2011 12th IEEE International Conference on Mobile Data Management

Optimizing the Energy Consumption of Continuous
Query Processing with Mobile Clients

Panayiotis Neophytou™, Jesse Szwedko®, Mohamed A. Sharaff, Panos K. Chrysanthis*, Alexandros Labrinidis*
*Department of Computer Science, University of Pittsburgh
School of Information Technology and Electrical Engineering, The University of Queensland
Email: {panickos, jjs86}@cs.pitt.edu, m.sharaf@uq.edu.au, {panos, labrinid} @cs.pitt.edu

Abstract—Complex event detection over data streams has
become ubiquitous through the widespread use of sensors,
wireless connectivity and the wide variety of end-user mobile
devices. Typically, such event detection is carried out by a data
stream management system executing continuous queries (CQs),
registered by the users. In this paper, we consider the situation
where the results of the CQs, which are in the form of individual
data streams, are disseminated to the users’ hand-held, battery-
operated devices over a shared broadcast medium. In order to
reduce the overall energy consumption of the mobile devices,
we propose BOSe*, a power-aware query operator placement
algorithm that determines which part of a CQ plan should be
executed at the data stream management system and which part
should be executed at the mobile device. BOSe*’s effectiveness
in reducing energy consumption, as well as response time under
specific conditions, is evaluated using simulation, driven by
parameters measured on real mobile devices.

I. INTRODUCTION

Research in energy conservation in mobile and wireless
networks has always been driven by the fact that there is a
gap between the energy consumed processing data compared
to the energy consumed for transmitting or receiving data at a
mobile device, in favor of local processing. This is especially
true as the CPUs of the mobile devices become even faster,
with newer devices even featuring two cores. This fact has led
to the design principle of trading off communication energy
consumption for computation energy consumption (e.g., [13]).
In this paper, we apply this principle to minimize the energy
consumption on mobile users’ hand-held, battery-operated
devices linked to Data Stream Management Systems (DSMSs).

Specifically, we consider monitoring applications where mo-
bile users register continuous queries (CQ), specifying events
of interest to them, to be efficiently executed by a DSMS
over unbounded data streams. The results of CQs are also
in the form of continuous data streams that are continuously
disseminated to the mobile end-users over a shared broadcast
wireless medium. As an example of a CQ submitted by a
mobile user, consider the query of a trader which monitors
stock price updates, at the floor of a market exchange (Fig. 1):
it selects the stocks that are in the NASDAQ index (operator
01); projects out the columns of no interest (operator Oz);
joins the tuples with the user’s portfolio to append the buying
price (operator O3); and finally, calculates the user’s profit in
the last 5 minutes, every 30 seconds (operator Oy).

'This work was supported by NSF grants 11S-0534531 and IIS-1050301.

978-0-7695-4436-6/11 $26.00 © 2011 IEEE
DOI 10.1109/MDM.2011.71

98

Our approach is to split the load of query processing
between the DSMS and the mobile user devices themselves by
opportunistically taking advantage of the reduced size of inter-
mediate results to shorten the mobile devices’ listening time of
the broadcast and, consequently, reduce their communication
energy cost, at the cost of additional local processing. In our
trader query example, the first two operators O; (select) and
O (project) are data reducing, while the operator Oz (join)
and O, (aggregation) could potentially be data expanding.
Thus, O3 and O4 could be shipped to the mobile client, and
the much smaller intermediate result produced by O» will be
broadcast. Further, CQs often share prefixes which include
the same operators (as in Fig. 1(b)), making it even more
beneficial to broadcast intermediate results shared by multiple
queries since the overall broadcast size will be reduced.

In our prior work [11], we have laid the groundwork for our
approach by proposing three operator placement algorithms
assuming a simplistic CQ execution model. Of these, the
BOSe (Broadcast-aware Operator Selection) algorithm was the
best. Encouraged by our preliminary results, in this paper we
present and evaluate BOSe* which is based on a realistic CQ
execution model that supports operator sharing among queries
and sharing of queries among users.

