
Three-level Processing of Multiple Aggregate
Continuous Queries

Shenoda Guirguis 1, Mohamed A. Sharaf 2, Panos K. Chrysanthis 1, Alexandros Labrinidis 1

1Department of Computer Science
University of Pittsburgh

{shenoda, panos, labrinid}@cs.pitt.edu

2School of Information Technology and Electrical Engineering
The University of Queensland

m.sharaf@uq.edu.au

Abstract—Aggregate Continuous Queries (ACQs) are among
the most common Continuous Queries across all classes of
monitoring applications and typically have a high execution cost.
As such, optimizing the processing of ACQs is imperative for
Data Stream Management Systems to reach their full potential.
Existing multiple ACQs optimization schemes focus on ACQs
with varying window specifications and pre-aggregation filters
and assume a processing model where each ACQ is computed
as a final-aggregation of a sub-aggregation. In this paper, we
propose a novel processing model for ACQs, called TriOps, that
minimizes the repetition of operations at the sub-aggregation
level, and a new multiple ACQs optimizer, called TriWeave,
that is TriOps-aware. We analytically and experimentally demon-
strate the performance gains of our proposed schemes, showing
their superiority over alternative schemes. Finally, we generalize
TriWeave to incorporate the classical subsumption-based multi-
query optimization techniques for handling overlapping group-by
attributes.

I. INTRODUCTION

Streams Aggregation. Aggregate Continuous Queries
(ACQs) are among the most common Continuous Queries
across all classes of monitoring applications (e.g., [16], [15],
[21]). Typically, many ACQs monitor the same data input
stream. In fact, more than often, these ACQs are also comput-
ing the exact same aggregate function, but may have slightly
different specifications, such as the window specifications, pre-
aggregation filters (i.e., predicates), and group-by attributes.

For example, a network monitoring application could em-
ploy three ACQs to monitor the IP traffic, all of which could
compute the COUNT of incoming packets. While the first
ACQ could report the count in the last minute, updated every
five seconds, the second and third ACQs could report the
count in the last minute, to be updated every half minute.
Further, the first ACQ might be interested in the count of IP
traffic originating from a specific source, i.e., have a predicate
that the source IP has a certain value. The second and third
ACQs, on the other hand, might be counting all received
packets, but have them grouped by source IP and destination
IP, respectively.

While many ACQs, like the three ACQs in our example
above, compute the same aggregate function over the same
input data steam, they have different specifications, depending
on the user and the purpose of the ACQ.

Motivation. Given the cost and commonality of ACQs,
optimizing their processing is crucial in order for Data Stream
Management Systems (DSMSs) (e.g., [2], [4], [5], [13], [6],
[7], [27], [25], [26]) to achieve the scalability needed to handle
the typical large volumes of data and large numbers of ACQs.

This need has motivated the development of several tech-
niques for the efficient processing of ACQs, which could be
broadly classified into techniques for: 1) the implementation
of the continuous aggregation operator, and 2) the multi-query
optimization of multiple ACQs.

Under the first set of techniques (i.e., operator implemen-
tation), partial aggregation has been proposed to minimize
the repeated processing of overlapping data windows within
a single aggregate (e.g., [17], [18], [16], [9]). In particular,
partial aggregation aims at processing each input tuple only
once and assembling the final aggregate value from a set
of partial aggregate values. Specifically, ACQ processing is
modeled as a two-level (i.e., two-operator) query execution
plan: in the first level a sub-aggregate function is computed
over the data stream generating a stream of partial aggregates,
whereas in the second level a final-aggregate function is
computed over those partial aggregates. We refer to this two-
level aggregation processing model as TwoOps hereafter.

Under the second set of techniques (i.e., multi-query opti-
mization), the general principle is to minimize (or eliminate)
the repeated processing of overlapping operations across mul-
tiple ACQs. This repetition occurs as a result of processing
the same data by different queries, which exhibit an overlap
in at least one of the following specifications: 1) predicate
conditions, 2) group-by attributes, or 3) window settings.

On one hand, leveraging overlaps in predicate conditions
and group-by attributes across different queries has been
the focus of intensive research on traditional multi-query
optimization, which typically relies on the detection of com-
mon subexpressions. On the other hand, the introduction
of window-based continuous queries for the processing of
statefull operators (i.e., joins and aggregates) over unbounded
data streams has motivated recent research on the shared
processing of queries with overlapping windows.

For instance, the Shared Time Slices technique [16] has
been proposed to share the processing of multiple ACQs
with varying windows. It has also been extended into Shared

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.112

929

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.112

929

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

Data Shards in order to share the processing of varying
predicates, in addition to varying windows. Orthogonally,
the Intermediate-Aggregates optimizer [21] extends classical
subsumption-based multi-query optimization techniques to-
wards sharing the processing of multiple ACQs with vary-
ing group-by attributes and similar windows. Regardless of
the differences between the above multi-query optimization
techniques, they all rely on the same underlying TwoOps
implementation of the aggregate operator.

Similarly, our cost-based Weave Share multiple ACQs opti-
mizer [12], realized in the AQSIOS prototype [6], [3], adopts
TwoOps. Like Shared Time Slices, Weave Share addresses the
problem of shared processing of ACQs with varying windows.
Weave Share, however, employs a novel metric based on the
concept of Weaveability that allows the optimizer to selectively
partition the ACQs workload into multiple disjoint execution
trees resulting in a dramatic reduction in the total cost of
processing the final-aggregation operators in those trees.

Under TwoOps, however, partitioning of ACQs requires
duplicating the sub-aggregate level operation across the dif-
ferent disjoint trees (i.e., one for each tree). Naturally, Weave
Share considers that duplicated cost in its optimization ob-
jective and tries to minimize the number of generated trees
to minimize the overall cost. Nevertheless, the advantage
of using Weave Share could be significantly restricted by
this trade-off between the reduction in final-aggregation with
the increase in sub-aggregation due to the use of multiple
sub-aggregate operators. This suggests the need for a new
underlying aggregate operator implementation in order to fully
reap the benefits of Weave Share.

Contributions. In this paper, we effectively address this need
by proposing to replace the TwoOps model with a three-level
one that provides the advantage of sharing the sub-aggregation
operator across all trees, while at the same time allowing the
utilization of Weaveability at the final-aggregation operators
as employed by Weave Share. In particular, the contributions
of this paper are as follows:

1) TriOps, a novel three-level aggregation processing
model, that uses an intermediate operator between sub-
and final-aggregation to minimize the repetition of op-
erations at the sub-aggregate level.

2) TriWeave, a new Weave Share optimizer, that works
in synergy with TriOps to minimize the total cost of
processing multiple ACQs.

3) An experimental evaluation study that demonstrates the
performance gains provided by TriWeave and shows that
TriWeave is superior to other alternatives.

In addition to performance gains, TriOps still maintains the
attractive features of the TwoOps model, which allow it to
incorporate classical multi-query optimization techniques for
exploiting overlapping predicates and group-by attributes. As
such, the fourth contribution of this paper is:

4) GTWeave, a generalization of TriWeave that integrate the
classical subsumption-based multi-query optimization
techniques (i.e., overlapping predicates and group-by
attributes) with the new weaveability-based multi-query
optimization (i.e., Weave Share).

