2012 IEEE 28th International Conference on Data Engineering Workshops

Adaptive Class-Based Scheduling of Continuous
Queries

Lory Al Moakar, Alexandros Labrinidis, Panos K. Chrysanthis

Computer Science Department, University of Pittsburgh
{lorym, labrinid, panos}@cs.pitt.edu

Abstract— The emergence of Data Stream Management Sys-
tems (DSMS) facilitates implementing many types of monitoring
applications via continuous queries (CQs). However, these ap-
plications usually have different quality-of-service requirements
for different CQs. In this work, we are proposing the Adaptive
Broadcast Disks (ABD) scheduler, a new scheduling policy which
employs two-level scheduling that can handle different ranks of
CQ classes. The ABD scheduler optimizes the weighted average
response time of the CQ classes while still preserving the relative
importance of each class. We demonstrate that ABD outperforms
state-of-the-art schedulers and adapts to changes in the workload
without manual intervention.

1. INTRODUCTION

Motivation: Data Stream Management Systems (DSMS) are
at the heart of any monitoring application. Users submit
monitoring requests in the form of Continuous Queries (CQs)
which could run indefinitely. In many applications, some of
the CQs submitted to the DSMS are more critical than others.
For example, a CQ that detects flooding inside a warehouse
is very critical and requires short response time whereas CQs
that report average conditions are not as critical.

A traditional DSMS treats all the CQs as having equal
priority in the system and attempts to optimize their overall
performance. In particular, it employs a CQ scheduler to
optimize the Quality of Service (QoS) provided by the system.
The CQ scheduler is the DSMS component which decides the
execution order of CQs to achieve a certain performance goal
such as minimizing response time or maximizing fairness. Al-
though there have been multiple scheduling policies proposed
(e.g., Round Robin (RR), Chain [1], Highest Rate (HR) [2],
Highest Normalized Rate (HNR) [2]), these are oblivious to
the different importance levels of different CQs.

In our previous work [3], we proposed using the Continuous
Query Class (CQC) scheduler to schedule queries of different
importance by grouping them into query classes, where each
query class has a user specified priority value that indicates
its relative importance. CQC is a two level scheduler that uses
a weighted RR scheduler on the top level with multiple HR
schedulers on the lower level. It requires a manual scheduling
period K for the weighted RR scheduler. Determining the
correct value of K depends on the workload characteristics
and is not easy to derive ahead of time. An incorrect value of
K could result in starving low priority classes or in the policy
degenerating as round robin.

In this paper, we assume that the system is running on a
dual-core machine. In order to efficiently utilize both cores, we

978-0-7695-4748-0/12 $26.00 © 2012 IEEE
DOI 10.1109/ICDEW.2012.38

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from |IEEE Xplore. Restrictions apply.

289

divide the execution into two parts: One core is used to listen
on the network for any incoming tuples and put them in the
input queues of the operators. The second core is used to run
the CQs registered by the user. The separation between these
two modules allows the system to process data tuples as they
arrive without waiting for all the older tuples in the system to
finish their execution. Also, this model is better suited at our
target application because it removes the dependency between
critical CQs and non-critical CQs at the input level. However,
under this model, CQC no longer works as expected which
motivated us to investigate alternative scheduling schemes.
To overcome the problems of CQC, we designed Adaptive
Broadcast Disks scheduler (ABD), a novel scheduler that
optimizes the weighted average response time of the query
classes and respects user priorities by preventing priority
inversion. ABD is designed to run with the expectation that an
operator can receive tuples at any time during the scheduling
cycle. Like CQC, ABD is a two-level scheduler, however,
unlike CQC it is not dependent on manual parameters.

Contributions: Specifically, the contributions of this work are:

o We designed a novel two-level scheduler namely Adap-
tive Broadcast Disks scheduler (ABD) that optimizes
the weighted average response time of the CQs while
providing better response time for the critical classes.
Compared to the state of the art on class-based schedul-
ing, this work has the following characteristics:

It works in dual-core environments.

It is adaptive to changes in the workload and does
not depend on parameters that require manual tuning.
It does not exhibit priority inversion.

