
Adaptive Class-Based Scheduling of Continuous
Queries

Lory Al Moakar, Alexandros Labrinidis, Panos K. Chrysanthis

Computer Science Department, University of Pittsburgh
{lorym, labrinid, panos}@cs.pitt.edu

Abstract— The emergence of Data Stream Management Sys-
tems (DSMS) facilitates implementing many types of monitoring
applications via continuous queries (CQs). However, these ap-
plications usually have different quality-of-service requirements
for different CQs. In this work, we are proposing the Adaptive
Broadcast Disks (ABD) scheduler, a new scheduling policy which
employs two-level scheduling that can handle different ranks of
CQ classes. The ABD scheduler optimizes the weighted average
response time of the CQ classes while still preserving the relative
importance of each class. We demonstrate that ABD outperforms
state-of-the-art schedulers and adapts to changes in the workload
without manual intervention.

I. INTRODUCTION

Motivation: Data Stream Management Systems (DSMS) are

at the heart of any monitoring application. Users submit

monitoring requests in the form of Continuous Queries (CQs)

which could run indefinitely. In many applications, some of

the CQs submitted to the DSMS are more critical than others.

For example, a CQ that detects flooding inside a warehouse

is very critical and requires short response time whereas CQs

that report average conditions are not as critical.

A traditional DSMS treats all the CQs as having equal

priority in the system and attempts to optimize their overall

performance. In particular, it employs a CQ scheduler to

optimize the Quality of Service (QoS) provided by the system.

The CQ scheduler is the DSMS component which decides the

execution order of CQs to achieve a certain performance goal

such as minimizing response time or maximizing fairness. Al-

though there have been multiple scheduling policies proposed

(e.g., Round Robin (RR), Chain [1], Highest Rate (HR) [2],

Highest Normalized Rate (HNR) [2]), these are oblivious to

the different importance levels of different CQs.

In our previous work [3], we proposed using the Continuous

Query Class (CQC) scheduler to schedule queries of different

importance by grouping them into query classes, where each

query class has a user specified priority value that indicates

its relative importance. CQC is a two level scheduler that uses

a weighted RR scheduler on the top level with multiple HR

schedulers on the lower level. It requires a manual scheduling

period K for the weighted RR scheduler. Determining the

correct value of K depends on the workload characteristics

and is not easy to derive ahead of time. An incorrect value of

K could result in starving low priority classes or in the policy

degenerating as round robin.

In this paper, we assume that the system is running on a

dual-core machine. In order to efficiently utilize both cores, we

divide the execution into two parts: One core is used to listen

on the network for any incoming tuples and put them in the

input queues of the operators. The second core is used to run

the CQs registered by the user. The separation between these

two modules allows the system to process data tuples as they

arrive without waiting for all the older tuples in the system to

finish their execution. Also, this model is better suited at our

target application because it removes the dependency between

critical CQs and non-critical CQs at the input level. However,

under this model, CQC no longer works as expected which

motivated us to investigate alternative scheduling schemes.

To overcome the problems of CQC, we designed Adaptive
Broadcast Disks scheduler (ABD), a novel scheduler that

optimizes the weighted average response time of the query

classes and respects user priorities by preventing priority

inversion. ABD is designed to run with the expectation that an

operator can receive tuples at any time during the scheduling

cycle. Like CQC, ABD is a two-level scheduler, however,

unlike CQC it is not dependent on manual parameters.

Contributions: Specifically, the contributions of this work are:

• We designed a novel two-level scheduler namely Adap-

tive Broadcast Disks scheduler (ABD) that optimizes

the weighted average response time of the CQs while

providing better response time for the critical classes.

• Compared to the state of the art on class-based schedul-

ing, this work has the following characteristics:

– It works in dual-core environments.

– It is adaptive to changes in the workload and does

not depend on parameters that require manual tuning.

– It does not exhibit priority inversion.

– It does not exhibit starvation.

• We evaluated ABD under multiple workloads and show

that it is adaptive and parameter-free.

Road Map: We discuss our system model in Section II.

