
they can generate a global ranking of tuples by (1) adding
intensity values to every tuple for which a preference can be
applied that can be further used to rank the query results
and (2) dynamically modify the intensity values of tuples
when a new preference is introduced in the profile and that
is connected to the already existing ones.

The work done by Koutrika and loannidis [4] is the other
most related to ours. In their work the preferences are kept
as query predicates with an intensity value attached. In con-
trast to our work, they only record quantitative preferences
and they are using them to create a preference network (i.e.,
a directed acyclic graph) that will allow an efficient identifi-
cation of relevant preferences. This graph is used to depict
the relation between preferences (i.e., each node in the net-
work refers to a subclass of entities that its parent refers to)
whereas in our case the graph depicts the flow of the pref-
erences from the most preferred ones to the least preferred.

In contrast to [4], our work keeps track of preferences in
any form (qualitative and quantitative) and our graph rep-
resentation captures user specific order of tuples as they will
show up in the final response after preferences are applied.

3. UNIFIED MODEL FOR PREFERENCES

A graph representation is the most natural way of exem-
plifying the connections between tuples in a database and
visually depicting their relationships. The purpose of our
preference graph is to connect two different preference ap-
proaches into a unified model.

DEFINITION 1. We define the graph of preferences
PG =(PV,PE) as a labeled directed graph where:

e PV is the set of vertices where each vertex represents a
tuple in the database or a query predicate (e.g., a set of
tuples).

e PFE is the set of edges where each edge (vi, v;, s) de-
fines a direction and is labeled with a score s. An edge
from v; to v; captures a qualitative preference (e.g, the
value in vertex v; is preferred over the value in vertez v;)

whereas an edge from v; to itself will describe a quanti-
tative preference. The score s is a value between -1 and
1 that captures the preference intensity.

Using the preference graph description above, one prefer-
ence is defined by the triplet (v;, vj, s), where v;, v; € PV
and (vs, vj, s) € PE. When i=j, the triplet (v;, vj, s) repre-
sents a qualitative preference, and when i#j, it represents a
quantitative preference.

In our preference graph, intensity is a value between —1
and 1. All negative values are used to express negative pref-
erences at different intensities, —1 being used to express
complete dislike. In a similar way, all positive values are
used to express positive preferences and 1 is used to cap-
ture the most preferred tuple. Zero is a special value used
to express equally preferred tuples, in the case of qualita-
tive preferences, and indifference, in the case of quantitative
preferences.

For a quantitative preference, the intensity value expresses
the likelihood of preferring one particular tuple (or a set of
tuples for the predicate-based case) over all other tuples in
the database. In this case, a large intensity value describes
a strong preference towards that particular tuple or set of
tuples.

For a qualitative preference, the intensity value expresses
the likelihood of preferring one tuple over another. In this
case, a small positive value will express a similarity on pref-
erences (i.e., one tuple is almost as preferred as the other
tuple).

Intensity can be a constant value or a function to allow
dynamic ranking of preferences. As an example, consider
the preference: ”I like recent comedies”, where recent can
be expressed as a function on the year a movie was released
and normalized in the proper range (i.e., [-1, 1]).

As mentioned in the definition, a vertex in the graph can
represent a single tuple in the database (tuple preference
graph), or a set of tuples if it is defined as a query predicate
(predicate preference graph).

A tuple-based preference graph is usually not scalable be-
cause, for each tuple that matches a preference, a new ver-
tex is created in the preference graph. However, this type
of preference graph can be seen as a materialized database
view and it is useful especially for cases when the preference
has a low probability of changing (i.e., it is highly proba-
ble that the user will not change this particular preference
often).

A predicate-based preference graph is a scalable version
of the tuple-based one and it is used for preferences that ap-
ply to a large set of tuples. This type of preference graph is
also useful for preferences that, by their nature, are tempo-
rary and will be removed and reinserted many times. There
are two reasons for doing this: (1) it is much easier to re-
move only one row from the adjacency matrix as opposed
to removing all rows linked to tuples that match a particu-
lar preference when that preference does not hold anymore;
and (2) when one preference applies to many tuples, a sys-
tem that creates only one row in the matrix is more scal-
able then one that introduces one row for every tuple that
matches the preference.

