Check for
Updates

CONFLUENCE: CONtinuous workFLow ExeCution Engine :

Panayiotis Neophytou, Panos K. Chrysanthis, Alexandros Labrinidis
Department of Computer Science, University of Pittsburgh
Pittsburgh, PA, USA
{panickos, panos, labrinid}@ cs.pitt.edu

ABSTRACT

Traditional workflow enactment systems view a workflow as a one-
time interaction with various data sources, executing a series of
steps once, whenever the workflow results are requested. The fun-
damental underlying assumption has been that data sources are
passive and all interactions are structured along the request/reply
(query) model. Hence, traditional Workflow Management Systems
cannot effectively support business or scientific reactive applica-
tions that require the processing of continuous data streams.

In this demo, we will present our prototype which transforms
workflow execution from the traditional step-wise workflow exe-
cution model to a continuous execution model, in order to handle
data streams published and delivered asynchronously from multiple
sources. We will demonstrate a supply chain management scenario
which takes advantage of our continuous execution model to enable
on-line interaction between different user roles as well as streaming
data coming from various sources.

Categories and Subject Descriptors

H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Scientific databases; H.4.1 INFORMATION SYSTEMS APPLI-
CATIONS]: Office Automation—Workflow management

General Terms
Algorithms, Design, Languages

1. INTRODUCTION

Many enterprises use workflows to automate their operations and
integrate their information systems and human resources. Work-
flows have also been used to facilitate outsourcing or collaboration
beyond the boundaries of a single enterprise, for example, in es-
tablishing Virtual Enterprises [1]. Recently, workflows have been
used in the context of scientific exploration and discovery to au-
tomate repetitive, complex and distributed scientific computations
that often require the collaboration of multiple scientists [4, 6].

A common class of applications in both business and scientific
domains is monitoring and reactive applications that involve the
processing of continuous streams of data (updates) [2]. Examples
include financial analysis applications that monitor streams of stock

'This research was supported in part by NSF grant 11S-053453,
NSF career award I1S-0746696 and NSF grant OIA-1028162.

Copyright is held by the author/owner(s).
SIGMOD’11, June 12-16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

1311

data to support decision making in brokerage firms and sky mon-
itoring applications that collect and analyze telescope images and
metadata in real time for the detection of astronomical objects and
events. The use of Continuous Queries [2] (CQs) is one of the cur-
rent approaches in monitoring data streams. The drawbacks of CQs
are: (1) they are stateless, (2) have a static configuration and (3) are
unable to facilitate user interaction. This makes CQs unsuitable as
a complete solution for enabling reactive applications.

Most recent workflow enactment/management systems orches-
trate the interactions among activities within a workflow using web
services [9]. Several business process modeling languages have
been designed to capture the logic of a composite web service, in
the form of a workflow, including WSCI, BPML, BPSS, XPDL
and WS-BPEL 2.0. However, these interactions are usually one-
shot interactions between the sender and the receiver of the request
and it is clear that the existing workflow management systems and
languages are not suited for reactive applications.

In our previous work in [5] we have examined the capability
of current workflow models and workflow management systems to
support business and scientific reactive applications. We based our
examination on the Workflow Pattern framework [8]. This frame-
work proposed a set of 20 common workflow patterns. An addi-
tional set of 6 communication patterns were proposed in [7]. This
framework was used to evaluate the capabilities of some of the lan-
guages mentioned above ([10]), showing that these languages could
not support nearly half of the 20 workflow patterns, and also two
of the communication patterns. These two communication patterns
are Publish/Subscribe and Broadcast which, interestingly, are es-
sential for enabling reactive applications.

The lack of support of these two communication patterns in ex-
isting workflow models are a direct result of the assumption that
data sources in workflows are passive (e.g., stored in databases or
data files) whereas data consumers (users, tasks) are both active and
passive. These missing communication patterns assume that some
data sources are active, supporting continuous data streams.

In order to address the lack of support for continuous data streams
in existing workflow models, we proposed a shift towards the idea
of “continuous” workflows. The main difference between tradi-
tional and continuous workflows is that the latter are continuously
(i.e., always) active and continuously reacting on internal streams
of events and external streams of updates from multiple sources,
at the same time and in any part of the workflow network. We
have shown in [5] how the workflow and communications patterns
are cast into continuous workflows (CWfs) and also proposed four
new CWfs patterns.