It does not exhibit starvation.

We evaluated ABD under multiple workloads and show
that it is adaptive and parameter-free.

Road Map: We discuss our system model in Section II.
Section III reviews the CQC scheduler. Section IV describes
the ABD scheduler. We present our experimental evaluation
results in Section V. Section VI surveys the related work.
Finally, we conclude in Section VIIL

II. SYSTEM MODEL

This work is part of the AQSIOS project, in which we
build a new generation of DSMS. AQSIOS is based on the
STREAM prototype source code [4], which we have extended
to include new scheduling policies (such as CQC, HR) and

IEEE
computer
® psouety

Statistics H Load

Collector Shedder

Scheduler

. .
. .
- -
: Qujr Nttworks T T i :
Class-Based| = v H
. .
Qs E & Source Operational = Output
. g Operators Operators = Streams
. =% - M
|8 —0 o——0 :
. = H
. 2 > a 4 4 @ @
. 3 H
. [e] [o] .
: O & :
- o
User H ® ® @ .
applications| = H
. .
Data Stream
Sources
Fig. 1. Overview of AQSIOS

load shedders. Figure 1 illustrates an overview of AQSIOS, in
which the query optimizer and the query execution engine are
inherited from STREAM.

AQSIOS allows the user to specify in addition to their CQ
its importance or criticality in the form of a numerical priority.
This priority indicates the relative importance of the results of
this CQ relative to the other CQs in the system.

Inside AQSIOS, once the user submits a CQ, the query
optimizer translates the CQ into an efficient query plan com-
posed of operators connected via queues. Our system supports
three types of operators namely source, operational, and output
operators (Figure 1). The source operators read and translate
the data streams coming from the data sources to an internal
representation format in the form of data tuples. They also
record the time the tuple arrived at the DSMS as a timestamp.
The operational operators process the data according to the CQ
specified by the user. The Join, Select, and Project operators
are examples of operational operators. Once the operational
operators have finished processing the tuples, the results are
put in the input queues of the output operators. The output
operators then disseminate the results to the end users. They
also calculate the response time of the tuple by subtracting the
timestamp from the time the tuple was sent to the user.

A. Scheduling Model

The new version of AQSIOS that we are developing would
run on two processing cores to better utilize today’s ma-
chines. Our prior versions were close to the original STREAM
prototype and would not utilize multiple cores. In fact, the
system would leave one of the cores idle while delaying
the processing of the heavy source operators until needed.
Under the point of view of the scheduler in the new version
of AQSIOS, the source operators are not part of the query
network and are scheduled separately from the operational and
output operators (see Figure 1). Thus, the source operators are
scheduled and run on a separate core than the operational and
output operators. A simple round robin scheduler is used to
schedule the sources. However, another scheduler is needed to
allocate resources to the operators. At every scheduling point,

290

the scheduler selects the next operator to execute and allows
it to process its tuples for a specified amount of time/tuples.

The user-specified priorities are used by the scheduler
to classify CQs into several predefined classes of different
priorities based on their criticality levels. The goal of the
scheduler in this case is to optimize the weighted average
response time instead of the average response time. In other
words, it needs to optimize the response time of the higher-
priority query classes without starving the lower-priority query
classes and without priority inversion. In this paper, we assume
no sharing of operators across different classes. However,
sharing of operators within a class or sharing of synopses
is allowed. We assume that admission control on the level
of the CQs has already taken place (e.g. [5]) and that the
load shedding module is disabled, so that we can focus on
just the behavior of the scheduling. We have independently
considered the synergy between scheduling and load shedding
in our previous work [6].

III. STATE OF THE ART: CQC SCHEDULER

In our previous work [3], we proposed the Continuous
Query Class scheduler (CQC) which is composed of two
levels: a Weighted Round Robin (WRR) scheduler which is
responsible to schedule multiple Highest Rate (HR) sched-
ulers. Each HR scheduler schedules operators that belong to
one class. CQC works very well when the system is running
on one core. However, it has many side-effects under our dual-
core system model.