Outline: In Section II we provide the necessary background.
We then present TriOps in three stages. First, we consider the
case of varying windows in Section III; then the case when
predicates are also different in Section IV; and finally, the gen-
eral case when all specifications are different in Section V. We
present the experimental evaluation of our proposed schemes
in Section VII. We discuss the related work in Section VIII
and conclude the paper in Section IX.

II. BACKGROUND

In this Section, we first provide the necessary background
on data streams aggregation in Section II-A. We then describe
the Paired Window technique in Section II-B and the shared
processing schemes that utilize it in Section II-C.

A. Streams Aggregation

An ACQ is defined over a window specified in terms of
two intervals: range (r) and slide (s). For example, an ACQ
may compute the average stock price over the last hour (i.e.,
r = 1 hour) and update it (i.e., compute a new average) every
30 minutes (i.e., s = 30 min). The range and slide intervals
could be defined either based on the number of tuples or based
on time. We consider the more general time-based definition
for both the range and slide; however, our contributions are
applicable to the tuple-based definition as well.

Producing a new aggregate result per window requires
processing each tuple within the window range. The slide, on
the other hand, defines how the window boundaries move over
the input stream. For instance, when the slide is less than the
range (sliding window), different consecutive windows overlap
and a single tuple will belong to more than one window
instance. This is illustrated in the example below.

Example 1: Consider a stock monitoring application where
the user is interested in the average trade volume in the past
hour, and would like it to be updated every ten minutes. The
user registers an ACQ with r = 1 hour and s = 10 min.
Thus, a window boundary is reached every 10 min and an
aggregation is performed over the tuples within the last hour
(from that time-point). Hence, each input tuple is participating
in the aggregate computation of six consecutive windows (1
hour / 10 min = 6).

In a straightforward implementation of ACQs, input tuples
are buffered and once a boundary line is reached, the aggregate
function is evaluated using the tuples that are within the range
boundaries. Then as the boundaries are shifted, all tuples that
fall outside the new boundaries are expired and discarded.

B. Paired Window Technique

In order to implement aggregate continuous operators ef-
ficiently, current techniques exploit partial aggregation to
minimize the repeated processing of overlapping windows
(e.g., [17], [16]). In particular, each input tuple is processed
only once; the final aggregate value is assembled from a set
of partial aggregate values. Specifically, an ACQ processing
is modeled as a TwoOps (i.e., two operators) query execution
plan: in the first level a sub-aggregate function is computed

930930

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

(a) Fragments (b) Plan

Fig. 1. Paired Window Technique

over the data stream, which generates a stream of partial
aggregates, whereas in the second level a final-aggregation
operator function is computed over those partial aggregates.

For example, under the partial aggregation scheme, an ACQ
COUNT(*) query is computed using (1) a COUNT(*) on
each sub-window and (2) a SUM(*) over the partial counts.
Clearly, partial aggregation is applicable over all distributive
and algebraic aggregate functions that are widely used in
database systems, such as: MAX, COUNT, SUM, etc.

In general, for a dataset G of disjoint fragments g1, g2, ...,
gn, an aggregate function A over G can be computed from
a sub-aggregate function P over each dataset gi and a final-
aggregate function F over the partial aggregates. Formally,

A(G) = F ({P (gi)|1 ≤ i ≤ n}).

Partial aggregation reduces the processing cost by process-
ing each input tuple only once by the sub-aggregate operator.
As the window slides, only partial aggregates are buffered and
processed to generate new results.

Clearly, smaller number of partial aggregates means fewer
final aggregate operations. This observation has been utilized
in the Paired Window technique [16] (Figure 1), which parti-
tions each slide into at most two fragments g1 and g2 (i.e., a
pair). Hence, producing a final aggregate requires at most 2r

s

operations, where r
s

is the number of slides per window and
2 is the maximum number of fragments per slide.

The bottom part of Figure 1(a) shows the set of input
tuples, while the top part shows different overlapping window
instances. Each slide is paired into exactly two fragments
of length: g1 and g2, where g1 = r%s and g2 = s − g1.
Given this partitioning, the range consists of a sequence of
g1, g2, ..., g1 fragments, where the length of a Paired Window
equals g1 + g2 = s. Note that if r is a multiple of s, then
only one fragment is produced per slide. Figure 1(b) illustrates
the query plan of the ACQ in Figure 1(a). The end of each
fragment gi represents an edge, which is a timestamp where
the tuples in gi are assembled into a partial aggregate.

C. Shared Processing of ACQs

Based on the Paired Window technique, several query
processing models and optimizers have been proposed for
the shared processing of multiple ACQs. Specifically, the
Shared Time Slices model (or for brevity Shared) has been

Fig. 2. Shared Plan vs. Weave Shared Plan

proposed to share the processing of multiple ACQs with
varying windows [16]. The main idea underlying Shared is
to share the sub-aggregation process and generate fine grained
fragments that satisfy all the different windows specified in
the shared ACQs. In particular, under Shared, all ACQs are
simply merged into one execution tree and share the same
sub-aggregation operator (as shown in Figure 2). The shared
sub-aggregation operator is thus responsible for generating
fine grained fragments (i.e., partial results) that allow each
of the shared ACQs to reassemble its final aggregation results
according to its own range and slide parameters.

The sharing of the fragments among a set of n ACQs Q =
q1, q2, ..., qn is achieved by defining a composite slide to be the
least common multiple of the individual slides of all ACQs,
i.e., CS = lcm(s1, ..., sn). Each slide si is then stretched into
a new slide s′i of length CS, where the edges (i.e., end of
each fragment) in each slide si are copied and repeated to
the length of s′i (=repeated s′

i

si
times). The fragments in the

composite slide are created by overlaying each edge from each
individual slide s′i onto the new composite slide CS, unless
that edge already exists in CS (i.e., common edge).

Orthogonally, the Weave Share [12] optimizer has been
proposed to utilize the Paired Window technique in order
to minimize the cost of the final aggregation. Weave Share
selectively groups the ACQs into multiple execution trees. Un-
der Weave Share, each tree employs its own sub-aggregation
operator, which is shared between the ACQs in that tree (as
shown in Figure 2). In order to decide the best grouping of
ACQs, Weave Share introduces the concept of weaveability
[12], which measures the potential gains from the shared
processing of ACQs and weaves, i.e., groups together, the
ACQs based on their weaveability measures.

In contrast to Shared, under Weave Share the sub-
aggregation operator in each tree typically produces coarser
grain fragments, which are closer in length to the ones to be
produced if each ACQ were to be processed alone without
sharing. This has the advantage of reducing the amount of
final-aggregate operations compared to Shared. However, one
challenge in the design of Weave Share is to balance this trade-
off between the reduction in final-aggregation with the increase
in sub-aggregation due to employing multiple sub-aggregate
operators (one for each tree). In this paper, we effectively
address that challenge by proposing TriOps to replace TwoOps
with a three-level model that allows the sharing of the sub-
aggregation operator across all trees (as in Shared), while at
the same time maximizing the granularity of the produced
fragments that are processed by the final-aggregation operators
(as in Weave Share).