We have implemented our proposed CWf model as a prototype
system, called CONFLuEnCE, which is short for CONtinuous work-
FLow ExeCution Engine, and was built on top of Kepler [4]. In

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1989323.1989485&domain=pdf&date_stamp=2011-06-12

this demo we will show how our prototype enables reactive appli-
cations. CONFLuEnCE can facilitate both scientific and business
reactive applications. We will demonstrate a business reactive ap-
plication for a Supply Chain Management (SCM) System, which
falls in a widely known domain that is easier for the audience to
relate to. We will show how different roles of users, such as the
clients, warehouse operators, and management personnel can inter-
act with the workflow while it is running, both by providing inputs
and outputs as well as by manipulating various parameters. SCM
design patterns [3] have been reformulated, fitting naturally into the
CWf domain and have been used in the design of our example. Ad-
ditionally we will show an example of how CWfs can be used by
astronomers to monitor sky observations in a collaborative manner.

In the next sections we will provide some details on the CWf
model and then describe how we implemented our prototype on
top of the Kepler workflow system. Finally, we will describe the
proposed demonstration scenarios.

2. CONTINUOUS WORFLOW MODEL

A “Continuous Workflow”, is a workflow that supports enact-
ment on multiple streams of data, by parallelizing the flow of data
and its processing into various parts of the workflow. Continuous
workflows can potentially run for an unlimited amount of time,
constantly monitoring data streams. To achieve that, our Contin-
uous Workflow Model that we have proposed in [5], introduced:

e Concurrent execution of sequential activities, in a pipelined way.

e Active queues on the inputs of activities which support win-
dows and window functions to allow the definition of synchro-
nization semantics among multiple data streams.

e Interactions between pipeline steps. That is, the ability to notify
a downstream or upstream activity of an update and cancel its
execution (i.e. invalidation of an earlier event, or future events)

A window is generally considered as a mechanism for setting
flexible bounds on an unbounded stream in order to fetch a finite,
yet ever-changing set of events, which may be regarded as a tem-
porary bundle of events. We have introduced the notion of win-
dows on the queues of events which are attached to the activity
inputs. The windows are calculated by a window operator running
on the queue. Windows are defined in terms of an upper bound,
lower bound, extend, and mode of adjustment as time advances.
The upper and lower bounds are the timestamps of the events at
the beginning and the end of the window. The extend is the size of
the window. This can be defined in three measurement units: (a)
Logical units, which are time-based, and define the maximum time
interval between the upper and lower bound timestamps. (b) Phys-
ical units, which are count-based, and define the number of events
between the upper and lower bounds. (c) Wave-based, where the
upper and lower bounds of a window are defined by the first and
last events of a wave (as defined in [5]) currently being processed.
If a wave has been processed then subsequent events of that wave
are deleted. The mode of adjustment, also known as the window
step, defines the period for updating the window. If a step is not de-
fined, then the window is evaluated every time a new event comes
into the queue. An activity is fired, when its preconditions are satis-
fied. The precondition may include the state of the current window
at the queue. A flag called “delete_used_events” is also defined to
denote if events that were used in the window that triggered the fir-
ing of an activity should be deleted from the queue. The signal to
delete used events from queues comes as part of the post-conditions
of an activity.

1312

fanNon Configure ports for Array Length

Name || M. |Type |Dir.. [Show.. H..|Units |WinSize WinStep
input M ICHIRCT DEF... [O 10 seconds 10 seconds ()]
output || 1|[MI] DEF.. O O 1 tokens 1 tokens]
(= o () (Y [)
Commit) pp Add) Ri Help) Cancel)

A

Figure 1: Modified Kepler form for configuring actor ports.
On this form the workflow designer can define in freeform text
the size and step of the window associated with specific ports.
Shaded cells denote non-editable parameters.