First, HR is proven to optimize the average response time
of a set of CQs when all they have equal priority. However,
once it is used in a dual-core environment on the lower level,
it has higher chances of starving the operators at the end of
the priority queue. Starvation happens when the size of the
scheduling period is not enough to execute all of its operators
in one round. In this case, the semantics of HR’s priority
queue are violated because there is an interruption of execution
when control is switched to another HR scheduler. During this
interruption, given that the source operators are executing on
another core, new tuples could arrive at the operators at the
head of the priority queue. Thus even when the input rate is
low, the operators at the end of the priority queue might not
execute for many rounds.

Second, we may have priority inversion between the query
classes where the operators at the head of the priority queues
of all the classes could execute more often than the operators
at the end of the priority queue of the most critical class.

Third, CQC relies heavily on the size of the scheduling
period K which is a manual input to the scheduler. As men-
tioned previously, the size of the scheduling period allocated
to a scheduler is very important. A small value for K could
result in starvation. A large value of K could result in RR
scheduling. Finding the perfect value of K ahead of time is
not trivial because it depends on the load in the system which
can change during runtime.

Last, CQC increases the wait time and thus the response
time of the tuples. All the HR schedulers including the critical

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from |IEEE Xplore. Restrictions apply.

Fig. 2. A comparison between ABD and CQC schedules for a
workload with 5 classes A, B, C, D & E with their respective priorities
5,4, 3,2 & 1. ABD divides the scheduling period into slices in order
to reduce the wait time for A and B.

class HR scheduler have to wait for all the other schedulers to
use their allocated time in order to execute. This is especially
bad when the load in the lower priority classes is considerably
heavier than the load in the critical classes because the latter
have to wait a long time in order to execute.

IV. PROPOSED ABD SCHEDULER

To solve all the above problems with the CQC scheduler,
we propose a novel scheduling policy called ABD (Adaptive
Broadcast Disks) scheduler. Like CQC, ABD is also a two-
level scheduler with one scheduler per class on the lower
level and one scheduler on the higher level that determines
which class to run next. Similar to CQC, ABD attempts to
allocate to each class an amount of time proportional to its
priority. However, ABD splits the amount of time allocated to
a scheduler into guota slices or equal time intervals. In order
to reduce the waiting times, ABD builds a schedule so that a
scheduler gets a number of quota slices distributed over the
entire scheduling period.

The ABD schedule is built using binary manipulation where
the priority is converted to a bitmap. The bitmap is broken
down into individual bits. Then, the bits are compared against
pre-generated masks of powers of 2 to determine when to
place a class inside the schedule. Figure 2 shows an example
schedule under CQC and ABD for a workload with 5 classes:
A, B, C, D and E with priorities 5, 4, 3, 2 and 1 respectively.
CQC allocated all of the quota slices allocated to class A at
once. ABD still gave class A the same amount of time, but
reduces its wait time by having it wait for a maximum of 4
quota slices before executing again versus the equivalent of
10 quota slices under CQC.

In order to avoid starving operators within a class, ABD uses
a round robin scheduler (RR) on the lower level instead of HR.
Each RR scheduler is responsible for scheduling operators in
its assigned class. It needs to avoid going over the quota slice
by as little as possible. Thus, before it schedules an operator,
it estimates the amount of time it would take to execute all
the tuples in its queue. If the time left until the end of the
quota slice is not enough, then the RR scheduler determines
how many tuples the operator can execute so that it doesn’t
go over the allocated quota slice. In cases when the time left
is not enough to process any tuples, then the RR scheduler
records which operator it stopped at and returns control back
to the ABD scheduler. When the RR scheduler is scheduled
next, it starts executing at this operator. This ensures fairness

291

to all the operators in the class and avoids priority inversion
between operators at different positions among classes. At the
end of its execution, an RR scheduler also records the amount
of time it needed to finish executing all the tuples in the last
operator’s queue.