931931

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

III. TriOps AND TriWeave

In this section, we first present our running example in
Section III-A and then introduce TriOps, a new three-level
processing model for multiple ACQs in Section III-B. Then
we analyze its performance in Section III-C. Finally, we pro-
pose a new weaveability-based multi-query optimizer, called
TriWeave, which assumes the TriOps processing model, in
Section III-D.

A. Running Example

For the remainder of this paper, we will use four ACQs to il-
lustrate our proposed schemes. Similarly to all previous works
in optimizing the execution of ACQs [16], [31], [21], [12], we
assume that each of these ACQs is not part of a larger complex
CQ and is only characterized by pre-aggregation predicates,
group-by attributes and window settings. The predicates can
be arbitrary complex.

The specifications for the four ACQs qa, qb, qc and qd
are summarized in Table I. As we incrementally build our
proposed TriOps model and our TriOps-aware optimizers, we
will use subsets of these ACQs and specifications accordingly.

TABLE I
RUNNING EXAMPLE QUERIES

ACQ Window (r, s) predicate group-by attribute

qa (8, 5) ca A
qb (5, 4) cb BC
qc (10, 1) cc AC
qd (5, 4) cd CD

B. TriOps Processing Model

TriOps is a new aggregate operator implementation that
works in synergy with the new Weave Share optimizer [12] to
minimize the total cost of processing multiple ACQs. TriOps
employs a three-level data processing model that minimizes
the repetition of operations at the sub-aggregation level.

Let us first consider the case when different ACQs have
varying windows specifications, but the same predicates and
same group-by attributes (the cases with different predicate
and group-by attributes are discussed next in Sections IV
and V, respectively). As with all partial-aggregation based
processing models, TriOps uses a sub-aggregation operator to
aggregate input tuples once, generating a stream of fragments.
In TriOps, a single sub-aggregation operator is shared among
all ACQs. However, instead of directly rolling up the gen-
erated fragments into the final-aggregation operators, TriOps
introduces a new intermediate level of aggregation.

In particular, the intercede-aggregation operator is intro-
duced to the query plan between sub- and final-aggregation
levels (as shown in Figure 3). This new level of aggregation
is made aware of the weaved plan and its weaved groups (or
equivalently trees). In particular, it behaves for each weaved
group of ACQs as its unshared sub-aggregation operator in the
case of TwoOps. In this way, TriOps avoids the disadvantages
of replicating the sub-aggregation operator for each weaved
group. Meanwhile, it also avoids the disadvantages of using a

Fig. 3. TriOps Shared Processing Scheme

single sub-aggregation that is shared by all ACQs. That is, by
utilizing a single sub-aggregation, TriOps avoids processing
input tuples multiple times, and by making the intercede-
aggregation operator aware of the weaved groups, it avoids
the increase in the processing overhead, i.e., the number of
aggregate operations needed at the final-aggregation level.

Specifically, the intercede-aggregation operator performs
the following tasks:

1) It buffers all the fine-grain fragments generated by the
sub-aggregation operator until they are rolled up into all
their respective weaved groups.

2) It assembles the relevant fine-grain fragments into the
ones expected by each weaved group and passes them
to the group’s final-aggregation operators, whenever a
relevant edge of a group is reached.

Being aware of the weaved groups, the intercede-
aggregation operator achieves the last step by coalescing, for
each group, the smaller fragments generated by the single
shared sub-aggregation operator into the stream of fragments
that this group would have seen if it had its own sub-
aggregation operator. This is done only once for each group,
when an edge is due for one of the ACQs in that group. Thus,
each fragment is aggregated once per group, instead of once
per window instance as in the case with TwoOps. The follow-
ing example illustrates the idea of intercede-aggregation.

Example 2: Consider the first two ACQs of our running
example, namely, qa(8, 5) and qb(5, 4). For simplicity, let
us assume that the weaved plan decides not to share the
execution of those two ACQs. Thus, qa has the following
sequence of edges at timestamps: 3, 5, 8, 10, 13, ..., whereas
qb has edges at timestamps 1, 4, 5, 8, 9, 12, Under TriOps,
the shared sub-aggregation operator would produce fragments
with the timestamps sequence of 1, 3, 4, 5, 8, 9, 10, 12, 13, ..,
that is the union of the two sequences of edges. When the
edge at timestamp 3 (of qa) is reached, for instance, the
intercede-aggregation operator will aggregate the fragments
with timestamps 1 and 3 to produce the fragment that qa
is expecting and route this fragment to the input buffer of
qa. Similarly, when edge 4 (of qb) is reached, the intercede-
aggregation operator will aggregate the fragments generated
at timestamps 3 and 4 to generate the fragment that qb is
expecting. This can be easily generalized to groups of ACQs
where every edge belongs to a certain group, instead of a

932932

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

single ACQ, and the intercede-aggregation operator computes
the fragment that this group expects to see.

A weaved plan using TriOps is illustrated in Figure 3. As
shown in the figure, intercede-aggregation operator uses a
group-mapping lookup table to generate the proper fragments
for each group. This table is generated and maintained by the
multi-query optimizer as will be explained in Section III-D.

C. TriOps Cost and Advantages

In this section, we analyze the cost function of a weaved
plan using TriOps and discuss its advantages compared to
TwoOps. Consider TwoOps where each weaved group of ACQs
forms a tree rooted at a shared sub-aggregation operator. Given
a set of ACQs Q = q1, q2, ..., qn where rj and sj are the range
and slide of each ACQ qj , and given a grouping of the ACQs
into m trees t1, t2, ..., tm where all ACQs of a tree ti are
shared, then the cost, in terms of total number of aggregate
operations per second, of each tree ti is computed by:

Cti = λ+ EiΩi (1)

where λ is the data input rate and for a tree ti, Ei is the edge
rate (i.e., number of fragments the sub-aggregation operator
of this group generates per second) and Ωi denotes the total
number of final-aggregation operations performed on each
fragment. We refer to Ωi as the tree overlap factor or overlap
factor for short. For a set of shared ACQs SQ = q1, q2, ..., qk
in a tree ti, Ωi is computed as:

Ωi =
k∑

j=1

rj

sj
(2)

Thus, the total cost of the weaved plan for TwoOps is simply
the sum of the costs of the individual trees. Specifically, if the
weaved plan contains m trees, then the total cost of the query
plan is computed as:

Cweaved plan, 2-operator = mλ+

m∑

i=1

EiΩi (3)

Note that the first term of Equation 3 is the cost at the sub-
aggregation level, whereas the second term is the cost at the
final-aggregation level.

Equation 3 shows that the cost of grouping ACQs depends
partially on the edge rate of each weaved group (Ei) which
depends on the weaveability of the grouped ACQs. The Weave
Share optimizer [12] utilizes weaveability to group the ACQs
into a set of trees in a way that minimizes the total cost of
the query plan, i.e., Equation 3. That is, to strike a balance
between the two components of the cost function. In particular,
Weave Share’s objective is to find the most beneficial number
of trees (i.e., m) as well as the best assignment of ACQs to
each tree in order to provide the lowest execution time.

