
Visualization of Energy Consumption of Continuous
Query Processing with Mobile Clients

Jesse Szwedko∗, Panayiotis Neophytou∗, Panos K. Chrysanthis∗, Alexandros Labrinidis∗, Mohamed A. Sharaf†
∗Department of Computer Science, University of Pittsburgh

†School of Information Technology and Electrical Engineering, The University of Queensland
Email: {jjs86, panickos, panos, labrinid}@cs.pitt.edu, m.sharaf@uq.edu.au

Abstract—Complex event detection over data streams has be-
come ubiquitous through the widespread use of sensors, wireless
connectivity and the wide variety of end-user mobile devices.
Typically, event detection is carried out by a central server
executing continuous queries. In this demonstration, we focus
on the case where users with mobile devices submit continuous
queries (for event detection) to a data stream management
server which disseminates the results to the users over a shared
broadcast medium. In order to minimize the overall energy
consumption of the mobile devices (clients), we have proposed
operator placement algorithms that split the processing of each
continuous query between the centralized server and the request-
ing mobile clients, thus trading off energy consumption for com-
munication energy consumption for computation. Specifically, in
this demonstration, we present an interactive graphical interface
to the inner workings of our three proposed operator placement
algorithms, whereby attendees are able to investigate various
query plans and the decisions that the algorithms make, as well
as visualize the results of these algorithms in terms of client
power consumption and response time. Besides being able to
step through an algorithm’s execution as it considers various
operator placement decisions, attendees are able to experiment
with different scenarios by customizing the parameters of the
query workloads (e.g., changing the selectivities and projectivities
of the operators) or the client’s profile (e.g., power consumed per
unit of time of processing) and examine the impact.

I. INTRODUCTION

Complex event detection over unbounded data streams in
monitoring applications has become ubiquitous through the
wide spread use of sensors, wireless connectivity and the wide
variety of end-user mobile devices. Examples of such applica-
tions, of equal interest to stationary and mobile users, include:
monitoring of stock quotes, airline schedule updates, local
news, weather readings, traffic information and emergency
management. Typically, event detection is carried out by a
data stream management server (DSMS) executing continuous
queries (CQ), that have been previously registered by the users
of the monitoring applications [1], [2].

As an example of a CQ submitted by a mobile user, consider
the query of a trader which monitors stock price updates, at
the floor of a market exchange. First, it filters out stocks that
are not in the NASDAQ index using the select operator. Then,
it drops columns of no interest (such as source information
etc.) using the project operator. Then, it joins the tuples with

1This work was supported by NSF grants IIS-0534531 and IIS-1050301.

the user’s portfolio to append the buying price using the join
operator. Finally, it calculates the user’s profit in the last 5
minutes, every 30 seconds, using the aggregate operator.

In applications where end-users are mobile, users usually
submit CQs from hand-held battery-operated devices and
receive the results of CQs over a shared broadcast wireless
medium. The results of CQs are also in the form of continuous
data streams that need to be continuously disseminated to the
mobile end-users. Our goal in [3], [4] was to design operator
placement algorithms that work together with the broadcast
organization to minimize the total energy consumption on the
hand-held devices. The approach was based on our experi-
mental observations that the energy costs for receiving data
are typically much higher than the energy costs for processing
said data, an observation that has also motivated in-network
processing in wireless sensor networks (e.g., [5], [6]). This
is especially true as the CPUs of these devices become even
faster, with newer devices even featuring two cores.

The operator placement algorithms we proposed choose to
split the load of query processing between the DSMS and
the mobile user devices (mobile clients) themselves by oppor-
tunistically taking advantage of the queries which demonstrate
fluctuation in the size of intermediate results, between their
operators. This means that the system will broadcast the
smaller intermediate results of some queries, thus keeping the
broadcast smaller, and leave the rest of the processing to the
clients registered to those queries, in essence trading some of
the energy previously utilized for communication for increased
computational energy costs.

This paper summarizes our three proposed operator place-
ment algorithms to provide context for the demonstration and
then outlines the graphical user interface (GUI) that we have
developed to display how these algorithms work and how
well they perform. This interactive GUI allows the user to
load individual system workloads, view the query plan and
broadcast network organization, specify the computation and
communication power properties of individual mobile devices,
and easily discover the decisions the various algorithms made
on where to place the operators. The user may also modify
the query plan itself by modifying parameters of the query
operators or add/removing operators and clients.