Section III reviews the CQC scheduler. Section IV describes

the ABD scheduler. We present our experimental evaluation

results in Section V. Section VI surveys the related work.

Finally, we conclude in Section VII.

II. SYSTEM MODEL

This work is part of the AQSIOS project, in which we

build a new generation of DSMS. AQSIOS is based on the

STREAM prototype source code [4], which we have extended

to include new scheduling policies (such as CQC, HR) and

2012 IEEE 28th International Conference on Data Engineering Workshops

978-0-7695-4748-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDEW.2012.38

280

2012 IEEE 28th International Conference on Data Engineering Workshops

978-0-7695-4748-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDEW.2012.38

289

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from IEEE Xplore. Restrictions apply.

�����������	�
�
����
�

�
���
���������
�
�

���

���
����
��
�

����������
�����
���
�
�
�����
��

�
��
��
��
��
�	
��
��
�

�
�����
�������
�
�

�������
�����
������
�
�

�������
������	
�

��
�

��
��

�	
��

����������
��
�

�
���
��������

Fig. 1. Overview of AQSIOS

load shedders. Figure 1 illustrates an overview of AQSIOS, in

which the query optimizer and the query execution engine are

inherited from STREAM.

AQSIOS allows the user to specify in addition to their CQ

its importance or criticality in the form of a numerical priority.

This priority indicates the relative importance of the results of

this CQ relative to the other CQs in the system.

Inside AQSIOS, once the user submits a CQ, the query

optimizer translates the CQ into an efficient query plan com-

posed of operators connected via queues. Our system supports

three types of operators namely source, operational, and output

operators (Figure 1). The source operators read and translate

the data streams coming from the data sources to an internal

representation format in the form of data tuples. They also

record the time the tuple arrived at the DSMS as a timestamp.

The operational operators process the data according to the CQ

specified by the user. The Join, Select, and Project operators

are examples of operational operators. Once the operational

operators have finished processing the tuples, the results are

put in the input queues of the output operators. The output

operators then disseminate the results to the end users. They

also calculate the response time of the tuple by subtracting the

timestamp from the time the tuple was sent to the user.

A. Scheduling Model

The new version of AQSIOS that we are developing would

run on two processing cores to better utilize today’s ma-

chines. Our prior versions were close to the original STREAM

prototype and would not utilize multiple cores. In fact, the

system would leave one of the cores idle while delaying

the processing of the heavy source operators until needed.

Under the point of view of the scheduler in the new version

of AQSIOS, the source operators are not part of the query

network and are scheduled separately from the operational and

output operators (see Figure 1). Thus, the source operators are

scheduled and run on a separate core than the operational and

output operators. A simple round robin scheduler is used to

schedule the sources. However, another scheduler is needed to

allocate resources to the operators. At every scheduling point,

the scheduler selects the next operator to execute and allows

it to process its tuples for a specified amount of time/tuples.

The user-specified priorities are used by the scheduler

to classify CQs into several predefined classes of different

priorities based on their criticality levels. The goal of the

scheduler in this case is to optimize the weighted average

response time instead of the average response time. In other

words, it needs to optimize the response time of the higher-

priority query classes without starving the lower-priority query

classes and without priority inversion. In this paper, we assume

no sharing of operators across different classes. However,

sharing of operators within a class or sharing of synopses

is allowed. We assume that admission control on the level

of the CQs has already taken place (e.g. [5]) and that the

load shedding module is disabled, so that we can focus on

just the behavior of the scheduling. We have independently

considered the synergy between scheduling and load shedding

in our previous work [6].

III. STATE OF THE ART: CQC SCHEDULER

In our previous work [3], we proposed the Continuous

Query Class scheduler (CQC) which is composed of two

levels: a Weighted Round Robin (WRR) scheduler which is

responsible to schedule multiple Highest Rate (HR) sched-

ulers. Each HR scheduler schedules operators that belong to

one class. CQC works very well when the system is running

on one core. However, it has many side-effects under our dual-

core system model.