From the representation point of view, both types of graphs
are similar, and for this reason we will make a detailed pre-
sentation of tuple based preference graph in Sec. 3.1. The
predicate-based preference graph model follows the same

specifications and, given the space constraints, we will only
point out the differences, in Sec. 3.3.

In our model, a graph will be created for each user profile
in order to accurately return the most preferred tuples first,
relative to each user’s preferences. The preference graph is
stored using an adjacency matrix. Each cell in this matrix
contains the intensity value associated with one particular
preference, when a preference is defined, and is empty oth-
erwise. Following the definition, the intensity values of all
quantitative preferences are values on the adjacency matrix’s
diagonal whereas the intensity of all qualitative preferences
are values in all other cells.

3.1 Preference Graph Model Implementation

When creating a preference, the intensity of that pref-
erence allows one to decide, before hand, how important
is that particular preference with respect to all preferences
(for a quantitative preference) or with respect to another
preference (for a qualitative preference). These values can
be given by the user or they can be inferred from the pref-
erences using Natural Language Processing algorithms for
sentiment identification.

Assuming we have a free text interface, there are two ways
to handle sentiment identification. One way is to parse the
preference sentence and collect any words that may be refer-
ring to the intensity of a preference — such as "very much”,
"like”, 7don’t like”, ”acceptable”. This is an orthogonal
problem and is not the subject of our work. Another way to
handle this situation is to create a simple mapping between
terms and intensity values. For example, ”very much” can
be mapped by an intensity value 1 whereas ”don’t like” can
be mapped by an intensity value —1. In this case we can
provide a list of terms and let the user decide what is the
most related value that match her preference.

3.2 Preference Specification Examples

The previous section explained how preferences can be
created and inserted into a user profile, along with an in-
tensity value. In the next six subsections we exemplify how
different types of preferences can be expressed using our pro-
posed preference graph model. We will use the classic toy
example of Movies table (see Table 1). We start with an
empty preference graph and we incrementally add new pref-
erences in this graph. In Figures 1-5, along with the graph
representation we also display the adjacency matrix that
resulted when a new preference is added and will be used
to internally store the preference graph. For simplicity, we
will make a detailed presentation for the tuple-based prefer-
ence case, but, as we mentioned in the previous section, the
predicate-based preference case works similarly.

3.2.1 Negative Preference (Figure 1)

Assume a free text representation of preference, as follows:
Free text representation: ”I don’t like horror movies”.
This type of preference is very useful in cases where the
user knows what she does not want to see in the final query
result. It can be easily expressed using a quantitative prefer-
ence (i.e., by assigning an intensity value equal to -1) but is
virtually impossible using a qualitative preference approach.
If we would rewrite this in a calculus representation, we get:
Calculus representation: YmeMovie: m[genre]="horror”
then m is not preferred.

movie_id title year director genre | language | duration
ml Casablanca 1942 | M. Curtiz drama english 102
m2 Psycho 1960 | A. Hitchock | horror english 109
m3 Schindler’s List 1993 | S. Spielberg | drama english 195
m4 White Christmas 1954 | M. Curtiz | comedy | english 120
mb The Adventures of Tintin | 2011 | S. Spielberg | comedy | english 110
Table 1: The Movie Relation
1 mo over the second tuple), but it cannot capture how strong is
the feeling related to that particular preference. Our model
A incorporates an intensity value to cope with this problem.
@ m2 -1 The next example will illustrate this situation.
Free text representation: "I like drama movies a bit more
than horror movies”.
(a) (b) In our database, tuples m3 and m1 are preferred over m2.

Figure 1: Specification of negative preferences (a)
Graph; (b) Associated adjacency matrix

In our database example tuple m2 will match this pref-
erence therefore it will be incorporated in the preference
graph. Following our proposed graph-based model we have
a graph representation:

Graph representation: m2 € PV, el =(m2 — m2) € PE
with score(el) = —1

3.2.2 Relative Preference (Figure 2)

Free text representation: ”If two movies have the same
genre, I prefer the longer movie”.