3. ARCHITECTURE & IMPLEMENTATION

In order to implement our continuous workflow model, we have
to implement all three requirements presented in the previous sec-
tion. Instead of building a new system from scratch we evaluated a
number of open sourced workflow systems such as [6, 4]. We chose
Kepler [4] as the base for CONFLuEnCE because of our common
aim to support scientific workflows and extensibility. Kepler is a
free open source scientific workflow system, which was built on
top of Ptolemyll. The suitability of Kepler, for implementing our
CWf model, comes from the underlying Ptolemyll system: “the
use of well defined models of computation that govern the inter-
action between components” . Also, the fact that Kepler is being
actively developed by nearly 20 different scientific projects, makes
its code inherently extensible and it provides a large library of basic
as well as specialized actors for easy reusability and composition of
new applications. The library includes actors for database interfac-
ing, data filtering, etc. and it is easily extensible to include domain
specific actors such as annotations of astronomical objects.

A workflow in Kepler is viewed as a composition of independent
components called actors. Communication between them happens
through interfaces called ports, which are distinguished into input
ports and output ports. The connection between two ports is called
a channel and the receiving point of a channel has a receiver. Ac-
tors may also have parameters configuring and customizing their
behavior. For example, a filtering actor may consume a stream of
tokens from its input port and letting through only tokens satisfying
a condition specified in one of the actor’s parameters. The execu-
tion and communication model of the workflow is governed by the
model of computation (MoC) defined by a director entity.

The first requirement of our CWf model is the concurrent execu-
tion of sequential activities, governed as mentioned earlier by the
director entity. Currently, we achieve this by using existing execu-
tion models from Kepler (e.g., the Process Network model, where
each actor is inside its own execution thread thus all actors run
concurrently), adapted to specifically accommodate our model. We
are also implementing more complex schedulers which optimize
certain metrics (such as results response time), by making better
resource allocation between actors, as compared to the operating
system which is oblivious to these kind of metrics.

The second requirement is adding queues on the inputs of ac-
tors to buffer data. Although this is already implemented in certain
MoCs in Kepler, window semantics on these queues do not exist in
any MoC. We have implemented a new type of receiver which is
associated with the directors which implement the window speci-
fications. This new type of receiver defines windows by size and
step. The unit of measurement of these two parameters can be to-
ken, time or wave. These parameters can be set in freeform text
in the modified form which is provided by Kepler for configuring
actor ports (Figure 1).

"http://ptolemy.eecs.berkeley.edu/objectives.htm

Finally the third requirement, cancelation of certain events, is
achieved by connecting the actor which makes the cancellation de-
cision with the actors which potentially carry the events to be can-
celed. This is done by forwarding special control tokens, contain-
ing the wave id of the events to be canceled, to the actors’ receivers.

Another challenge for us was to keep our model backwards com-
patible with the existing library of actors, as much as possible.
Since continuous workflows have the notion of timed events, we
encapsulate each token within an event object which carries its
timestamp (either the creation time or the time it entered the sys-
tem), and its wave id. Since all current actors were implemented
without being timestamp aware, they cannot output the timestamp
of the events to the next receiving actor. To solve this problem the
CWT enabled director maps a time-keeper object to each actor at
initialization time.

4. DEMONSTRATION

In our demonstration we would like our audience to interact with
the CONFLuEnCE system both as users of a continuous workflow,
and as continuous workflow designers.

For the first type of interaction, we have implemented a Supply
Chain Management Application on top of our CWf platform. The
users of this system are split into four categories: (1) Clients, (2)
Warehouse manager, (3) Company Manager and (4) Administra-
tor. Roles 1-3 interact with the workflow through a web interface
(through a mobile device or a laptop) and the administrator inter-
acts with the workflow directly through the Kepler interface. We
will deploy a wireless hotspot to let users participate with their
web-enabled cell phones. A client submits orders with multiple
items and receives a notification once her order has been shipped.
A warehouse manager notifies the system when an item is out of
stock and also receives order requests from the system. Note that
an order may contain objects that are available in different ware-
houses. The company manager receives notifications when things
go wrong more than once and in more than one way, e.g., when an
item is reported out of stock more than once in some specified pe-
riod, or when multiple orders have been delayed or canceled. The
administrator’s role is to change parameters, such as window sizes,
or tune up settings in the scheduler to make the execution fit the ap-
plication’s requirements. The execution of this scenario should take
less than 5 minutes to demonstrate all the features. In case of short-
age of participants we will run simulated user roles for clients and
members of our team will assume the remaining roles. A high level
depiction of the workflow design is shown in Figure 2. The con-
tinuous workflow generally serves as an integration layer between
the databases in the warehouses, the web server providing the user
interface and ordering system, and other administrator interfaces.