2011 12th International Conference on Mobile Data Management

978-0-7695-4436-6/11 $26.00 © 2011 IEEE

DOI 10.1109/MDM.2011.70

331

2011 12th International Conference on Mobile Data Management

978-0-7695-4436-6/11 $26.00 © 2011 IEEE

DOI 10.1109/MDM.2011.70

337

2011 12th IEEE International Conference on Mobile Data Management

978-0-7695-4436-6/11 $26.00 © 2011 IEEE

DOI 10.1109/MDM.2011.70

337

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:44:07 UTC from IEEE Xplore. Restrictions apply.

Contributions: In summary, in this demonstration proposal
we present a GUI front-end for:

1) Visualization of the query network state and the choices
the various algorithms make at each step of their execu-
tion.

2) Visualization and comparison of the results of the op-
erator placement algorithms in terms of client power
consumption and access time.

3) Investigation of the effects of various system parameters
on results.

Outline: In Section II, we describe the parameters of the
system model. Section III, provides an overview of our three
proposed operator placement algorithm. Lastly, in Section IV,
we describe the graphical user interface we developed as well
as the equipment and demonstration settings, and how the
attendees would interact with our system.

II. SYSTEM MODEL

As described in [4], we assume a realistic system model
where a DSMS allows mobile clients to register and share mul-
tiple CQs. In addition to the standard modules of admission
manager, query optimizer, scheduler, memory manager and
load shedder, the DSMS implements a wireless disseminator
module which broadcasts the results of CQs to the mobile
clients. In order to allow for extensive experimentation over a
variety of variables, we have developed a detailed simulator
that considers all the key characteristics of our system model
which we describe below.

A. Data Stream Processing

For the data stream processing model, we identify a number
of parameters for both the operators in the query plan as
well as the clients. A CQ evaluation plan generated by the
query optimizer can be conceptualized as a data flow tree [2],
[7], where the nodes are operators that process tuples and
the edges represent the flow of tuples from one operator to
another. This operator tree is converted into a vertex operator
tree where operators with shared input edges are placed in the
same vertex. The operator placement algorithms then decide
which edges to cut upon and move the right hand side of the
cut to the clients. In a query, each operator could be one of
four types: select (σ), project (π), aggregate (e.g.,

∑
), or join-

table (��T) and is associated with the following parameters:

1) The number of cycles needed to process an input tuple.
2) The number of output tuples produced after processing

one input tuple (selectivity). This is less than or equal
to 1 for a filter operator and it could be greater than 1
for a join operator.

3) The size of a tuple produced by the operator compared
to its size before being processed (projectivity). This is
less than or equal to 1 for a project operator and it may
be greater than 1 for a join operator.

B. Wireless Broadcast

We adopt broadcast push as the mechanism to disseminate
query results to clients, since it naturally complies with the
DSMS access model where a client installs a CQ once and
the server repeatedly transmits the new results as they become
available. Hence, any number of clients can monitor the
broadcast channel and retrieve data as it arrives, at a constant
bandwidth speed.

The amount of energy consumed by a wireless client de-
pends on the data organization [8], [9], [10]. The two possible
broadcast organizations we consider are:

• Sorted: The DSMS sorts the results according to the data
size and the popularity of each result and broadcasts in
that order. Each client must listen to the broadcase from
the beginning until it receives its results. This weighted
shortest job first scheduling policy has been shown to
minimize total response time in shared resources [11].

• Indexed: The DSMS attaches an index at the beginning of
each broadcast cycle. The client must listen to the entire
index and then subsequently may only tune in and listen
to its particular result. This selective tuning enabled by
an indexed broadcast has been shown to minimize energy
consumption at the expense of response time [10].

In our model, the wireless disseminator initiates a new
broadcast cycle as soon as the previous one ends. Each cycle
consists of a sequence of results which could be either a
final result (i.e., produced at a query’s output operator) or
an intermediate result (i.e., produced at a query’s internal
operator). The energy cost of receiving the results depends
on the tuning power consumption of the client (as described
below) and the datasize of the broadcast.

C. Mobile Clients

Mobile clients, serviced by the system, can register multiple
queries and then listen to a broadcast medium to get their
results. The parameters associated with the client are:

1) The processing speed of the client in cycles per unit of
time.

2) The power consumed per unit of time of processing.
3) The power consumed per unit of time of tuning (i.e.,

when the network interface card (NIC) is active).
4) The energy needed to power up the NIC.

Based on the client profiles, the energy consumption and the
computational cost can be computed for use by the algorithms.
Specifically, for each client Ni, the tuning energy is computed
as:

ETune(Ni) = TT (Ni)× PT (Ni) + U(Ni)× EPowerUp (1)

where TT (Ni) is the tuning time and U(Ni) is the number of
times the client needs to power up the NIC.