First, HR is proven to optimize the average response time

of a set of CQs when all they have equal priority. However,

once it is used in a dual-core environment on the lower level,

it has higher chances of starving the operators at the end of

the priority queue. Starvation happens when the size of the

scheduling period is not enough to execute all of its operators

in one round. In this case, the semantics of HR’s priority

queue are violated because there is an interruption of execution

when control is switched to another HR scheduler. During this

interruption, given that the source operators are executing on

another core, new tuples could arrive at the operators at the

head of the priority queue. Thus even when the input rate is

low, the operators at the end of the priority queue might not

execute for many rounds.

Second, we may have priority inversion between the query

classes where the operators at the head of the priority queues

of all the classes could execute more often than the operators

at the end of the priority queue of the most critical class.

Third, CQC relies heavily on the size of the scheduling

period K which is a manual input to the scheduler. As men-

tioned previously, the size of the scheduling period allocated

to a scheduler is very important. A small value for K could

result in starvation. A large value of K could result in RR

scheduling. Finding the perfect value of K ahead of time is

not trivial because it depends on the load in the system which

can change during runtime.

Last, CQC increases the wait time and thus the response

time of the tuples. All the HR schedulers including the critical

281290

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from IEEE Xplore. Restrictions apply.

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� �� ��

 �����������!�

������������!�

Fig. 2. A comparison between ABD and CQC schedules for a
workload with 5 classes A, B, C, D & E with their respective priorities
5, 4, 3, 2 & 1. ABD divides the scheduling period into slices in order
to reduce the wait time for A and B.

class HR scheduler have to wait for all the other schedulers to

use their allocated time in order to execute. This is especially

bad when the load in the lower priority classes is considerably

heavier than the load in the critical classes because the latter

have to wait a long time in order to execute.

IV. PROPOSED ABD SCHEDULER

To solve all the above problems with the CQC scheduler,

we propose a novel scheduling policy called ABD (Adaptive

Broadcast Disks) scheduler. Like CQC, ABD is also a two-

level scheduler with one scheduler per class on the lower

level and one scheduler on the higher level that determines

which class to run next. Similar to CQC, ABD attempts to

allocate to each class an amount of time proportional to its

priority. However, ABD splits the amount of time allocated to

a scheduler into quota slices or equal time intervals. In order

to reduce the waiting times, ABD builds a schedule so that a

scheduler gets a number of quota slices distributed over the

entire scheduling period.

The ABD schedule is built using binary manipulation where

the priority is converted to a bitmap. The bitmap is broken

down into individual bits. Then, the bits are compared against

pre-generated masks of powers of 2 to determine when to

place a class inside the schedule. Figure 2 shows an example

schedule under CQC and ABD for a workload with 5 classes:

A, B, C, D and E with priorities 5, 4, 3, 2 and 1 respectively.

CQC allocated all of the quota slices allocated to class A at

once. ABD still gave class A the same amount of time, but

reduces its wait time by having it wait for a maximum of 4

quota slices before executing again versus the equivalent of

10 quota slices under CQC.

In order to avoid starving operators within a class, ABD uses

a round robin scheduler (RR) on the lower level instead of HR.

Each RR scheduler is responsible for scheduling operators in

its assigned class. It needs to avoid going over the quota slice

by as little as possible. Thus, before it schedules an operator,

it estimates the amount of time it would take to execute all

the tuples in its queue. If the time left until the end of the

quota slice is not enough, then the RR scheduler determines

how many tuples the operator can execute so that it doesn’t

go over the allocated quota slice. In cases when the time left

is not enough to process any tuples, then the RR scheduler

records which operator it stopped at and returns control back

to the ABD scheduler. When the RR scheduler is scheduled

next, it starts executing at this operator. This ensures fairness

to all the operators in the class and avoids priority inversion

between operators at different positions among classes. At the

end of its execution, an RR scheduler also records the amount

of time it needed to finish executing all the tuples in the last

operator’s queue.

Dynamic Quota Slice: After running experiments with CQC,

we realized that its performance is highly dependent on the

size of K. Measuring the workload during runtime is a costly

process to determine the correct value. In order to keep the

scheduling overhead small, ABD monitors the amount of time

each RR scheduler runs for. If RR goes over its quota slice,

ABD uses this as an indication that the quota slice is too small

and needs to be increased. The quota slice is then incremented

by the amount over the quota slice plus the amount of time

RR needs to finish all the tuples in the last operator. This new

quota slice is then allocated to all the RR schedulers.