Dynamic Quota Slice: After running experiments with CQC,
we realized that its performance is highly dependent on the
size of K. Measuring the workload during runtime is a costly
process to determine the correct value. In order to keep the
scheduling overhead small, ABD monitors the amount of time
each RR scheduler runs for. If RR goes over its quota slice,
ABD uses this as an indication that the quota slice is too small
and needs to be increased. The quota slice is then incremented
by the amount over the quota slice plus the amount of time
RR needs to finish all the tuples in the last operator. This new
quota slice is then allocated to all the RR schedulers.

However, the workload could fluctuate during runtime and
the system could end up with a quota slice that is too big such
that the schedule is not used anymore and it is essentially
running round robin also on the top level which would be
unaware of class priorities. To avoid this situation, ABD
attempts to decrease the size of the quota slice if it was not
increased in the last schedule. It decreases gradually by the
same amount it was last increased with. This insures that the
quota slice would adjust in small steps both in increasing and
decreasing directions.

Response Time Monitoring: It is important to respect the
priorities throughout execution even in the presence of fluctua-
tions in the workload. Towards this, ABD monitors the average
response time of each class to detect any priority inversion.
Whenever priority inversion is detected, the priorities are
adjusted in order to correct it. Priority inversion happens when
the priority of class A is larger than that of class B but the
response time of class A is higher than that of class B. In this
case, ABD would decrease the priority of B if it is greater than
1. If B’s priority is equal to 1, then ABD would increment the
priority of A by 1. ABD then generates a new schedule. The
process of generating a new schedule and detecting priority
inversion is costly. Thus, this is done only as needed at the end
of the schedule and average response times are used to guard
against sudden fluctuations and frequent schedule rebuilding.

V. EXPERIMENTAL EVALUATION
A. SimAQSIOS

The newest version of AQSIOS which runs in a dual core
environment is still under development. Thus, to evaluate our
new scheduler, we developed a simulator called SimAQSIOS
using the SimPy Simulation Package [7]. SimAQSIOS models
all the operators that are supported by AQSIOS.

The selectivities of the operators are implemented proba-
bilistically. However, the cost of the operators i.e. the amount
of time it takes to execute an operator and its tuples as well as
the scheduling and the statistics collection overhead is modeled
after careful profiling of AQSIOS. The cost of executing an
operator takes into account the cost to call the operator’s run

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from |IEEE Xplore. Restrictions apply.

TABLE I
EXPERIMENTAL SETUP

Query Load Specifications

Types of queries

Select, Aggr, 2-way Joins

Window Size

10 micro seconds

Selectivity of Selections [0.25 — 1]
Data Stream Specifications

Humidity (int) Uniform [0 — 100]

Temperature (int) Uniform [0 — 40]

Location (8 chars) 20 locations

Scheduler Parameters
BDS initial quota slice 50 micro seconds
CQC scheduling period K 30,000 micro seconds

TABLE 1I
WORKLOAD SPECIFICATIONS

Class 1 | Class 2 | Class 3
Number of queries 7 7 7
3A Types of queries all all all
Priorities 30 20 10
Input rate (tup/sec) 1600 1600 1600
Class 1 | Class 2 | Class 3
Number of queries 2 8 11
3B Types of queries join all all
Priorities 60 30 10
Input rate (tup/sec) 1500 1500 1500
Class 1 | Class 2 | Class 3
Number of queries 11 8 2
3C Types of queries all all join
Priorities 60 30 10
Input rate (tup/sec) 1500 1500 1500
Class 1| Class 2 | Class 3 | Class 4 | Class 5
Number of queries 3 5 7 6 4
Types of queries join & all all all all
SD || Types of g Jaggr
Priorities 50 40 30 20 10
Input rate (tup/sec) 1200 1200 1200 1200 1200

function and set it up, which is the cost the system pays
regardless of how many tuples it executes. It also considers
the cost of executing each tuple inside the operator. We added
fluctuations of +/- 5% on average to all the costs to model real
system fluctuations.

We implemented under SimAQSIOS: ABD, CQC, and
Weighted HR schedulers. The Weighted HR scheduler
(WeHR) assigns to each operator a priority equal to the product
of its output rate and the priority of the class it belongs to.

B. Experimental Setup

Tables I and II show the configuration parameters for the
schedulers and the workloads.