In addition to the aforementioned example, we would also like
to show how our system can be used in scientific discovery by
astronomers, to monitor transient astronomical events, as well as
monitoring the discovery and classification of new objects in the
sky by other astronomers around the world. We will demonstrate
how two workflows communicate with each other to keep users
informed about transient events. The first workflow is detecting
system-wide transient events. The second one, setup by an as-
tronomer monitoring a specific area in the sky, is correlating these
events with the observations made by other astronomers and rates
the significance of each event. In this case, a messaging system is
aggregating comments by astronomers around the world on their
observations about the transient events.

To demonstrate the CWf designer interaction, the audience will
be given a set of predefined actors suitable for data manipulation,
user communication and data stream sources (such as the Twitter

1313

" " Notify User: Stream Join: Order Id
Client Monitor Shipping status Order status Ship Order
Client
User Orderl
" Order Delay Extract:
Order Split Monitor Order Id
Array offitems T
Warehouse Group-by: Group-by:
Ttems Finder ItemS'| Warehouse Id Order Id
Ou(-o?r)stuck I(esttatus
Notify Manager Warehouse Warehouse Warehouse
of Out-of-stock f Monitor: order dispatch Monitor:
Out-of-stock | siock status Item Order status

Manager

Warehouse
User

Figure 2: Demonstration Scenario: A continuous workflow for
Supply Chain Management reactive application.

stream). They will then be guided through the process of putting
the actors together in a manner of their choice to perform a com-
plex task and produce some kind of results based on the input from
the stream sources. The user can then run the workflow and watch
in real time the kind of results produced. As an oversimplified ex-
ample consider the case where the user would like to detect soccer
player injuries around the world in real time (rather than transient
events as in our previous application). These could be reported as
discrete events via email messages, or visualized through the user
interface, aggregated as a graph. To do this the user would use a
Twitter Source actor with a query such as "#soccer injured". Then
connect it to a Group By actor with a window size of one minute
and step of one minute, which creates a wave for each soccer match
discovered. Then a filter actor would measure the significance of
the report (more people reporting on the event makes it more likely
that the event is really happening), and then the final set of actors
will notify the user some way (e.g., email, SMS, console etc).

S. REFERENCES

[1] A. Berfield, P. K. Chrysanthis, I. Tsamardinos, M. E. Pollack, and

S. Banerjee. A scheme for integrating e-services in establishing
virtual enterprises. In RIDE, pages 134-142, 2002.

D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,

G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring
streams: A new class of data management applications. In VLDB,
2002.

R. Liu, A. Kumar, and W. M. P. van der Aalst. A formal modeling
approach for supply chain event management. Decision Support
Systems, 43(3):761-778, 2007.

B. Ludischer, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger,

M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow
management and the kepler system. Concurrency and Computation:
Practice and Experience, 18(10):1039-1065, 2006.

P. Neophytou, P. K. Chrysanthis, and A. Labrinidis. Towards
continuous workflow enactment systems. In CollaborateCom’08,
pages 162—178, 2008.

T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M.
Greenwood, T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li.
Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20(17):3045-3054, 2004.

W. A. Ruh, F. X. Maginnis, and W. J. Brown. Enterprise application
integration: A wiley tech brief, 2001.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros. Workflow patterns. Distributed and Parallel Databases,
14(1):5-51, 2003.

W3C. Web services glossary - http://www.w3.org/tr/ws-gloss/.

P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter
Hofstede. Analysis of web services composition languages: The case
of BPELAWS. In ER, pages 200-215, 2003.

[2]

[3]

[4

=

[5

=

[6]

[7]

[8]

[9]
(10]