This is an example of a qualitative preference that cannot
be expressed as a quantitative preference. This preference
constructs a partial order between two tuples that match
one common condition (i.e., they have the same genre) but
are different in another (i.e., different duration). As an ex-
ample from our database, tuple m4 will be preferred over
tuple m5, and tuple m3 will be preferred over tuple m1.
Calculus representation: Vm;, m; €Movie:
m;[genre]=mj[genre] and m;[duration]>m;[duration] then
m; is preferred over m;.

Graph representation: add ml, m3, m4, m5 € PV and
(m3, m1, 0.8), (m4, m5, 0.8) € PE. Assuming that no in-
tensity value was provided, a default intensity value equal
to 0.8 will be added in cells [m3, m1] and [m4, m5] .

-1 m1|m2| m5
@ 0.8 0.8 m2 -1
m3 0.8
(a) (b)

Figure 2: Specifications of relative preferences (a)
Graph; (b) Associated adjacency matrix

3.2.3 Intensity (Figure 3)

A qualitative preference alone is defined only in terms of
pairs of tuples ((usually the first tuple in the pair is preferred

Calculus representation: Vm;, m; €¢Movie:

if m;[genre]="drama” and mj[genre]="horror” then m; is
preferred over tuple m; with intensity (ms, m;)

Graph representation: For each pair of tuples (m;, m;)
that satisfies the condition m;[genre]="drama” and
mj[genre]="horror”, an edge from m; to m; is created and
labeled with 0.2.

1
A mi1| m2|m4 [m5
02
08 08
@ m3 0.80.2
m4 1 0.8
02

(a (b)

Figure 3: Specification of Intensity of Preferences
(a) Graph; (b) Associated adjacency matrix

3.2.4 Sets (Figure 4)

Preference over a set of tuples is another example that can
be expressed as a qualitative preference but not as a quan-
titative one. For example, assume the following preference:
Free text representation: ”From a collection of movies
D, I would prefer one comedy and as many movies as possi-
ble to have the same director”.

Calculus representation:3m; € (DEMovie):
m;[genre]="comedy” and Vm; €D mj[director|=m;[director].
In our database, tuple m4 and mb are preferred because they
refer to comedies and the pairs of tuples: (m5, m3) and (m4,
ml) are almost similar in preference (i.e., intensity value is
0.3) because they have the same director.

Graph representation: If two movies have the same di-
rector then an edge is created between the two tuples and
a small value is used for intensity (e.g., 0.3) to suggest that
the two tuples are similar in terms of preference. Tuple m4
is slightly more preferred than tuple m1 because it is also
a comedy. For any tuple that represents a comedy, a self-
addressed edge is created with a preference score (i.e., label)
of 1. Moreover, there are two tuples in our database that
represent a comedy: m5 and m4. To emphasize that come-
dies are equally preferred in this query, one edge (from m5 to
m4) will be created in out graph and labeled with intensity
0. Notice that another edge, from m4 to m5 can be added

m1 |m2 | m3|m4 | m5
m1 0.2
m2 -1
m3| 0.8 |0.2
m4| 0.3 1 108
m5 03| 0 1

(b)

Figure 4: Specification of set preferences (a) Graph;
(b) Associated adjacency matrix

in the graph but since these edges are labeled with 0, and
there is already one edge from m4 to m5 we keep only the
one that does not overlap.

3.2.5 Preferences at different granularity (Figure 5)

Our proposed preference model can be used at different
granularity levels. In previous sections we showed how it
can be used to handle preferences that can be defined in
one model but not in the other. In this section we describe
how we can use the same model to support preferences over
attributes, in addition to with preferences over values.
Free text representation: ”I am interested in directors
but not in genres”.

Structured representation: In this case, a new prefer-
ence graph over attributes with its corresponding adjacency
matrix is created. Since the node’s values are different than
before (now Ai is an attribute whereas before, ¢i was a tu-
ple) we cannot keep all the preferences together in the same
graph.

Graph Representation: Two nodes are inserted into the
graph: Al-Director attribute and A2-Producer attribute.
A2 has a self-addressed edge labeled with -1. We also create
an edge from Al to A2 and label it with 0.8. This captures
two similar meanings. The first one is that the user is more
interested in directors than producers (0.8) whereas the sec-
ond one captures the fact that the user is not interested in
producers at all.