Contributions: Our contributions are summarized as follows:

1) We propose BOSe*, an operator placement algorithm,
which takes into account the broadcast organization,
sharing of operators and sharing of queries to provide
the most overall energy savings at the mobile devices.
We present a heuristic parameterized variant of BOSe*,
namely, BOSe-vlook, which significantly reduces the
cost for generating high-quality operator placement
plans which are comparable to those of the basic BOSe*.
We provide an extensive experimental evaluation, using
parameters obtained from experiments using real mobile
devices. Our results show that BOSe* can achieve an
overall energy reduction of up to 53% and even reduces
response times.

Outline: Section II provides the system model. Section III
presents BOSe* and Section IV describes its evaluation. Sec-
tion V surveys related work. Section VI lists our findings.

2)

3)

II. SYSTEM MODEL

In our system, the DSMS contains a wireless disseminator
module to broadcast CQ results to the mobile users (clients).

IEEE
computer
® psouety

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:43:37 UTC from |IEEE Xplore. Restrictions apply.

A. Data Stream Processing

A CQ evaluation plan generated by the query optimizer
can be conceptualized as a data flow tree [1], [6], where
the nodes are operators that process tuples and the edges
represent the flow of tuples from one operator, e.g., O, to
another, O, (Fig. 1(a)), where upstream(O,) = O, and
downstream(Og) = O,. Each operator is associated with a
queue where input tuples are buffered until they are processed.

A single-stream query @ has a single source operator,
e.g., OF and a single output operator, e.g., O%. Further, in
a query plan @)y, an operator segment G’;yy is the sequence of
operators that starts at O* and ends at O’;. If the last operator
on G’;’y is the output operator, then we simply denote that
operator segment as G*.

When two or more continuous queries share a common sub-
expression, that sharing translates into identical prefix operator
segments across the plans for those queries. In such case,
the DSMS continuous query optimizer typically chooses to
instantiate this prefix only once. The results produced by this
prefix segment are shared among the remaining suffixes of
the queries that share this prefix. For each operator O, in the
shared segment, we define Q(O,.) as the set of queries sharing
O,. For example, in Fig. 1.(b), Q(O1) = Q(O2) = {Qk, Q;}-
Another popular form of sharing which can be seen as a special
case of operator sharing is when the same query is shared
(submitted by) two or more clients. In such a case, for each
shared query Qp, we define C(Qy,) as the set of clients sharing
Qr. We define C(O,) as the set of clients who registered
queries that share O, (e.g., C(O2F) = C(Q;) UC(Qx).)

In a query Qy, an operator OF (or simply O,) could be
select (o), project (), aggregate (e.g. Y), or join-table (Xr).
Each operator is associated with three parameters:

e c,: the number of cycles needed to process an input tuple.

e s,: the ratio of output tuples produced by O, after pro-
cessing one input tuple. Thus, s, is less than or equal to
1 for a filter operator and it could be greater than 1 for a
join operator.

e p,: the ratio between the size of a tuple produced by O,
(i.e., output size) to its size before being processed (i.e.,
input size). Thus, p, is less than or equal to 1 for a project
operator and it may be greater than 1 for a join operator.

For an operator O,, with upstream(Oy) = Oy_1, we
define the following characterizing parameters :

e {n,: is the number of tuples produced at the output of
O, after processing the tn,_; tuples in its input queue:
the =tng_1 X Sg

e ts;: is the size of each tuple produced at the output of O,
after processing a tuple in its input queue: ts, = tS,_1 X Py

e ds,: is the size of the data block produced at the output
queue of O, after processing a block of data from its input
queue: ds, = tn, X tsy

Notice that if O, is the output operator in query @) , then
ds, 1is the total size of the data block produced by Q.

99

@ OF o 0} o Qr
@—0—0
o, o o (

(%41
)

O—@—O—0—

G} = {057, 03,01}

Fig. 1: Continuous Query Plan

B. Wireless Broadcast

In this work, we adopt broadcast push ([3]) since it naturally
complies with the DSMS access model where a client installs
a CQ once and the server repeatedly broadcasts the new results
as they become available. Hence, any number of clients can
monitor the broadcast channel and retrieve data as it arrives,
at a constant bandwidth speed: BW.