However, the workload could fluctuate during runtime and

the system could end up with a quota slice that is too big such

that the schedule is not used anymore and it is essentially

running round robin also on the top level which would be

unaware of class priorities. To avoid this situation, ABD

attempts to decrease the size of the quota slice if it was not

increased in the last schedule. It decreases gradually by the

same amount it was last increased with. This insures that the

quota slice would adjust in small steps both in increasing and

decreasing directions.

Response Time Monitoring: It is important to respect the

priorities throughout execution even in the presence of fluctua-

tions in the workload. Towards this, ABD monitors the average

response time of each class to detect any priority inversion.

Whenever priority inversion is detected, the priorities are

adjusted in order to correct it. Priority inversion happens when

the priority of class A is larger than that of class B but the

response time of class A is higher than that of class B. In this

case, ABD would decrease the priority of B if it is greater than

1. If B’s priority is equal to 1, then ABD would increment the

priority of A by 1. ABD then generates a new schedule. The

process of generating a new schedule and detecting priority

inversion is costly. Thus, this is done only as needed at the end

of the schedule and average response times are used to guard

against sudden fluctuations and frequent schedule rebuilding.

V. EXPERIMENTAL EVALUATION

A. SimAQSIOS

The newest version of AQSIOS which runs in a dual core

environment is still under development. Thus, to evaluate our

new scheduler, we developed a simulator called SimAQSIOS

using the SimPy Simulation Package [7]. SimAQSIOS models

all the operators that are supported by AQSIOS.

The selectivities of the operators are implemented proba-

bilistically. However, the cost of the operators i.e. the amount

of time it takes to execute an operator and its tuples as well as

the scheduling and the statistics collection overhead is modeled

after careful profiling of AQSIOS. The cost of executing an

operator takes into account the cost to call the operator’s run

282291

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I

EXPERIMENTAL SETUP

Query Load Specifications
Types of queries Select, Aggr, 2-way Joins
Window Size 10 micro seconds
Selectivity of Selections [0.25− 1]

Data Stream Specifications
Humidity (int) Uniform [0− 100]
Temperature (int) Uniform [0− 40]
Location (8 chars) 20 locations

Scheduler Parameters
BDS initial quota slice 50 micro seconds
CQC scheduling period K 30,000 micro seconds

TABLE II

WORKLOAD SPECIFICATIONS

3A

Class 1 Class 2 Class 3
Number of queries 7 7 7
Types of queries all all all
Priorities 30 20 10
Input rate (tup/sec) 1600 1600 1600

3B

Class 1 Class 2 Class 3
Number of queries 2 8 11
Types of queries join all all
Priorities 60 30 10
Input rate (tup/sec) 1500 1500 1500

3C

Class 1 Class 2 Class 3
Number of queries 11 8 2
Types of queries all all join
Priorities 60 30 10
Input rate (tup/sec) 1500 1500 1500

5D

Class 1 Class 2 Class 3 Class 4 Class 5
Number of queries 3 5 7 6 4
Types of queries join & all all all all

aggr
Priorities 50 40 30 20 10
Input rate (tup/sec) 1200 1200 1200 1200 1200

function and set it up, which is the cost the system pays

regardless of how many tuples it executes. It also considers

the cost of executing each tuple inside the operator. We added

fluctuations of +/- 5% on average to all the costs to model real

system fluctuations.

We implemented under SimAQSIOS: ABD, CQC, and

Weighted HR schedulers. The Weighted HR scheduler

(WeHR) assigns to each operator a priority equal to the product

of its output rate and the priority of the class it belongs to.

B. Experimental Setup

Tables I and II show the configuration parameters for the

schedulers and the workloads.

Scheduler-specific parameters: For CQC, we choose the

value for K to be 30,000 so that none of the classes is starving

or overloaded. For ABD, we choose an initial quota slice size

of 50. We show later in this section that this initial value has

no effect on the performance of ABD.