The processing power, EProcess for a client Ni, given the
processing time, TP , and the power consumed per unit time
processing, PP (Ni) is then:

EProcess(Ni) = TP × PP (Ni) (2)

332338338

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:44:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: GUI Interface for investigating the execution of the BOSe* algorithm and visualizing the results. The leftmost window comprises the initial application.
From here the user can load scenarios, modify the system parameters through a point-and-click interface on the query plan, and advance the BOSe* algorithm.
The next window shows the results of the PowerMinCut algorithm and the final shows the results of the DataMinCut algorithm.

Additionally the response time is computed as:

RT = TPServer +AT + TPClient
(3)

where TPServer is the amount of time between the data arrival
at the DSMS until the data is available to the disseminator.
AT is the access time, i.e., the time it takes a client to receive
the data from the broadcast, and TPClient

is the time it takes a
client to process the data on the locally-placed query operators.
As discussed in the introduction, our approach to minimizing
the overall power consumption (shown in Eq.4) is based on
the observation that the energy costs for receiving data are
typically much higher than the energy costs for processing
that data.

III. OPERATOR PLACEMENT ALGORITHMS

We include a short description of each of the algorithms
included in the demonstration. The goal of each of these
algorithms is to optimize the following equation and are
described in more depth in the cited works.

ETotal = ETune + EProcess (4)

a) DataMinCut[3]: minimizes the tuning energy ex-
pended by the clients by labeling every edge with the average
data size flowing through and discovering the MinCut of the
graph. Broadcasting the data flowing through the MinCut of
the graph guarantees that the broadcast size is minimal.

b) PowerMinCut[3]: attempts to minimize the overall
energy by choosing the edges that result in smallest total
energy (tuning and processing) for the client. It augments the
edge labels with the client processing energy cost of all the
operators downstream of each edge. This algorithm neglects
the broadcast organization and thus may result in suboptimal
energy consumption as the edges that minimize for one client
may cause other clients to expend additional energy as they
appear later in the broadcast.

c) BOSe* (Broadcast aware Operator Selection)[4]:
tries to minimize the overall energy consumption of clients
similar to PowerMinCut. The difference is that BOSe* con-
siders the effect on the broadcast organization when deciding
which edges to broadcast. It begins by considering the graph

cut that DataMinCut would choose. It then applies a greedy
selection process to find a segment of operators within each
query (or combination of queries sharing operators) and rein-
state them back on the server. Since the cut it starts with gives
the minimal broadcast size, that means that any reinstatement
by BOSe* will incur an increase in the broadcast no matter
what. Thus, BOSe* will only perform a reinstatement if its
benefit in terms of reducing processing energy is greater
than the cost incurred in terms of increasing tuning energy,
which depends on the broadcast organization. As such, BOSe*
considers the global effect as reinstating operators may change
the broadcast organization and adversely effect other clients.

IV. DEMONSTRATION SCENARIO

For the demonstration, we have developed a graphical front-
end that allows attendees to step through the BOSe* algorithm,
the best performing of our three algorithms, and visually
evaluate and compare its results with those of DataMinCut,
PowerMinCut, and ServerOps in various scenarios. ServerOps
is the base case against which the others algorithms are
compared. It executes all operators on the server and transmits
the results to listening clients. This is the way that current
DSMSes operate for mobile clients. Attendees may tweak the
parameters of the system (as described below) to their liking
to see the resulting effect on the algorithms.

A. Front-end

The front-end is a Java-based GUI that allows the user to
visualize the execution and results of the system. It begins by
allowing the user to choose from a list of predefined scenarios
to view. Each of these scenarios loads a particular workload
(which describes all of the parameters of the system) into the
simulator. The query plan is graphically presented to the user
as seen in Figure 1.

This query plan graph provides the user with a simple point-
and-click interface for discovering information and editing
parameters. The relative computational costs of the operators
are shown by varying the size of the ellipse representing the
operator (i.e., larger ellipses correspond to more computation-
ally intensive operators). Similarly, edges between operators
that carry larger data sizes are shown to be relatively larger.

333339339

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:44:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Histogram of the client power consumption results.

Each of the segments of the graph is clickable and provides
the following information when clicked:

• Source Operator: The input rate and size of each tuple.
• Operator: The selectivity and projectivity of the operator.
• Edge: The tuple rate flowing along the edge and the total

datasize.
• Client: The cost to the client for each query it is listening

to under the naive ServerOps algorithm.

Right-clicking will allow the user to edit each of the param-
eters for operators. Right-clicking the client will allow the user
to tweak the various components of the client profile such as
the computational power of the client. After editing, the user
may rerun the simulation using the new parameters. The user
may also delete operators or clients by double clicking and
choosing to delete. The user may drag between two nodes to
add new edges between them. If the user drags from a node
into whitespace they will be prompted to add an operator or
client at that location.