In our model, the wireless disseminator initiates a new
broadcast cycle as soon as the previous one ends. Each cycle
consists of a sequence of results which could be either a
final result (i.e., produced at a query’s output operator) or
an intermediate result (i.e., produced at a query’s internal
operator). In general, we denote the broadcast result produced
by O, as D, and its size in bytes as | D, |. Moreover, if O,
is shared by more than one query then those results are also
shared on the broadcast and only appear once.

The result D, of an operator O, appears on the broadcast
channel as a contiguous sequence of data packets preceded
by a descriptor packet that contains an identifier of Q(O,)
and the time offset to the next broadcast cycle. Accordingly,
each client should fune to each broadcast cycle for results
corresponding to its registered CQs. During tuning, the client’s
network interface card (NIC) is in active mode consuming
relatively large amounts of energy compared to when the
client’s NIC is switched to idle mode. Hence, the amount of
energy consumed by a wireless client depends on the data
organization [10], [9].

In this paper, we adopt two basic data organization schemes.
The first data organization scheme uses sorted broadcast,
where the broadcast server sorts the results according to the
data size and the popularity of each result. In particular, each
result D, is assigned a priority P, equal to \g_:l’ where R,
is the number of queries that share the result D, produced
by operator O,. That is, R, = ‘UQieQ(Om) C(Q;)|. The
broadcast is then organized in descending order of priority.
This maintains a broadcast that follows the weighted shortest
job first scheduling policy which has been shown to minimize
total response time for shared resources [7].

Accordingly, a client N; that registered a set of queries
Q) = {@1,Q2,...,Qn} will need to download a set
of results (either final or intermediate) where each of those
results might correspond to one or more queries in Q(N;). In
particular, IV; will download results {D1, Do, ..., D} where
n is the number of results and n < m. Hence, if the queries
in Q(&V;) do not share any operators then n = m, otherwise
n < m. Finally, N;’s tuning time Tr(N;) is computed as:

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:43:37 UTC from |IEEE Xplore. Restrictions apply.

| Dunin | +32; 1D |
BW

Tr(N;) = VY 1 Pj > Prin (1)
where D,,;, is the result with the minimum priority among
all the results {D1, Do, ..., D, }. In particular, the client will
tune from the beginning of the broadcast, downloading results
for queries in its registered set, and it will stay tuned until it
downloads the last one (with D,,,;,) in that set.

The second data organization scheme uses an indexed
broadcast, where the broadcast server attaches an index at
the beginning of each broadcast cycle (e.g., a (1,1) index
[10]). The index contains an entry for each result D, on the
broadcast in the form < Q(D,),t, >, where t, is the time
offset of D, within the broadcast cycle. In this scheme, a
client N; needs to first tune to the index packet to learn the
broadcast times for each of the results corresponding to the
queries that it has registered for, then power off its NIC until
the time of the smallest of those timestamps, say ts. At time
ts, IN; powers on its NIC again, tunes into the broadcast to
retrieve that result (i.e., D) and after it finishes fetching all
of D,’s data packets, powers off the NIC again until the next
timestamp or the next broadcast cycle, if there are no other
timestamps remaining. The tuning time for a node N; in the
indexed broadcast is computed as:

_1 | Dz | + | Index|

Tr(N:) = BW

2

where n is the number of results corresponding to V;’s queries
as defined before, | D, | is the size of each of those results,
and | Index| is the size of the index.

C. Mobile Clients

Mobile clients, serviced by the system, can register multiple
queries and then listen to a broadcast medium to get their
results. We assume that each mobile client is associated with
a profile that includes the following four characteristics:

Speed(N;): processing speed of the client in cycles per
unit of time.

Pp(N;): power consumed per unit of time of processing.

Pr(N;): power consumed per unit of time of tuning (i.e.,
when the NIC is active).

® Epowertp: energy needed to power up the NIC.