This preference example states that attribute director is
more important than attribute genre. For the cases where
attribute values are missing, the tuples that have a value
for the director field but no value for the genre field will
be preferred over tuples without a value for director but
with a value for genre. Another useful case for this type
of preference will be when it is combined with preferences
over attribute values. For example, assume the following
two extra preferences: "I prefer comedy movies” and "I pre-
fer movies directed by Spielberg”. In this case, tuple m5
will be preferred over tuple m4 because the director is more
important than the genre of the movie.

3.3 Predicate preference

Section 3.1 described in detail the idea of our proposed
preference graph model for the case where each node in the
graph is associated with a tuple in the database. For the case
of predicate-based preference graph everything mentioned in
the previous section holds. The only difference now is that

0.8
Coree D

Figure 5: Specification of Relation preferences

each row in the adjacency matrix is a predicate which pos-
sibly matches multiple tuples in the database. This is why,
each node in the graph is now a predicate and possibly mul-
tiple tuples in the database can be linked to that particular
node.

As an example, consider the following two preferences:

e P1: ”I prefer comedy over drama movies”’, score =
0.7 which can be translated as: P11 is preferred over
P12 with intensity 0.7, where the new preferences are
defined as:

— P11: genre="comedy”

— P12: genre="drama”

e P2: 71 prefer drama movies 60% of the times”, which
can be translated into: genre="drama”, score =0.6

P11 | P12
P11 0.7
P12 0.6

Figure 6: Adjacency Matrix for a predicate-based
preference

4. PREFERENCE COMPOSITION

Each preference in a set of preferences can be applied to
one or more tuples in the database. When two preferences
affect the same tuple(s) or predicates it is necessary to have
a mechanism of combining them into a single preference.

The literature describes two types of qualitative compo-
sition methods based on attitude: overriding attitude and
combinatory attitude [6]. In the overriding attitude one
preference has priority over the other, meaning that the
lower priority preference is applicable only if the higher pri-
ority preference is not. In the combinatory attitude, as the
name suggests, both preferences are combined and used. All
techniques described in the literature handle the composi-
tion for the same type of preferences (i.e., combining two
quantitative preferences or combining two qualitative pref-
erences). Our model is designed to handle also compositions
of one qualitative and one quantitative preference.

In our proposed unified model there is a score associated
with each preference. In the case of a quantitative prefer-
ence, the score is assigned to each tuple that matches the
preference. In the case of qualitative preference, the score
is attached to a pair of tuples and is recorded in the ad-
jacency matrix in the cell corresponding to row ¢; and col-
umn t¢;. For example, assume we have the following prefer-
ence: ("I like comedies more that drama”, intensity=0.8).
This does not mean that all tuples that match the predicate
m;[genre]="comedy” should get the intensity value 0.8 be-
cause this intensity value only states what should happen

when tuples that have genre="comedy” are compared with
tuples that have genre”drama”. When compared with tu-
ples that have genre="horror” we should not assume any
intensity.

Koutrika and Ioannidis [3] defined three types of behavior
when combining two preference values. In their work, the
resulting score can be: inflationary when the final preference
value is larger then the initial values, dominant when one
preference value dominates the final result, or reserved, when
the final value lies between two preference values combined.
In the final case the combined preference value decreases the
value of the already assigned preference, whenever the value
is larger than the new preference value, or will increase it if
the already assigned value is smaller than the new value.

In order to take advantage of all information stored in our
graph model we create a hybrid composition technique. In
our system all tuples that match a preference (qualitative
or quantitative) will have an implicit or explicit intensity
value assigned. The explicit value is given by the user and
is applied only to quantitative preferences. The implicit in-
tensity value is computed internally and is used to readjust
the intensity value already given or to assign an intensity
value when there is no value given. The later case applies to
cases where both a qualitative and a quantitative preference
can be applied over the same tuple. In terms of graph nota-
tion, the later case applies when a tuple has a self addressed
edge along with an incoming or outgoing edge.