Clicking on the name of any of the algorithms in the list on
the left brings up a separate frame showing the same query
graph as ServerOps, but with the results for that given algo-
rithm including the cuts along which the algorithm chooses
to broadcast (the remaining operators then being executed on
the clients after intermediate data transmission) and the cost
to each of the clients; this is done by coloring the edges
along which the graph is cut. Users may compare these results
side-by-side. Below the query graph is a visual representation
of the broadcast plan at any given cycle. The segments are
broadcast in order from left to right (and are annotated with
which queries are represented by that segment). Clicking a
segment displays additional information about that segment.

In order to visualize the execution of the BOSe* algorithm
we withhold execution of the algorithm initially and provide
controls for the user to iterate through the steps of the
algorithm. At each step, the graph is updated to display the
current subset of operators that BOSe* is considering pulling
back to the server along with its calculation of the benefit.
Because BOSe* considers many states, a Fast Forward button
is also provided to quickly view the iterations of the algorithm.

Finally, the user may view the overall results of the algo-
rithm across all clients in the Histogram Pane (Figure 2).

B. Settings

For the conference demo we will use several laptops to
run the application that will be preloaded with a number of
scenarios that will showcase various parameters of the system.
Attendees will be able to use the system to execute various
workloads, tweak system parameters, and view the results of
the algorithms in a graphical manner for easy comparisons. We
will also have a mobile device on hand to demonstrate how
we collected the statistics used to determine the appropriate
power consumption rates that we use in our simulations.

C. Implementation

The GUI interface and simulator were written using Java
1.6. The GUI relies on the Javax Swing API as well as the
Prefuse library [12] for the query plan and results visual-
ization. The interface interacts with the standalone algorithm
implementation module by feeding it a configuration file based
on the scenario chosen. The interface then collects the statistics
regarding the given scenario and uses this information to
populate the interface with the query plan, graph cuts, and
power results. Editing the parameters in the GUI is made
possible by manipulating the internal data structures of the
simulator and then rerunning the algorithms. The interactive
histogram of the client power consumptions was made possible
through JFreeChart [13].

The simulator takes, as input, a workload file specified by
the given scenario which it uses to instantiate the system
model. The simulator uses the Mascopt library ([14]) internally
to represent the query network and run the various optimiza-
tion algorithms and derive that statistics.

REFERENCES

[1] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs, “Algo-
rithms and metrics for processing multiple heterogeneous continuous
queries,” ACM Trans. Database Syst., vol. 33, no. 1, 2008.

[2] D. J. Abadi et al., “Aurora: a new model and architecture for data stream
management,” The VLDB Journal, vol. 12, no. 2, pp. 120–139, 2003.

[3] P. Neophytou, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis,
“Power-aware operator placement and broadcasting of continuous query
results,” in MobiDE 2010, June 2010.

[4] P. Neophytou, J. Szwedko, M. A. Sharaf, P. K. Chrysanthis, and
A. Labrinidis, “Optimizing the energy consumption of continuous query
processing with mobile clients,” in MDM, 2011.

[5] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a tiny
aggregation service for ad-hoc sensor networks,” in OSDI, 2002.

[6] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis, “Balancing
energy efficiency and quality of aggregate data in sensor networks,”
VLDB J., vol. 13, no. 4, pp. 384–403, 2004.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas, “Operator
scheduling in data stream systems,” VLDB J., vol. 13, no. 4, pp. 333–
353, 2004.

[8] D. Aksoy and M. J. Franklin, “Scheduling for large-scale on-demand
data broadcasting,” in INFOCOM, 1998.

[9] A. Crespo, O. Buyukkokten, and H. G. Molina, “Efficient query sub-
scription processing in a multicast environment,” in ICDE, 2000.

[10] Q. Hu, W.-C. Lee, and D. L. Lee, “Power conservative multi-attribute
queries on data broadcast,” in ICDE, 2000.

[11] N. Bansal and K. Dhamdhere, “Minimizing weighted flow time,” ACM
Trans. Algorithms, vol. 3, no. 4, 2007.

[12] J. Heer, S. Card, and J. Landay, “Prefuse: a toolkit for interactive
information visualization,” in SIGCHI, 2005.

[13] D. Gilbert, “The jfreechart class library,” Object Refinery Limited, 2008.
[14] J. Lalande, M. Syska, and Y. Verhoeven, “Mascopt-a network optimiza-

tion library: Graph manipulation,” 2004.

334340340

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:44:07 UTC from IEEE Xplore. Restrictions apply.