Based on the client profiles, the energy consumption and the
computational cost can be computed. Specifically the tuning
energy, Eryune for a client N, is as follows:

ETune(Ni) = TT(Nl) X PT(Nv,) + U(Nz) X EPowerUp (3)

where Tr(N;) is the tuning time and U (N;) is the number of
times the client needs to power up the NIC.

The processing power, Ep,occss for a client N;, given the
processing time, T'p is then:

EProcess(Ni) - TP X PP(N’L) (4)

100

III. BOSE*: BROADCAST AWARE OPERATOR SELECTION

In this section, we formalize the placement of CQ operators
in DSMS environments with mobile clients and propose our
new operator placement algorithms, BOSe* and its variant.

A. Problem Statement

Our goal is to design operator placement algorithms that
work in synergy with the broadcast organization so that we
minimize the total energy consumption at the mobile clients.
The total energy consumption is the sum of two components:
tuning and processing, which can be expressed as:

= ETune + EpProcess ©)

Given the clients’ profiles and their corresponding registered
queries, an operator placement algorithm decides to shift some
of the computation to the client if it is beneficial in reducing
the overall total energy consumption. Specifically, for each
query, it splits its query plan into two segments: the first
segment is processed on the DSMS, whereas the second one on
the clients who registered to the query. For instance, if client
N; registered queries Q(N;) = {Q;, Q} and their plans were
split at operators OJ and Ok respectively, then the operators
inG = G’JL_H output and Gerl output Nave to be processed on
the client. The set of operators executed at N; is expressed
as: G = GI+1 output U GUJrl output» 1O cover the case where
the two segments share common operators and need to be
instantiated only once on each client.

ETotal

Thus, for a client /V; running segments G = Gw+1 output Y
Gy+1¢output U ..., the processing time is computed as:
Cr X tng_1
Tp(N;) 6
P Z Speed(N;) ©

Using Eq. 4 we can now find the processing energy
Eprocess consumed by each wireless client N; for use in
calculating the total processing power on each client in Eq. 5

In our prior work [11], we proposed the following two algo-
rithms along with BOSe (the preliminary version of BOSe*.)

a) DataMinCut: minimizes the tuning energy expended
by the clients. It does so by using the Max-flow Min-cut
theorem, on the whole query network, which is cast into a
flow-graph, to select the edges E whose data will populate
the broadcast. Each edge in the flow graph is labeled with the
average data size flowing through it.

b) PowerMinCut: attempts to minimize the overall en-
ergy by choosing the edges that result in smallest total energy
(tuning and processing) for the client. It augments the edge
labels with the client processing energy cost of all the oper-
ators downstream of each edge. This algorithm neglects the
broadcast organization and thus may result in suboptimal en-
ergy consumption as, depending on the broadcasting scheme,
a local decision may negatively affect other clients.

B. Broadcast-aware Operator Selection (BOSe*)

BOSe* could be perceived as a hybrid of DataMinCut and
PowerMinCut as it integrates the desirable features of each.
On one hand, like DataMinCut, BOSe* tries to minimize the

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:43:37 UTC from |IEEE Xplore. Restrictions apply.

length of the broadcast cycle to minimize tuning energy. On
the other hard, BOSe*, like PowerMinCut, considers the extra
energy needed for operator processing at the client.

BOSe* uses the DataMinCut output as a starting point and
then applies a greedy selection process geared towards finding
a segment of operators downstream from the current cut and
reinstating them back on the server. Since DataMinCut gives
the minimal broadcast size, that means that any reinstatement
by BOSe* will incur an increase in the broadcast no matter
what. However, BOSe* will only perform a reinstatement if
its benefit in terms of reducing processing energy is greater
than the cost incurred in terms of increasing tuning energy,
which also depends on the broadcast organization.

At each iteration, BOSe* examines all the current broadcast
edges, [E. For each edge E, € E, it generates a list of all the
possible segments of operators following that edge, vertically
as well as horizontally. That is, all the prefixes of the operator
segments G7, 1 ,,¢pu> fOr all of the queries Q; in Q(Oy).
It does this recursively by adding to the current segment, all
possible combinations of operators connected to it (power-
set), taken from the next level of operators. This process is
performed for each edge in E and the segment with the highest
impact in reducing total energy is selected and its operators are
reinstated to the server. BOSe* repeats the selection process
until no further improvement in energy is achievable.