Workloads: We evaluate ABD using four workloads. Work-

loads 3A, 3B and 3C have three query classes. Workload 3A

"�

"#�

"##�

"###�

"####�

"#####�

"######�

"#######�

 ��� ���� $�%&�

	
��

�

�	

��
��

	�
��

	�
���

���

�"�

���

�'�

���

�(�

$�)*�

Fig. 3. The weighted average response time (Wavg) for Workload
3A under ABD is lower by 12.16% than under CQC. The response
time of Class 1 is 36.6% lower under ABD as well. Under WeHR,
Class 1 has a 10% lower response time than under ABD, however,
Class 3 starves: its response time is 2.6 sec and Wavg is 466 msecs.

#�

+##�

"###�

"+##�

'###�

'+##�

(###�

(+##�

 ��� ����

	
��

�

�	

��
��

	�
��

	�
��

�

���

�"�

���

�'�

���

�(�

$�)*�

Fig. 4. The weighted average response time (Wavg) for Workload
3B under ABD is lower by 43.1% than under CQC. The response
time of Class 1 is 52.2% lower under ABD as well.

has the same identical CQs in each class. Workloads 3B and

3C have the same CQs, but the CQs for Class 1 under 3B are

assigned to Class 3 under 3C. Workload 5D has five query

classes; the heaviest class is Class 3. We choose the input

rates for the streams so that the system is loaded, but not

overloaded. We choose the workloads so that they have a

variety of priorities and load distributions among classes. Table

II shows the details of the workloads.

Metrics: We report the weighted average response time

(Wavg) and the average response time of each class.

Overheads: All of the overheads including the context

switches to schedulers and to operators are part of the response

time calculation to better compare the schedulers.

Data Input: Our tuples consist of three attributes: location

(12 characters), humidity (int) and temperature (int) measure-

ments. The input streams were simulated by injecting the

system with 10,000 tuples per input stream.

C. Experimental Results

Comparison of WeHR, CQC, and ABD (Figure 3): Figure 3

shows the performance of the system while running Workload

3A. Notice that the y-axis is in log-scale. ABD lowers the

weighted average response time (Wavg) by 12.16% compared

283292

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from IEEE Xplore. Restrictions apply.

#�

"###�

'###�

(###�

,###�

+###�

-###�

.###�

 ��� ����

	
��

�

�	

��
��

	�
��

	�
��

�

���

�"�

���

�'�

���

�(�

$�)*�

Fig. 5. The weighted average response time (Wavg) for Workload
3C under ABD is lower by 23.7% than under CQC. The response
time of Class 1 is 38.6% lower under ABD as well.

#�

"###�

'###�

(###�

,###�

+###�

-###�

.###�

 ��� ����

	
��

�

�	

��
��

	�
��

	�
��

�

���

�"�

���

�'�

���

�(�

���

�,�

���

�+�

$�)*�

Fig. 6. The weighted average response time (Wavg) for Workload
5D under ABD is lower by 19.1% than under CQC. The response
time of Class 1 is 41.5% lower under ABD as well.

to CQC and by 26 times compared to WeHR. Even though

WeHR improves the response time of Class 1 by 10%, this

comes at the expense of starving Class 3 making its response

time over 2 seconds. WeHR has similar performance for all

of the workloads we ran, so we omit it from further graphs to

improve their readability. The CQC scheduler for workload

3A runs close to how round robin would run in that the

response times of the three classes are very close. ABD on

the other hand, starting from a very low quota slice adapts to

the workload and respects the priorities of the three classes.

No Priority Inversion (Figures 4, 5, 6): Figures 4 and 5

show Workloads 3B and 3C under ABD and CQC. In both

workloads, ABD optimizes Wavg (43.1% for 3B and 23.7%

for 3C) and improves the response time of Class 1 by 52.2%

for 3B and 38.6% for 3C over CQC. CQC results in priority

inversion for workload 3B due to the accumulated wait time

for Class 1. ABD by slicing the quota reduces the wait time for

this class and maintains the relative priorities of the classes.