Scheduler-specific parameters: For CQC, we choose the
value for K to be 30,000 so that none of the classes is starving
or overloaded. For ABD, we choose an initial quota slice size
of 50. We show later in this section that this initial value has
no effect on the performance of ABD.

Workloads: We evaluate ABD using four workloads. Work-
loads 3A, 3B and 3C have three query classes. Workload 3A

292

10000000

1000000
g 100000
]
g 10000 K Class 1
E
@ 1000 J o m Class 2
§_ 100 s '.Q OClass 3
g § § W Wavg
NI
1 h Mo P
ABD cac WeHR
Fig. 3. The weighted average response time (Wavg) for Workload

3A under ABD is lower by 12.16% than under CQC. The response
time of Class 1 is 36.6% lower under ABD as well. Under WeHR,
Class 1 has a 10% lower response time than under ABD, however,
Class 3 starves: its response time is 2.6 sec and Wavg is 466 msecs.

3500

_, 3000 Q
g 2500 \
U
-§ 2000 \ & Class 1
Q
§- 1500 \ O Class 2
o OClass 3
& \
1000 \ . W Wavg
500 &‘
0 N
ABD cQc
Fig. 4. The weighted average response time (Wavg) for Workload

3B under ABD is lower by 43.1% than under CQC. The response
time of Class 1 is 52.2% lower under ABD as well.

has the same identical CQs in each class. Workloads 3B and
3C have the same CQs, but the CQs for Class 1 under 3B are
assigned to Class 3 under 3C. Workload 5D has five query
classes; the heaviest class is Class 3. We choose the input
rates for the streams so that the system is loaded, but not
overloaded. We choose the workloads so that they have a
variety of priorities and load distributions among classes. Table
IT shows the details of the workloads.

Metrics: We report the weighted average response time
(Wavg) and the average response time of each class.

Overheads: All of the overheads including the context
switches to schedulers and to operators are part of the response
time calculation to better compare the schedulers.

Data Input: Our tuples consist of three attributes: location
(12 characters), humidity (int) and temperature (int) measure-
ments. The input streams were simulated by injecting the
system with 10,000 tuples per input stream.

C. Experimental Results

Comparison of WeHR, CQC, and ABD (Figure 3): Figure 3
shows the performance of the system while running Workload
3A. Notice that the y-axis is in log-scale. ABD lowers the
weighted average response time (Wavg) by 12.16% compared

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from |IEEE Xplore. Restrictions apply.

7000

6000 —
- e
@ 5000
]
2 e
.g 4000 ::::: — DOClass 1
5 @ Class 2
2 3000
§ CClass 3
g 2000 mWavg
o (358 SN
ABD cac
Fig. 5. The weighted average response time (Wavg) for Workload

3C under ABD is lower by 23.7% than under CQC. The response
time of Class 1 is 38.6% lower under ABD as well.

7000

6000

5000

B Class 1

4000 mClass 2

SRR sy

OClass 3

3000

B Class 4
B Class 5
B Wavg

2000

Response Time(usecs)

1000 |

Y,

ABD cQc

Fig. 6. The weighted average response time (Wavg) for Workload
5D under ABD is lower by 19.1% than under CQC. The response
time of Class 1 is 41.5% lower under ABD as well.

to CQC and by 26 times compared to WeHR. Even though
WeHR improves the response time of Class 1 by 10%, this
comes at the expense of starving Class 3 making its response
time over 2 seconds. WeHR has similar performance for all
of the workloads we ran, so we omit it from further graphs to
improve their readability. The CQC scheduler for workload
3A runs close to how round robin would run in that the
response times of the three classes are very close. ABD on
the other hand, starting from a very low quota slice adapts to
the workload and respects the priorities of the three classes.