Given the TriOps model, however, the total cost of a weaved
plan in Equation 3 becomes:

Cweaved plan, TriOps = λ+m.E +

m∑

i=1

EiΩi (4)

where E represents the edge rate of the shared sub-
aggregation, and Ei is the edge rate that each weaved group

receives from the intercede-aggregation operator. The term
m.E represents the cost of the intercede-aggregation, where
each fragment is aggregated once for each group.

Comparing the cost function of TriOps (Equation 4) to that
of TwoOps (Equation 3), our new processing scheme reduces
the sub-aggregation cost from mλ to λ + m.E, which is
the cost of the sub-aggregation plus that of the intercede-
aggregation operator. Since the edge rate E is typically much
smaller than λ, TriOps typically reduces the cost by a factor
proportional to E

λ
. The only exception is the extreme case

when the input rate is one tuple per time unit and the sub-
aggregation is generating one fragment per time unit (i.e.,
E=λ= 1).

In addition to reducing the cost of the weaved plan, TriOps
offers several other performance advantages, namely, efficient
adaptivity, smaller operator invocation overhead, and less
memory overhead.

Adaptivity becomes easily achievable because TriOps ef-
fectively defines a canonical “template” for a multiple ACQ
plan. In particular, for the same set of ACQs, any weaved
plan will share that same template and the only difference
between those plans would be the weave grouping of the
operators at the final aggregation level. Hence, to switch from
one plan to another, for instance, as a result of a change in
input rate, it is enough to change the group-mapping table,
used by the intercede-aggregation operator to correctly direct
the partial-aggregation results, to reflect the new grouping of
final-aggregation operators. Further, the addition and deletion
of ACQs becomes as simple as adding or dropping a final-
aggregation operator, and updating the group-mapping table.

In terms of operator invocation overhead, TriOps replaces
m sub-aggregation operators of TwoOps by exactly two
operators: one shared sub-aggregation and one intercede-
aggregation.

Finally, in terms of memory efficiency, given that Tri-
Ops uses a single sub-aggregation operator, input tuples are
buffered until they are consumed only once, as opposed to be-
ing buffered until they are consumed m times, once per group,
as in TwoOps. While the intercede-aggregation requires extra
buffering of the fragments, the savings from shorter buffering
of the input tuples surpasses this overhead. Specifically, instead
of buffering λ tuples/second until they are consumed by all
m sub-aggregation operators, the λ tuples/second are buffered
until they are consumed once, and E fragments/second are
buffered until they are consumed by the m groups.

D. TriWeave Optimizer

The fact that our new processing model reduces the cost of
partial-aggregation suggests that a selective grouping of ACQs
based on TriOps would result into more weaved groups and
lead to better performance. This prompted us to develop Tri-
Weave, which is a new TriOps-aware multiple ACQ optimizer.

The TriWeave optimizer works similarly to the Weave Share
optimizer [12], trying to selectively group together the ACQs
that weave well. That is, to group ACQs in a way that
minimizes the total weaved plan cost as per Equation 4. The
steps of TriWeave are shown in Algorithm 1 and can be

933933

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 The TriWeave Algorithm
1: Input: A set of n ACQs
2: Output: TriWeave query plan P
3: begin
4: P ← Create a weaved group for each ACQ
5: l← n
6: (max-reduction, t1, t2)← (0,−,−) {group-pair to merge}
7: repeat
8: for i = 0 to l − 1 do
9: for j = i+ 1 to l do

10: temp← cost-reduction-if-merging(ti, tj)
11: if temp > max-reduction then
12: (max− reduction, t1, t2)← (temp, ti, tj)
13: end if
14: end for
15: end for
16: if max-reduction > 0 then
17: merge(t1,t2)
18: l← l − 1
19: end if
20: until No merge is done
21: group-mapping ← Generate-Mapping-Table(P)
22: Return P
23: end

summarized as follows. First, the plan is initialized by creating
a weaved group for each ACQ, i.e., no sharing at all. Then, as
long as it is beneficial, i.e., reducing the total cost of the plan,
the pair of groups that yields the maximum reduction in the
plan cost when shared is merged and the plan is updated. When
no such pair of groups is found, the group-mapping table is
generated and the current plan is returned as the TriWeave
plan.

Notice that based on Equation 4, the TriWeave optimizer
relies on accurately calculating the Eis (i.e., the edge rate of
each weaved group) in order to compute the cost reduction
if two weaved groups are merged (Algorithm 1, line 10).
Computing the Ex,y of a weaved group resulting from the
merging of two weaved groups tx and ty requires counting
the number of common edges between the two weaved groups
tx and ty to eliminate duplicate edges. Unfortunately, when
merging two weaved groups and constructing their composite
slide (see Section II-C), there is no closed-form formula
that determines the common edges. However, the three op-
timization techniques to efficiently count the common edges
proposed and evaluated in [12] for Weave Share are also
applicable to TriWeave.

We experimentally demonstrate the performance gains of
TriWeave in Section VII. The results confirm our hypothesis
that TriWeave generates better quality weaved plans with more
weaved groups compared to Weave Share and that these Tri-
Weave multiple ACQs plans are superior to their alternatives.

IV. TriOps: WINDOWS AND PREDICATES

In this section, we study the case when ACQs have varying
windows specifications as well as different predicates. We first
briefly overview the Data Shards technique in Section IV-A,
and in Section IV-B we provide the details on how TriOps
efficiently adopts the Data Shards scheme to process ACQs
with different predicates and varying windows.

A. Data Shards Technique

The Data Shards [16] technique was proposed to handle
ACQs with arbitrary complex predicates as well as varying
window specifications, assuming the TwoOps model. The main
advantage of Data Shards is that it avoids any unnecessary
repeated evaluation of predicates. In particular, under Data
Shards each predicate is evaluated for each tuple exactly once
in a pre-processing phase prior to the sub-aggregation level.
As an outcome of this pre-processing phase, each tuple is aug-
mented with a predicates signature which encodes the results
of evaluating all the predicates for this tuple. This signature is
basically a bitmap vector, where each bit represents a predicate
and is set to one only if this predicate evaluates to true for
this tuple. Thus, this signature identifies which set of ACQs
this tuple belongs to.

Given the set of augmented tuples, the sub-aggregation
operator then aggregates all tuples of identical signatures
together, to produce a set of fragment-signature pairs. Once an
edge is due, the signature of each fragment-signature pair is
examined and the augmented fragment is forwarded onto the
input buffer of the final-aggregation operator of every ACQ
whose predicate is satisfied by that fragment.

The incorporation of the Data Shards technique in the
Weave Share optimizer is straightforward. The tuple aug-
mentation process, where each tuple is evaluated against all
predicates and augmented with a predicates signature, is done
as a pre-processing phase as in Data Shards. As part of the
pre-processing phase each augmented tuple is pushed to all
the sub-aggregation operators in the weaved plan. When a
weaved plan is generated, each sub-aggregation operator is
associated with a set of <predicates signature, ACQ> pairs
that encodes the predicates of the ACQs in its weaved group.
A sub-aggregation operator uses the predicates signature in
its set of <predicates signature, ACQ> pairs to filter out
tuples which do not satisfy the predicates of any ACQ in
its weaved group and aggregate the rest into the fragment-
signature pairs. It also uses the <predicates signature, ACQ>

pairs to forward the augmented fragments to all the appropriate
final-aggregation operators when they are due.