BOSe* optimization function: Recall that at each step,
BOSe* is expected to increase the tuning energy while de-
creasing the processing energy as compared to DataMinCut.
Assume these changes are Apyne and Aprocess, respectively.
Hence, after BOSe* makes a selection, the overall energy
consumption from Eq. (5) can be expressed as:

ETotal = (ETu'ne + AT’u/ma) + (EP'rocess - APTacess)

Clearly, our objective is to select an operator segment which
minimizes the value: Aryne — A process Which should also be
less than zero. Thus, we simply need to compute that value for
each operator segment under consideration and select the one
with the lowest value. To illustrate this process, assume that
FEr € E. Further, assume that G is one of those prefixes under
examination, which is considered as a candidate to be moved
from client IN; back to the server side. For instance, G, in
Fig. 2. Moving G back to the server will reduce the processing
energy by the amount Ap,.,cess, computed as follows:

tni_1 X cj
A rocess — = P, Nl
proens = 33 (G P

0;€G N,€C(0;)

Further, moving segment G back to the server entails
replacing, in the broadcast E, its input edge (i.e., edge ER)
with G’s output edges, say E4, and E 4, (Fig. 3). The impact
of this replacement operation, on the tuning energy (Aruyne)
depends on the broadcast organization.

In the case of sorted broadcast, removing E'r will reduce
the tuning time for all clients NV, receiving data from Eg.
Additionally, it will also reduce the tuning time for all the
clients waiting for results that appear after E'r on the broadcast
cycle (Ng). This reduction per client is simply dsg/BW,

Server side G:" ==>Client side

DataMinCut
line

Fig. 2: DataMinCut and operator segment G = {Gg’g, G§’3}.

N,
s
Nz .

ety
I B P'S ¥

B (Eg) | EiEa) [B Ea, |

Remove

Fig. 3: Optimization step for BOSe algorithm.

where dsp is the data size of associated with edge E'r. Hence,
the total reduction is computed as:

ds
AR = ﬁ X Z

N,€C(ER)
Similarly, adding E4, will increase the tuning time for the
clients N; receiving data from E,4, and will also increase
the tuning time for all the clients waiting for results that
appear after I/4, on the broadcast cycle (Fig. 3), including any
newly added edges which will appear after F 4,. This increase
per client is simply dsa,/BW, where dsy, is the data size

associated with edge E'4,. This increase is computed as:

A=Y (R X

A ERy NEC(Ea,)

Pr(N:i)+ Y Pr(N) @)

NENg

Pr(N)+ > Pr(N)
NeENy;
®
where Ny; is the set of clients waiting for results that appear
after F 4, on the broadcast cycle.

Moreover, under a sorted broadcast, the location of the new
edge E 4, on the broadcast cycle is determined according to
each one’s data size. Since dsa, > dsg,Vi, then E,4, will
appear at a further offset than E'r’s one. Therefore, when E4,
replaces E'r, the clients N; which consume results in £y, will
have to spend more tuning time to receive them than what they
used to spend to receive E'r. This translates into extra tuning
energy which is computed as:

ZEE]ER , dse
AR A= ——*t x Pr(N 9
’ AiZ@:EA NE‘I%A,) BW o ®
where Eg 5, is the set of edges on the broadcast cycle that
appear after Er and before Ey,.
Thus, Aryne for the sorted broadcast is computed as:
Arune = —Ar+ A+ AR a

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:43:37 UTC from |IEEE Xplore. Restrictions apply.

In the case of indexed broadcast the optimization is simpli-
fied since the edge remove/add operation will only affect the
energy of the client under examination without any impact
on the other clients in the system (i.e., Ar 4 = 0 in Eq.
9). Thus, Apyne for the indexed broadcast is denoted by

; = —A, + A/;, where equations 7 and 8 become:

Tune "
Ap= Y V’; x Pr(N) (10)
NeC(ER)
/ dsa
Ay= > > T X Pr(N) an

A;€Ey NEC(E4;)

It is interesting to note that the above equations clearly
reveal that BOSe* on indexed broadcast behaves like Pow-
erMinCut on indexed broadcast. This fact is also confirmed
by our experimental results.