Figure 6 shows the performance of CQC and ABD while

running Workload 5D. CQC again results in priority inversion

for classes 1 and 2. ABD preserves these priorities with 5

classes and improves Wavg by 19.1% and the response time

for Class 1 by 41.5%.

Sensitivity to Initial Quota Slice (Table III) : We ran

Workload 3A under ABD with different initial quota slices.

#�

+##�

"###�

"+##�

'###�

'+##�

(###�

#/+� "� "/+� '� '/+� (� (/+� ,� ,/+� +� +/+� -� -/+� .� ./+� 0�

�
�
��

�
�
�	

���
��

�	�
��	

���

���	��	����

Fig. 7. The input rate used for Class 1 in the adaptive experiment

#�

'###�

,###�

-###�

0###�

"####�

"'###�

",###�

"-###�

#/+� "� "/+� '� '/+� (� (/+� ,� ,/+� +� +/+� -� -/+� .� ./+� 0�

	
��

�

�	

��
��

	�
��

	�
��

�

���	���	����

���

�"� ���

�'� ���

�(� ���

�,� ���

�+�

Fig. 8. Adaptive Experiment: shows that ABD adapts as the input
rate of Class 1 changes

TABLE III

SENSITIVITY ANALYSIS

Initial Quota Slice 20 50 100 500 1000
Wavg 1749 1788 1776 1775 1768

Table III shows the average Wavg for each quota slice. Wavg

stayed more or less constant throughout the runs and the slight

differences are due to fluctuations in the system.

Adaptivity (Figures 7, 8) : To evaluate how well ABD adapts

to changes in the workload, we modified the input stream

for Class 1 under Workload 5D so that it follows the input

rate shown in Figure 7. The results are shown in Figure 8.

ABD adapts fairly well to the changes in the input rate by

keeping the response time for Class 1 lower than all the other

classes except for a brief period between 5.5 and 6 seconds.

The overall average response times for the classes 1, 2, 3,

4 and 5 are 2.2, 2.46, 2.6, 3.8 and 6.9 msecs respectively.

Consequently, ABD preserves the priorities of the classes even

in the presence of changes in the workload.

VI. RELATED WORK

Several policies for scheduling the execution of CQs in a

DSMS have been proposed to optimize specific performance

goals such as latency [1], [2], [8] or memory usage [9], [10].

In this paper, we also focus on the scheduling of CQs

in a DSMS, however, our objective is to optimize DSMS

performance in the presence of a multi-class workload where

CQs belong to different classes according to their importance.

In our previous work [3], we proposed the Continuous Query

Class (CQC) scheduler for scheduling CQs of different CQ

284293

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from IEEE Xplore. Restrictions apply.

classes. However, CQC does not work as expected in a dual-

core system. Our experiments show that ABD outperforms

CQC without requiring any manual input. In [6], we extended

our work on CQC by exploiting the synergy between the

scheduler and the load shedder. In this case, the load shedder

estimates the load in each class so that the scheduler can adjust

the scheduling period accordingly. As part of our future work,

we plan to extend the synergy to use ABD.

Related to our work on multi-class CQ scheduling is the

work on the Aurora project [11], [1] which considers a set of

Quality of Service (QoS) functions including a latency-based

one. In particular, under their model, each CQ is associated

with a QoS function and the perceived quality of service

degrades when the output delay is beyond some threshold δ.

However, such mapping between classes and QoS functions is

expected to be a daunting task. In addition, under the Aurora

model, the objective is to improve the overall DSMS perfor-

mance, whereas in this paper, we focus on mainly improving

the performance of critical CQs while still optimizing the

weighted average response time.

The work on the RTSTREAM system [12] considers

scheduling classes of CQs based on deadlines. In particular,

it assigns to each CQ a deadline and uses those deadlines

as priorities for CQ instances during scheduling. However,

when a query instance is foreseen to miss its deadline, it is

removed from the system and its input data is discarded. This

is in contrast to our approach where all CQs are executed to

completion without discarding any input data.

The work in [13] also considers scheduling multi-class

workloads but in the context of e-commerce OLTP transactions

in traditional database management systems. Specifically, it

divides transactions to classes of different QoS targets and

uses those class-based targets to schedule transactions. The

scheduler is an external module which non-preemptively dis-

patches a small set of transactions to the database system for

execution, where the size of that set is a system parameter.