There are two drawbacks of the Data Shards scheme that
the TriOps processing model addresses. The first drawback
is the transient memory overhead involved in replicating the
fine-grain fragments in the input buffer of the final-aggregation
level. That is, given a set of l predicates, a signature of length
l is augmented to each tuple, yielding 2l different possible
signatures. This means that each fragment is split into possibly
2l fragment-signature pairs. Replicating these fragments in the
input buffers of each and every ACQ linearly increases the
memory overhead, whereas the memory overhead increases
exponentially when adding new ACQs with new predicates.
Directly related to this issue is the second drawback, which
is the increase in the processing overhead. That is, the final
aggregation operator of each ACQ needs to perform 2l extra
aggregations per fragment, for each window instance.

The two drawbacks mentioned above are further escalated
when Data Shards is used in Weave Share due to the replica-
tion of sub-aggregation operators, which leads to further repli-

934934

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Inverted Predicate Signatures Structure

cation of the augmented fragments as discussed above. TriOps,
however, overcomes the drawbacks through the intercede-
aggregation level and by fusing the tuple-augmentation with
the sub-aggregation level as we discuss next.

B. TriOps: Handling Different Predicates

TriOps efficiently adopts the Data Shards scheme to pro-
cess ACQs with different predicates as well as varying win-
dow specifications. To do so, TriOps first fuses the tuple-
augmentation with the sub-aggregation phase. The goal of this
merge of tasks is to eliminate the need to store the signature
of each tuple, or fragment. Second, the intercede-aggregation
operator, which already handles the routing of fragments, is
made predicate-aware in order to properly coalesce and route
the fragments to the final-aggregation level when they are due,
eliminating the need to replicate the fragment-signature pairs
in the input buffers of each query’s final aggregation operator.

In particular, TriOps utilizes an inverted-predicate signatures
(IPS) index to store and efficiently retrieve the fragments. IPS
is essentially a multi-level hash-based structure shared between
the sub-aggregation and the intercede-aggregation operators as
shown in Figure 4.

Each signature entry Sigi at level n of the IPS points to a
linked list of nodes, where each node represents a fragment
that satisfies signature Sigi. Thus, signatures are no longer
augmented to the fragments, but are instead embedded in the
IPS structure. Further, to allow fusing the tuple-augmentation
with the sub-aggregation phase, each fragment is represented
by means of its timestamp and its aggregate value, which are
two fields included in each node of the linked list.

Finally, to facilitate the routing of fragments to the final-
aggregation level, a reference count field is added to each node,
which is initially set to the number of weaved groups that are
to read that fragment and once the reference count drops to
zero, the fragment is discarded. Accordingly, each group in
the group-mapping table is further augmented with a set of
fixed pointers to entries in the IPS corresponding to the set of
fragments that satisfy that group’s predicates.

Figure 5 shows a TriWeave plan using TriOps for handling
different predicates and windows. Given such plan, the execu-
tion proceeds as follows:

1) The sub-aggregation operator processes each input tuple
and incrementally evaluates all the predicates (e.g., using

Fig. 5. TriOps - Windows and Predicates

predicate indexes and group filters [19]) on this tuple.
The results of these predicate evaluations are used to
locate the entry in the IPS to perform the aggregation
in-place (i.e., updating the value field).

2) When an edge is due for a certain weaved group,
the intercede-aggregation operator looks up the group-
mapping table to directly collect the different fragments
that belong to this group, aggregates them and produces
the fragments of this group, discarding the expired
fragments.

3) Finally, each final-aggregation operator aggregates the
augmented-fragments that satisfy its predicate to gener-
ate the final results.

We illustrate the above steps with the following example.
Example 3: For simplicity, consider only the first two

ACQs (i.e., qa and qb) of our running example, which have
two different predicates: ca and cb, as shown in Table I.
Further, assume for the purpose of this example that each
ACQ forms its own weaved group. In this case, the signature
has two bits, and there are three possible signature values:
01, 10 and 11. Figure 6 shows a snapshot of the IPS for
these two ACQs. Assuming that the most significant bit in
the signatures represents predicate ca, Figure 6 highlights the
set of fragments that are to be aggregated when the edge with
timestamp 3 of qa is reached. Thus, the intercede-aggregation
will aggregate these fragments and push them to the input
buffer of the final-aggregation operator in qa.

Figure 6 also shows several interesting possible cases.
Specifically, in the “01” signature entry, the fragment con-
tributing to the edge at timestamp 1 of qb was already
consumed and therefore deleted. Also, in the “10” signature
entry, the fragment at timestamp 3 has its value field equals 0
because no tuples with this signature were inserted during the
time interval covered by that fragment. Finally, in the “11”
signature entry, Figure 6 shows that some tuples with this
signature started to aggregate to form a new fragment with
timestamp 5.

When adding new ACQs with new predicates, a new pred-
icate is incorporated by introducing an extra bit as the most
significant bit in the signature. Thus, all the previous signatures
remain valid and the new signatures are hashed properly.
Deletion of ACQs, however, is more involved. In particular, if
the deleted ACQ results in deleting the predicate represented

935935

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Shards that belong to the same fragment

by the most significant bit, then the IPS table can be reduced
to half. If that is not the case, then a new IPS with half the size
is instantiated and the two IPSs work simultaneously until no
entries exist in the old IPS at which point it is to be discarded
and completely replaced by the new one.

V. TriOps: WINDOWS AND GROUP-BY

In this section, we demonstrate how TriOps can efficiently
optimize the processing of multiple ACQs with varying win-
dow specifications, and group-by attributes. We first briefly
overview the Intermediate-aggregates scheme [21] in Section
V-A and then discuss how TriOps utilizes that Intermediate-
aggregates scheme to optimize ACQs which have the same
predicate, but varying window specifications and different
group-by attributes in Section V-B.

A. Intermediate-aggregates

In [30], [31], [21], the problem of optimizing multiple
ACQs with different group-by attributes was addressed in
the context of Gigascope’s two layer architecture [8]. At the
lower layer, which can be viewed as a sub-aggregation level,
an aggregation is processed using a hash table consisting of
a specified number of entries, each of which is a <group-
attribute, value> pair. Since entries are fixed, multiple groups
may hash to the same entry and a collision occurs when a
new tuple r hashes to an entry bk and r does not belong to
the same group as the existing group in bk. When a collision
occurs, the current entry in bk is evicted and a new group
corresponding to r is created in bk. The evicted entry is passed
to the upper layer, that can be thought as a final aggregation
layer, to be aggregated with the previously evicted entries of
the same group when the aggregation result is due.

Given multiple ACQs with different group-by attributes, in
order to minimize the cost of probing multiple hash tables for
every new tuple as well as the eviction rate to the upper layer,
in [30], [31] the idea of Phantoms was introduced. Phantoms
are essentially a set of sub-aggregates, each of which shares
the processing with a group of ACQs which can be derived
from the Phantom. For instance, for a group of three ACQs
defined on attributes A, B and C, the Phantom might maintain
a hash table for ABC. When a new record arrives, instead of
probing three hash tables A, B, and C, only the hash table

(a) Optimized group-by tree (b) TriWeave Weaving

Fig. 7. An Instance of Four ACQs

ABC is probed and the hash tables A, B, and C are probed
when an entry is evicted from ABC.