Complexity and Approximation: The BOSe* algorithm is
performing an exhaustive search over all possible combina-
tions of operators both vertically and horizontally. The number
of combinations for each edge in E is 3/°9*" 2%, To reduce
the search space we propose a parameterized version of BOSe,
called BOSe-viook(x), which limits the cardinality of the set
taken from the power-set (as mentioned before) up to z.

IV. EXPERIMENTAL EVALUATION

In this section, we illustrate the performance of our algo-
rithms using our own simulator driven by parameters deter-
mined from experimental results using a mobile device.

A. Experimental Setup

The algorithms — DataMinCut, PowerMinCut, and BOSe*
and BOSe-vlook(x) — are implemented in Java and run as they
would on a real system. As a base case, we also implemented
ServerOps which executes all the operators on the server and
broadcasts the final results to the clients.

The workload used in the simulator is a complete plan of
the registered CQs, along with the mobile clients’ profiles
which include their speed and power consumption parameters
for processing and tuning.

We measure the total energy consumption at all the mobile
clients as the ratio of processing to tuning power of the nodes
increases linearly from 0.01 to 0.65, while keeping the tuning
power constant. The remaining parameters are summarized in
Table I. It should be noted that from our measurements on
real hardware we found these ratios to be between 0.0104 and
0.6572. The values reported are averages of 15 runs.

B. Experimental Results (Energy)

Sorted Broadcast: As Fig. 4 shows, BOSe* outperforms all
other algorithms. ServerOps’ performance is constant because
it runs all operators at the server, and thus increasing the
processing power of mobile clients will have no impact on
its performance. It also shows that DataMinCut is linearly
increasing because DataMinCut tries to minimize only the tun-
ing energy and not the processing energy. Hence, DataMinCut
selects the same set of edges for every setting regardless of the
increase in power consumption for processing. PowerMinCut
performs better than DataMinCut and ServerOps; however,

102

TABLE I: Workload Default Characteristics

Levels per query refers to the number of operators which exist in every single-
stream query in the workload. Operator cost skewness is a Zipf distribution
per level is towards the high cost and is proportional to the level number; in

the default setting the skewness of operator

level ¢ is equal to 0.2 X <.

Parameter Values
Number of queries 50
Number of clients 25
Number of clients per query 1-5 (Zipf)
Levels per query 10
Sharing levels 2
Maximum Degree of Operator Sharing 3

Sources tuple rate

500 — 1000 tuples/sec uniform

Sources tuple size

2000 — 4000 bytes uniform

Selectivity

0.2 — 1.8, uniform

Projectivity

0.5 — 1.5, uniform

Operator costs (cycles/tuple)

100 x 105 — 200 x 10%

Operator cost skewness

0.2 increments (Zipf)

Hand-held device speed

1 x 109 cycles/sec

Server speed

1 x 3.4° cycles/sec

Bandwidth

125000 bytes/sec

Popularity

2 T 7 T T T T
/ ServerOp —+—

X DataMinCut ---x---
PowerMinCut -

BOSe* &
y BOSe-viook(1) ———
M BOSe-viook(2) --6--
/ BOSe-viook(3) - -e-- |

IR S g

™ .ﬂ"‘_,i,s,-fr@. *
Qg

g

PRI S S et S i

Client Power Consumption (normalized for ServerOps)
L

L L
0.5 0.6

0 L L L L
03 0.4

Client CPU/Transmission Power Ratio

Fig. 4: Energy consumption for Tuning Vs Processing power cost for sorted
broadcast, normalized over ServerOps.

it is oblivious to the broadcast organization as it considers
each query individually without measuring the impact of its
selected edge on the other clients in the system. BOSe* always
performs the best because it evaluates the different options
considering both the broadcast organization and the processing
power costs of operators running on the mobile clients, thus
striking a fine balance between tuning and processing energies.
For instance, at a processing to tuning energy ratio of 0.01,
BOSe* provides an improvement in energy of 50% over
ServerOps and at 0.35 an improvement of 14%. In the extreme
case of 0.65, it still provides a small improvement.