Assume we have two preferences: P1 is a quantitative
preference with intensity score 0.8 and P2 is a qualitative
preference with intensity score 0.3. Also assume that there
are two vertices, vl and v2, part of this composition of pref-
erences, with the following properties: v1 is preferred in P1
and vl is preferred over v2 in P2. In this case the edge from
v1 to vl is labeled with 0.8, the edge from v1 to v2 is labeled
with 0.3, and v2 does not have any label. Our algorithm will
increase the value on the self addressed edge of node v1 and
will create a self addressed edge to v2 with a value smaller
than the one on v1. This algorithm comes from the follow-
ing reasoning. First, for the vertex v1 the user expressed
two preferences: one qualitative and one quantitative. That
means that these particular tuples are preferred in general
(quantitative preference) and they are also preferred when
compared with other tuples. Because of that, we state that
the intensity value for this vertex should increase, since it
is part of two preferences and is preferred in both cases.
Second, for the vertex v2 we add a new value, since v2 is
does not have any intensity value defined. All we know at
this point is that tuples in vertex v2 are less preferred than
tuples in vertex vl. Because of that, vertex v2 is labeled
with a lower intensity value than vertex vl and inversely
proportional with the value on the edge between v1 and v2.

S. HOW ARE PREFERENCES USED

In our model we construct a preference graph for each
user profile. When a new preference is added, or learned
from the user’s behavior, the graph is modified to include
the new knowledge. The insertion of the new preference
needs to take into account the existing preferences. If the
new preference shares the same predicate with another pref-
erence that is already defined in the user’s profile, then the
new preference added to the graph has to be connected to
the existing preference. For example, assume that we have

the following entries in the preference graph: the set of ver-
tices: PV={v1,v2} and the set of edges: PE={(v1,v2,0.8)}
where vl is genre[m;]=drama and p2 is genre[m;]|=horror
meaning that in 80% of the time the user prefers drama
over horror movies. Additionally assume we have a new
preference added, p3:”Comedies are preferred over drama
movies”. Since p3 shares the same predicate as pl, we need
to add a new node, p3=(genre="comedy”) and a new edge
from p3 to pl.

In all other cases, the new preference is independent of all
existing preferences, so there is no connection between the
existing graph and the new vertex is simply added.

We are currently implementing this model in Astroshelf
[5]. Preferences are added using a simple web page where
users can define one or more preferences, using a single pred-
icate or a disjunction of conjunctions when multiple predi-
cates are part of the same preference.

6. CONCLUSIONS AND FUTURE WORK

In this work we presented a new model that combines
two different types of preferences often studied before, qual-
itative and quantitative. We showed how our model could
support different types of preferences at different granularity
levels and how an application can use this preference model
to retrieve a list sorted from the most preferred to the least
preferred tuples. This is an important desideratum that ac-
commodates two powerful approaches of preferences using a
unified model.

As part of our future work, we are currently implementing
the full version of the theoretical model described here to
find its strengths and weaknesses, in particular in terms of
its performance/scalability. Another interesting problem we
plan to investigate is the recommendation of interesting data
tuples, by employing collaborative filtering techniques over
the set of user-specified preferences.

7. ACKNOWLEDGMENTS

This research was supported in part by NSF career awards
11S-0746696 and 11S-0952720 and NSF grant OIA-1028162.

8. REFERENCES

[1] W. Kiessling. Foundations of preferences in database
systems. In VLDB 2002, pages 311-322, 2002.

[2] W. Kiessling and G. Kostler. Preference sql: design,
implementation, experiences. In VLDB 2002, pages
990-1001, 2002.

[3] G. Koutrika and Y. Ioannidis. Personalized queries
under a generalized preference model. In ICDE 2005,
pages 841-852, 2005.

[4] G. Koutrika and Y. Ioannidis. Personalizing queries
based on networks of composite preferences. ACM
Trans. Database Syst., 35(2):13:1-13:50, May 2010.

[5] P. Neophytou, R. Gheorghiu, R. Hachey, T. Luciani,
D. Bao, A. Labrinidis, E. G. Marai, and P. K.
Chrysanthis. Astroshelf: Understanding the universe
through scalable navigation of a galaxy of annotations.
SIGMOD 2012, pages pp. 14, 2012.

[6] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on
representation, composition and application of
preferences in database systems. ACM Trans. Database
Syst., 36(3):19:1-19:45, 2011.