The Intermediate-aggregates [21] generalizes Phantoms in
a hierarchy and the Intermediate-aggregates optimizer aims
at generating a group-by tree (see Figure 7(a) of our running
example) with minimal cost, subject to a memory constraint,
where the cost is the cost of hashing. In the context of our
paper, the hashing cost can be mapped to the number of
aggregation operations. The group-by tree, similar to the query
plan, determines the computation flow and sharing between the
ACQs. Specifically, each node is labeled with the set of group-
by attributes that will be used to perform the aggregation in
the corresponding operator. Each internal node in the tree rep-
resents a partial aggregation operator that is shared between its
subsequent nodes (in our example node ABC), whereas leaf
nodes represent final aggregation operators (in our example
A, BC, AC, and CD). Edges of the tree determine the flow
of partial aggregates. The root of the group-by tree always
represents the input stream. The first-level could have a single
node, which means it is a single partial aggregation that is
shared among all the ACQs, or multiple nodes, which means
there is no single partial aggregation shared among all ACQs.
Whenever the tree has a single node in the first level, we
consider it to be the root and its child nodes to be the first-
level nodes, as it is the case in Figure 7(a).

Finding the optimal group-by tree was shown in [21] to
be an NP-hard problem. Intermediate-aggregates, therefore,
aims at minimizing the cost using a greedy heuristic approach.
Briefly, Intermediate-aggregates starts with a simple group-by
tree that shares all ACQs using a single partial aggregation.
That is, the initial group-by tree has a single root, and all first
level nodes are leaf nodes. Then, in each iteration, the heuristic
considers simple modifications of the tree, e.g., adding an
internal node or splitting a non-leaf node, and chooses the
modification that leads to maximum reduction in the total
cost. Notice that this greedy policy is very similar to that of
TriWeave and Weave Share optimizers.

B. TriOps: Handling different Group-by Attributes

In order to optimize the shared processing of multiple ACQs
with varying window specifications and different group-by
attributes, we utilize the Intermediate-aggregates optimizer
in the following manner. First, we apply the Intermediate-
aggregates optimizer as if all windows were identical to
generate the group-by tree corresponding to that case. Given
this optimized group-by tree, each first-level node (i.e., a node
that is a child of the root) represents a set of ACQs that can

936936

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Integrating TriWeave Plan with Intermediate-aggregates Tree

share their processing, given their different group by attributes,
but assuming the same windows. We then apply TriWeave on
each of these sets independently to further partition each set
into weaved groups. Finally, we integrate the weaved groups
with the group-by tree using TriOps. That last step is achieved
by mapping each internal node in the group-by tree to an
intercede-aggregation operator that is aware of the weaved
groups, and can also perform a group-by aggregation using
the set of attributes of that group-by tree node. To illustrate
these steps, consider our running example (Figures 7 and 8).

Example 4: Assume we have four ACQs qa, qb, qc and qd
with window specifications: (8, 5), (5, 4), (10, 1), and (5, 4),
respectively. Assume also that the ACQs have group-by at-
tributes: A,BC,AC, and CD, respectively. We first generate
the group-by tree for the four ACQs, using the Intermediate-
aggregates scheme, which is shown in Figure 7(a). The label
of each node represents the set of group-by attributes used
by this node. That is, each node represents an aggregation
operator that performs a group-by aggregation using this set
of attributes. The group-by tree in this case has one internal
node labeled ABC. Thus, the set of leaf nodes (i.e., ACQs)
of the sub-tree for which ABC is the root, represents a
set of ACQs that share their processing given their different
group-by attributes, but assuming they have the same window
specifications. Specifically, qa, qb and qc are shared together,
while qd is processed separately. Thus, we have two sets of
ACQs, set T1 = qa, qb, qc and set T2 = qd. We proceed by
generating the weaved plan for each set, i.e., apply TriWeave
on T1 then on T2. Figure 7(b) shows the output of this step
which weaves T1 into two groups, one that shares qa and qb,
while the other has qc by itself. The weaved plan of T2 is trivial
as it has one ACQ. The last step is to integrate the results of
the first two steps together into a TriOps plan. Figure 8 shows
the integrated TriOps plan. Simply, the root of group-by tree
is mapped to the sub-aggregation operator, while each internal
node is mapped into an intercede-aggregation operator.

The procedure described above follows a conservative ap-
proach towards sharing. Specifically, two ACQs are shared
only if they are shared under both TriWeave and Intermediate-
aggregates. For instance, while qb and qd have identical
window specification, they do not belong to the same weaved
group of the final TriWeave plan.

Algorithm 2 Generalized TriWeave Optimizer
1: Input: A set of n ACQs
2: Output: generalized TriWeave query plan P
3: BEGIN
4: T ← Generate the group-by optimzed tree
5: WP ← ∅ {weaved plan}
6: for For every node ti that is child of root(T) do
7: Ci ← ACQs(ti)
8: Pi ← generate TriWeave plan(Ci)
9: WP ← Pi ∪WP

10: end for
11: P ← integrate(T , WP)
12: P ← augment IPS(P)
13: Return P
14: END

Notice that the group-by tree might have multiple levels of
nodes. For instance, in the above example qa and qc could have
a common parent node labeled AC, which performs a group-
by aggregation using the attributes AC and is not a first-level
node. Mapping such an internal node AC to the TriOps plan
depends on the outcome of applying TriWeave on the set of
ACQs rooted at AC (i.e., qa and qc). Following the same
conservative approach towards sharing, if the weaved plan
shares qa and qc, then AC is mapped into another intercede-
aggregation operator. Otherwise, it is just dropped from the
integrated plan.

VI. GTWeave: GENERALIZED TriWeave OPTIMIZER

In this section we put it all together and present GTWeave, a
generalized weaveability-based optimizer. GTWeave integrates
the techniques we have proposed in the previous sections
towards generating optimized plans for the efficient process-
ing of multiple ACQs with different window specifications,
different predicates and different group-by attributes.

Basically, GTWeave proceeds in two phases. In the first
phase, we apply the same integration procedure discussed
in Section V-B above, which optimizes the plan for varying
window specifications and different group-by attributes. Then,
in the second phase, we augment the plan with IPS structures
before each and every intercede-aggregation operator to sup-
port different predicates. Figure 9 shows such augmented plan
for the ACQs of Example 4.

The detailed steps of GTWeave are shown in Algorithm
2 and are summarized as follows. Given a set of n ACQs,
GTWeave first generates an optimized group-by tree that
exploits the overlap between the different group-by attributes
among those ACQs (as in Section V-A). Secondly, for each
subset of ACQs that are rooted at a first-level node in the
group-by tree, TriWeave is used to further generate a weaved
plan that exploits the weaveability between the different win-
dows in that subset of ACQs to selectively divide them into
weaved groups (as described in Section V-B). The combination
of the previous two steps results in a weaved plan that
is augmented with a group-mapping table (as described in
Section V-B) Finally, GTWeave augments the plan with the
necessary IPS structures needed for the evaluation of the
different predicates (as described in Section IV-B) and it
produces the final GTWeave plan.