No Priority Inversion (Figures 4, 5, 6): Figures 4 and 5
show Workloads 3B and 3C under ABD and CQC. In both
workloads, ABD optimizes Wavg (43.1% for 3B and 23.7%
for 3C) and improves the response time of Class 1 by 52.2%
for 3B and 38.6% for 3C over CQC. CQC results in priority
inversion for workload 3B due to the accumulated wait time
for Class 1. ABD by slicing the quota reduces the wait time for
this class and maintains the relative priorities of the classes.
Figure 6 shows the performance of CQC and ABD while
running Workload 5D. CQC again results in priority inversion
for classes 1 and 2. ABD preserves these priorities with 5
classes and improves Wavg by 19.1% and the response time
for Class 1 by 41.5%.
Sensitivity to Initial Quota Slice (Table III) : We ran
Workload 3A under ABD with different initial quota slices.

3000
2500

2000
1500
1000

500

o

Input Rate (tuples/sec)

05 1 15 2 25 3 35 4 45 5 55 6 65 7 7.5 8
Time(secs)

Fig. 7. The input rate used for Class 1 in the adaptive experiment

Class 5

Class2 ====- Class 3 —#— Class 4

—+—Class 1
16000
14000
12000
10000
8000
6000
4000
2000
0

Response Time(usecs)

05115 2 25 3 354 455 556 657 75 8
Time (secs)

Fig. 8. Adaptive Experiment: shows that ABD adapts as the input
rate of Class 1 changes

TABLE III
SENSITIVITY ANALYSIS

Initial Quota Slice 20 50 100 500 1000
Wavg 1749 | 1788 | 1776 | 1775 | 1768

Table III shows the average Wavg for each quota slice. Wavg
stayed more or less constant throughout the runs and the slight
differences are due to fluctuations in the system.

Adaptivity (Figures 7, 8) : To evaluate how well ABD adapts
to changes in the workload, we modified the input stream
for Class 1 under Workload 5D so that it follows the input
rate shown in Figure 7. The results are shown in Figure 8.
ABD adapts fairly well to the changes in the input rate by
keeping the response time for Class 1 lower than all the other
classes except for a brief period between 5.5 and 6 seconds.
The overall average response times for the classes 1, 2, 3,
4 and 5 are 2.2, 2.46, 2.6, 3.8 and 6.9 msecs respectively.
Consequently, ABD preserves the priorities of the classes even
in the presence of changes in the workload.

VI. RELATED WORK

Several policies for scheduling the execution of CQs in a
DSMS have been proposed to optimize specific performance
goals such as latency [1], [2], [8] or memory usage [9], [10].

In this paper, we also focus on the scheduling of CQs
in a DSMS, however, our objective is to optimize DSMS
performance in the presence of a multi-class workload where
CQs belong to different classes according to their importance.
In our previous work [3], we proposed the Continuous Query
Class (CQC) scheduler for scheduling CQs of different CQ

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from |IEEE Xplore. Restrictions apply.

classes. However, CQC does not work as expected in a dual-
core system. Our experiments show that ABD outperforms
CQC without requiring any manual input. In [6], we extended
our work on CQC by exploiting the synergy between the
scheduler and the load shedder. In this case, the load shedder
estimates the load in each class so that the scheduler can adjust
the scheduling period accordingly. As part of our future work,
we plan to extend the synergy to use ABD.

Related to our work on multi-class CQ scheduling is the
work on the Aurora project [11], [1] which considers a set of
Quality of Service (QoS) functions including a latency-based
one. In particular, under their model, each CQ is associated
with a QoS function and the perceived quality of service
degrades when the output delay is beyond some threshold §.
However, such mapping between classes and QoS functions is
expected to be a daunting task. In addition, under the Aurora
model, the objective is to improve the overall DSMS perfor-
mance, whereas in this paper, we focus on mainly improving
the performance of critical CQs while still optimizing the
weighted average response time.

The work on the RTSTREAM system [12] considers
scheduling classes of CQs based on deadlines. In particular,
it assigns to each CQ a deadline and uses those deadlines
as priorities for CQ instances during scheduling. However,
when a query instance is foreseen to miss its deadline, it is
removed from the system and its input data is discarded. This
is in contrast to our approach where all CQs are executed to
completion without discarding any input data.