However, under a non-preemptive dispatcher, a highly impor-

tant transaction might be blocked waiting for a less important

one to finish execution first.

The work in [14] considers scheduling queries with different

priorities in a parallel DBMS. They propose a mechanism

to balance the resource allocation for queries based on their

priorities. The objective is to allocate to each query a portion of

the CPU at least proportional to its priority while maximizing

resource utilization.

In a similar manner to this work, our group has used

the approach of two-level scheduling in the context of web-

databases. In particular, the work in [15] deals with scheduling

queries and updates in a web-database system in the presence

of Quality Contracts. The proposed scheduling algorithm

(QUTS) involves two separate queues, one for queries and

one for updates, and dynamically assigns CPU time to each

according to the expected “profit” in the system.

VII. CONCLUSION

In this paper, we considered scheduling multiple continuous

query classes with different priorities under a DSMS in a dual-

core environment. We developed a new scheduling policy that

optimizes the weighted average response time of CQs while

improving the response time of critical classes. Our scheduler

consists of two levels: the lower level which schedules queries

within a class is using a round robin policy, the top level

allocates to each class a number of quota slices proportional

to its priority and then builds a schedule that determines the

execution order of the classes. We implemented and evaluated

our scheduling scheme on SimAQSIOS which is built to be

as close as possible to our AQSIOS prototype but supports

dual-core execution. We showed that our scheduler optimizes

the weighted average response time by 12% to 43% compared

to the state of the art.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants IIS-

0534531 and OIA-1028162, and NSF career award grant IIS-

0746696. We would like to thank Thao Pham for her help with

the AQSIOS prototype and the anonymous reviewers for their

feedback.

REFERENCES

[1] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, and
M. Stonebraker, “Operator scheduling in a data stream manager,” in
VLDB, 2003.

[2] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs, “Efficient
scheduling of heterogeneous continuous queries,” in VLDB, 2006.

[3] L. A. Moakar, T. N. Pham, P. Neophytou, P. K. Chrysanthis, A. Labrini-
dis, and M. Sharaf, “Class-based continuous query scheduling for data
streams,” in DMSN, 2009.

[4] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, “Stream: The stanford
data stream management system,” Stanford InfoLab, Technical Report
2004-20, 2004. [Online]. Available: http://ilpubs.stanford.edu:8090/641/

[5] L. A. Moakar, P. K. Chrysanthis, C. Chung, S. Guirguis, A. Labrini-
dis, P. Neophytou, and K. Pruhs, “Admission control mechanisms for
continuous queries in the cloud,” in ICDE, 2010.

[6] T. N. Pham, L. A. Moakar, P. K. Chrysanthis, and A. Labrinidis,
“Dilos: A dynamic integrated load manager and scheduler for continuous
queries,” in SMDB, 2011.

[7] “Simpy simulation package,” http://simpy.sourceforge.net.
[8] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs, “Algo-

rithms and metrics for processing multiple heterogeneous continuous
queries,” ACM Transactions on Database Systems, 2008.

[9] B. Babcock, S. Babu, M. Datar, and R. Motwani, “Chain: Operator
scheduling for memory minimization in data stream systems,” in SIG-
MOD, 2003.

[10] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas, “Operator
scheduling in data stream systems,” The VLDB Journal, vol. 13, no. 4,
2004.

[11] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” The VLDB Journal, vol. 12,
no. 2, 2003.

[12] Y. Wei, S. H. Son, and J. A. Stankovic, “Rtstream: Real-time query
processing for data streams,” in ISORC, 2006.

[13] B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum, “Achieving
class-based qos for transactional workloads,” in ICDE, 2006.

[14] F. Narayanan, S.; Waas, “Dynamic prioritization of database queries,”
in ICDE, 2011.

[15] H. Qu and A. Labrinidis, “Preference-aware query and update scheduling
in web-databases,” in ICDE, 2007.

285294

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:31 UTC from IEEE Xplore. Restrictions apply.