937937

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. TriWeave Plan - Varying Windows, Predicates, and Group-by

Note that GTWeave retains all the advantages of TriOps
and the techniques it incorporates (such as adaptability). For
example, with respect to adaptability, if the re-invocation of
GTWeave due to addition of ACQs retains the same group-by
tree but weaves the ACQs differently, then in that case only
the group-mapping tables used by the intercede-aggregation
operators need to be updated to reflect the new structure of
the weaved groups.

VII. PERFORMANCE EVALUATION

It was shown experimentally that Weave Share outperforms
the alternative sharing schemes generating up to four orders
of magnitude better quality plans [12]. For this reason, in
this section we focus only on showing the minimum ex-
pected benefits of TriOps, and consequently of TriWeave and
GTWeave, by comparing TriWeave to Weave Share assuming
ACQs with varying windows. The advantages of TriOps with
Data Shards were discussed in Section IV-B. After describing
the simulation platform in Section VII-A, we discuss the
experimental results in Section VII-B.

A. Experimental Platform

We have implemented the TriWeave optimizer and TriOps
in the same simulation platform previously used to evaluate
Weave Share using TwoOps [12]. Below we describe the
generated workload characteristics, data sets, the performance
metrics and the algorithms used in our evaluations.

ACQs: We generated ACQs with different specifications (Ta-
ble II). Specifically, the slide length (s) was drawn from a Zipf
distribution over a discrete range. The discrete range depicts
the real-world case of pre-specified (i.e., template) window
specifications. The skewness of the Zipf distribution reflects
the popularity of certain slide lengths. The range (r) of each
ACQ is set relative to its slide. That is, ri = ωi × si, where
ωi is the overlap factor, drawn from a uniform distribution.

Experimental Parameters: In each experiment, we also
changed the number of ACQs and the input rate. The input
rate values are chosen to cover a wide variety of different
monitoring applications, ranging from phenomena monitoring
(few tuples, or less than one per second) to high speed network
monitoring (10K tuples/sec).

TABLE II
SIMULATION PARAMETERS

Parameter Values

Slide Length [1–10K] time units (Zipf distribution)
Slide Skewness 0.6 (moderately skewed)
Overlap Factor [1–50] (uniform distribution)

Number of ACQs [50–1000] queries
Input Rate [0.5–10K] tuples/sec (Poisson distribution)

Dataset: We chose to use a synthetic workload, which allowed
us to control the system parameters in order to conduct detailed
sensitivity analysis while covering possible real scenarios.

Performance Metrics: We measured the quality of TriWeave
plans in terms of their cost computed as the number of
aggregate operations per second (which also indicates the
throughput). We chose this metric because it provides an ac-
curate measure of the performance, regardless of the platform
used to conduct the experiments.

Algorithms: We used Weave Share and Shared that use
TwoOps (discussed in Section II) as the baseline algorithms
for our comparisons. In order to get better understanding
of the behavior of TriWeave and TriOps, we also evaluated
different combinations of optimizers and processing models.
For instance, we generated Weave Share and Shared plans that
use TwoOps, but then ran the plan using TriOps.

B. Experimental Results

TriWeave vs Weave Share (Fig. 10): In this set of experiments,
we measure the performance gains of TriWeave by comparing
the quality of the weaved plans generated by TriWeave and
Weave Share for 256, 500, and 1K ACQs. We plot the normal-
ized cost to Weave Share as the input rate increases. Figure 10
shows that TriWeave achieves up to 65% cost reduction over
Weave Share. For low input rates and as the number of ACQs
increases, the improvement is less than 40%. The reason is that
for low input rates (λ), the edge rate is the dominating factor
of the cost at the final-aggregation (

∑m

i=1
EiΩi) as well as at

the intercede operator (m.E) (Equation 4). This also explains
why at low input rate, the gain also decreases with the increase
of ACQs. This is because the number of groups m increases,
which increases the total cost of the plan.

TriOps vs. TwoOps (Figs. 11 – 13): In this set of experi-
ments, we take a closer look into the performance of TriOps.
Specifically, we generated query plans using Weave Share,
Shared, and TriWeave, then we measured the cost of each
plan when using TwoOps (Equation 3) vs when using TriOps
(Equation 4). The results are normalized to the cost of the
base case, i.e., the Shared plan using TwoOps.

Figures 11, 12 and 13 show the performance gains of TriOps
for low (50), medium (300) and high (10K tuples/second) input
rates, respectively. We plot the normalized cost as the number
of ACQs increases. We also highlight the trend of the TriWeave
plan in each plot. All three figures show that for each plan,
utilizing TriOps achieves gains over TwoOps, except in the
case of Shared (which has normalized cost > 1.0). The reason
is simply because when there is only one group, the intercede-
aggregation adds an overhead with no benefit. However, when

938938

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. TriWeave performance gain - Impact of Input Rate

Fig. 11. Using TriOps processing for different plans (50 tuples/sec)

there are at least two groups, utilizing TriOps achieves gains
between 40% and 60%.

All three figures also show that the gain under TriOps
increases with the number of ACQs. This is mainly due to
the fact that the more ACQs, the more chances for selective
sharing. TriOps, however, allows the optimizer to take full
advantage of selective sharing, whereas TwoOps would require
duplicating the sub-aggregation operator and hence, limits the
optimizer’s flexibility in utilizing selective sharing. We have
confirmed this intuition by checking the number of weaved
groups each scheme has produced, and finding that TriOps
consistently leads to plans with much larger number of groups.

Finally, the rate with which the gain of TriOps increases as
the number of ACQs increases is faster for higher input rates.
The reason is that at higher input rates, TriOps achieves larger
reductions by replacing the multiple sub-aggregation operators
by one sub-aggregation and one intercede-aggregation.

VIII. RELATED WORK

Utilizing partial aggregation is the underlying principle for
the optimized processing of individual ACQs. The Pane [17]
scheme splits each slide into smaller fragments to be pro-
cessed by the sub-aggregation operator. While Pane splits the
window into multiple equal-sized fragments, Paired Window
[16] improves over Pane by splitting each slide into at most

Fig. 12. Using TriOps processing for different plans (300 tuples/sec)

Fig. 13. Using TriOps processing for different plans (10K tuples/sec)

two fragments to minimize the processing needed at the final-
aggregation operator.

The Window-ID (WID) technique proposed in [18] improves
the performance of an ACQ by maintaining multiple aggre-
gates for multiple window extents at the same time. A bucket
operator is then utilized to tag each input tuple with the range
of those window extents that this tuple belongs to and to
aggregate it into all its window extents at once.

The above schemes use the same underlying TwoOps im-
plementation of the aggregate operator. There are also differ-
ent models for processing ACQs. For example, optimization
techniques for processing sliding-window queries (including
ACQs) that utilize the negative tuples approach have been pro-
posed in [9]. In the negative tuples approach, tuple expiration
is determined when a negative tuple is inserted.