The work in [13] also considers scheduling multi-class
workloads but in the context of e-commerce OLTP transactions
in traditional database management systems. Specifically, it
divides transactions to classes of different QoS targets and
uses those class-based targets to schedule transactions. The
scheduler is an external module which non-preemptively dis-
patches a small set of transactions to the database system for
execution, where the size of that set is a system parameter.
However, under a non-preemptive dispatcher, a highly impor-
tant transaction might be blocked waiting for a less important
one to finish execution first.

The work in [14] considers scheduling queries with different
priorities in a parallel DBMS. They propose a mechanism
to balance the resource allocation for queries based on their
priorities. The objective is to allocate to each query a portion of
the CPU at least proportional to its priority while maximizing
resource utilization.

In a similar manner to this work, our group has used
the approach of two-level scheduling in the context of web-
databases. In particular, the work in [15] deals with scheduling
queries and updates in a web-database system in the presence
of Quality Contracts. The proposed scheduling algorithm
(QUTYS) involves two separate queues, one for queries and
one for updates, and dynamically assigns CPU time to each
according to the expected “profit” in the system.

294

VII. CONCLUSION

In this paper, we considered scheduling multiple continuous
query classes with different priorities under a DSMS in a dual-
core environment. We developed a new scheduling policy that
optimizes the weighted average response time of CQs while
improving the response time of critical classes. Our scheduler
consists of two levels: the lower level which schedules queries
within a class is using a round robin policy, the top level
allocates to each class a number of quota slices proportional
to its priority and then builds a schedule that determines the
execution order of the classes. We implemented and evaluated
our scheduling scheme on SimAQSIOS which is built to be
as close as possible to our AQSIOS prototype but supports
dual-core execution. We showed that our scheduler optimizes
the weighted average response time by 12% to 43% compared
to the state of the art.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants IIS-
0534531 and OIA-1028162, and NSF career award grant IIS-
0746696. We would like to thank Thao Pham for her help with
the AQSIOS prototype and the anonymous reviewers for their
feedback.

REFERENCES

D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Cherniack, and
M. Stonebraker, “Operator scheduling in a data stream manager,” in
VLDB, 2003.

M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs, “Efficient
scheduling of heterogeneous continuous queries,” in VLDB, 2006.

L. A. Moakar, T. N. Pham, P. Neophytou, P. K. Chrysanthis, A. Labrini-
dis, and M. Sharaf, “Class-based continuous query scheduling for data
streams,” in DMSN, 2009.

A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, “Stream: The stanford
data stream management system,” Stanford InfoLab, Technical Report
2004-20, 2004. [Online]. Available: http://ilpubs.stanford.edu:8090/641/
L. A. Moakar, P. K. Chrysanthis, C. Chung, S. Guirguis, A. Labrini-
dis, P. Neophytou, and K. Pruhs, “Admission control mechanisms for
continuous queries in the cloud,” in /CDE, 2010.

T. N. Pham, L. A. Moakar, P. K. Chrysanthis, and A. Labrinidis,
“Dilos: A dynamic integrated load manager and scheduler for continuous
queries,” in SMDB, 2011.

“Simpy simulation package,” http://simpy.sourceforge.net.

M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs, “Algo-
rithms and metrics for processing multiple heterogeneous continuous
queries,” ACM Transactions on Database Systems, 2008.

B. Babcock, S. Babu, M. Datar, and R. Motwani, “Chain: Operator
scheduling for memory minimization in data stream systems,” in SIG-
MOD, 2003.

B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas, “Operator
scheduling in data stream systems,” The VLDB Journal, vol. 13, no. 4,
2004.

D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” The VLDB Journal, vol. 12,
no. 2, 2003.

Y. Wei, S. H. Son, and J. A. Stankovic, “Rtstream: Real-time query
processing for data streams,” in ISORC, 2006.

B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum, “Achieving
class-based qos for transactional workloads,” in ICDE, 2006.

F. Narayanan, S.; Waas, “Dynamic prioritization of database queries,”
in ICDE, 2011.

H. Qu and A. Labrinidis, “Preference-aware query and update scheduling
in web-databases,” in /CDE, 2007.

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from |IEEE Xplore. Restrictions apply.