In general, there is a rich literature on multiple query
optimization (MQO) in traditional databases [23], [22], [20],
[14], [28], as well as in data streams [28], [2], [29], [19].
MQO in traditional databases aims at exploiting common sub-
expressions to reduce evaluation cost. Finding the optimal
query plan, in traditional databases, as well as in data streams,
is an NP-Hard problem, and hence heuristic approaches were
investigated. For instance, two cost-based and one greedy
heuristics were proposed in [22]. The two cost-based heuristics
extend the Volcano [11] query optimizer by performing a
depth-first search in the state space of alternative query plans,

939939

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

to detect common sub-expressions across different queries.
In [30], [31], [21], the problem of optimizing multiple ACQs

with different group-by attributes was addressed along the
lines of classical subsumption-based multi-query optimization
techniques. The proposed Phantoms technique [30], [31]
essentially introduces a set of sub-aggregates (i.e., phantoms)
to share the processing of ACQs with similar windows and
predicates but different group-by attributes, each of which
can be derived from the Phantom. In [21], the Intermediate-
aggregates techniques generalizes Phantoms and uses a greedy
heuristic approach to generate a group-by tree with minimal
cost, subject to a memory constraint.

The introduction of window-based continuous queries for
the processing of statefull operators (i.e., joins and aggregates)
over unbounded data streams has motivated the recent work
discussed earlier on Shared Time Slices and Shared Data
Shards [16], including ours [12], on the shared processing of
queries with overlapping windows.

At the processing level, sharing the results of aggregation
among different ACQs has also been proposed in [10], where
a scheduling technique to optimize the execution of ACQs
has been developed. This technique utilizes a window-aware
scheduling scheme that synchronizes the re-execution times of
similar CQs to execute common parts only once. This is to be
distinguished from TriWeave which shares the sub-aggregation
operator, regardless of the scheduling policy.

IX. CONCLUSIONS

All current multiple ACQs optimization techniques exploit
the concept of partial aggregation to minimize the repeated
processing of overlapping windows. In this paper, we ques-
tioned the effectiveness of the widely accepted two-level or
two-operator implementation of partial aggregation (TwoOps)
and proposed to replace it with TriOps, a new three-level
processing model. In particular, we introduced in TriOps the
intercede-aggregation operator between the sub-aggregation
and final-aggregation operators. We showed the effectiveness
of TriOps in the context of the Weavability-based optimizers
which selectively group ACQs with varying windows into
multiple weaved groups (query execution trees).

Specifically, we illustrated that the proposed intercede-
aggregation operator in TriOps minimizes the total cost of
processing multiple ACQs by allowing sharing of the sub-
aggregation across all weaved groups, and supports the shared
processing of multiple ACQs with different predicates or
group-by attributes. Further, we developed TriWeave, a TriOps-
aware multiple ACQs optimizer along the lines of the Weave
Share optimizer and proposed GTWeave that integrates Tri-
Weave and the Intermediate-aggregates optimizer to support
multiple ACQs with different window specifications, different
predicates and different group-by attributes. Our simulation re-
sults demonstrated the applicability and performance benefits
of TriOps and consequently of TriWeave and GTWeave.

Acknowledgments This work was supported in part by National Sci-
ence Foundation awards IIS-0534531, IIS-0746696, and IIS-1050301,
an Andrew Mellon Predoctoral Fellowship, and Australian Research

Council award DP110102777. Finally, we would like to thank the
anonymous reviewers for their helpful and insightful comments.

REFERENCES

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. C. etintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. B. Zdonik. The design of the borealis stream processing
engine. In CIDR, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new model and
architecture for data stream management. VLDB Journal, 2003.

[3] Aqsios, http://db.cs.pitt.edu/group/projects/aqsios, 2011.
[4] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa,

J. Rosenstein, and J. Widom. Stream: The stanford stream data manager.
In SIGMOD, 2003.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin, J. Heller-
stein, W. Hong, S. Krishnamurthy, S. Madden, F. Reiss, and M. A. Shah.
Telegraphcq: continuous dataflow processing. In SIGMOD, 2003.

[6] P. K. Chrysanthis. Aqsios - next generation data stream management
system. CONET Newsletter, June 2010.

[7] Coral8, http://www.coral8.com/, 2004.
[8] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope:

a stream database for network applications. In SIGMOD, 2003.
[9] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K.

Elmagarmid. Incremental evaluation of sliding-window queries over data
streams. IEEE TKDE, 2007.

[10] L. Golab, K. G. Bijay, and M. T. Ozsu. Multi-query optimization of
sliding window aggregates by schedule synchronization. In CIKM, 2006.

[11] G. Graefe and W. J. McKenna. The volcano optimizer generator:
Extensibility and efficient search. In ICDE, 1993.

[12] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis.
Optimized processing of multiple aggregate continuous queries. In
CIKM, 2011.

[13] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C. Catlin,
A. K. Elmagarmid, M. Y. Eltabakh, M. G. Elfeky, T. M. Ghanem,
R. Gwadera, I. F. Ilyas, M. S. Marzouk, and X. Xiong. Nile: A query
processing engine for data streams. In ICDE, 2004.

[14] R. Huebsch, M. Garofalakis, J. M. Hellerstein, and I. Stoica. Sharing
aggregate computation for distributed queries. In SIGMOD, 2007.

[15] S. Krishnamurthy, M. J. Franklin, J. Davis, D. Farina, P. Golovko, A. Li,
and N. Thombre. Continuous analytics over discontinuous streams. In
SIGMOD, 2010.

[16] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for
streamed aggregation. In SIGMOD, 2006.

[17] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane,
no gain: efficient evaluation of sliding-window aggregates over data
streams. SIGMOD Record, 2005.

[18] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics
and evaluation techniques for window aggregates in data streams. In
SIGMOD, 2005.

[19] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously
adaptive continuous queries over streams. In SIGMOD, 2002.

[20] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized
view selection and maintenance using multi-query optimization. In
SIGMOD, 2001.

[21] K. Naidu, R. Rastogi, S. Satkin, and A. Srinivasan. Memory-constrained
aggregate computation over data streams. In ICDE, 2011.

[22] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible
algorithms for multi query optimization. In SIGMOD, 2000.

[23] T. K. Sellis. Multiple-query optimization. ACM TODS., 13(1), 1988.
[24] M. Sharaf, P. Chrysanthis, A. Labrinidis, and K. Pruhs. Algorithms and

metrics for processing multiple heterogeneous continuous queries. ACM
TODS, 33, 2008.

[25] Streambase, http://www.streambase.com, 2006.
[26] System S, http://domino.research.ibm.com/, 2008.
[27] Truviso, http://www.truviso.com, 2005.
[28] S. D. Viglas and J. F. Naughton. Rate-based query optimization for

streaming information sources. In SIGMOD, 2002.
[29] S. Wang, E. Rundensteiner, S. Ganguly, and S. Bhatnagar. State-slice:

new paradigm of multi-query optimization of window-based stream
queries. In VLDB, 2006.

[30] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple aggrega-
tions over data streams. In SIGMOD, 2005.

[31] R. Zhang, N. Koudas, B. C. Ooi, D. Srivastava, and P. Zhou. Streaming
multiple aggregations using phantoms. VLDB Journal, 2010.

940940

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:39:52 UTC from IEEE Xplore. Restrictions apply.