The heuristics BOSe-vlook(2) and BOSe-vlook(3) perform
very similarly to BOSe*. The reduction in number of compu-
tations is very significant: 38% for BOSe-vlook(3) and 75%
for BOSe-viook(2), while the performance remains very close
to the best (up to 99%) for BOSe-viook(3).

Indexed Broadcast: Due to space limitations we omit these
results; however they are similar to those seen in Fig. 4. For
example, the energy savings in this broadcasting scheme are
53% compared to ServerOps, at a ratio of 0.01. In this case
BOSe* and PowerMinCut perform identically as the broadcast

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:43:37 UTC from |IEEE Xplore. Restrictions apply.

Popularity
2 T T

;
ServerOp —+—
DataMinCut ---x---
PowerMinCut ---%:--

BOSe* &
BOSe-vlook(1) -

BOSe-vlook(2) --e--
BOSe-viook(3) ~ - |

;’ tj-#.«p-a—-a—-‘i—ii—ui— r===1

Client Response Time (normalized for ServerOps)

L L
0.5 0.6

0 L L L L
03 0.4

Client CPU/Transmission Power Ratio

Fig. 5: Average response time of client queries for Tuning Vs Processing
power cost for sorted broadcast, normalized over ServerOps.

order does not affect the power consumption of the clients.

C. Experimental Results (Response Time)

Although we were optimizing for power consumption on the
client, we noticed notable gains for the response time of client
queries (Fig. 5). This can be attributed to the fact that while the
server handles all queries (we assume a round-robin scheduler)
the client need only be concerned with processing operators for
queries that it is interested in and can dedicate all its resources
to that end. Thus, by broadcasting an intermediate result, the
client can complete the computations quicker. However, this
is only true when the following equation holds for a client N;
(without loss of generality assume only one query for IV;):

TTSarvE'r‘Ops +TP(SGTU6T) > TTBOSe +TP(Ni) +T1/3(S€TU6T)

If the workload remains the same, we know that
Tp(Server) > Tp(Server) and Try,,,..0p. = TTpos. Where

'» is the new server processing time under BOSe*. This
means that Tp(N;) (the time to process on client IV;) has to be
low enough to not dominate the other components. In general,
longer processing time on a client means higher energy drain
so BOSe*, while minimizing power consumption, will also
reduce response time, since long-running operators will not
be moved to the client. However, clients with efficient CPUs
may see a higher response time as BOSe* may choose to move
more operators to these clients, thus increasing response time
while decreasing power consumption.

V. RELATED WORK

Current DSMSs’ assume that the underlying network layer
is responsible for propagating the output data streams to end-
users. However, this decoupling of the system from the trans-
port layer eliminates the chance of exploiting the CQs’ char-
acteristics for better bandwidth utilization. Previous research
on Publish/Subscribe and mobile information systems shows
the importance of considering queries’ semantics together with
employing advanced data dissemination schemes (e.g., [5], [4],
[10]). In these schemes, data of interest for multiple clients is
only disseminated once, thus making an effective use of the
available bandwidth and allowing maximum scalability. In this

103

paper, we apply the same concept in disseminating a DSMS’s
output data streams for scalability and energy savings.

The idea of query operator shipping to reduce the network
cost in a distributed database system was used in MOCHA [12]
where data reducing operators were pushed towards the data
sources and the data producing operators towards the clients.
This is similar to our approach, but in our case the data is
disseminated to the clients through a broadcast network instead
of point-to-point. Also, [12] considers ad-hoc queries, whereas
in our work we consider CQs over data streams.

The idea of query operator distribution was proposed in dis-
tributed DSMS (D-DSMS) (e.g., [2]) for workload balancing.
Similar to our approach, several approaches of CQ operator
distribution in D-DSMSs consider data transmission overhead
(e.g., [15], [14], [8]). All the D-DSMS approaches consider
point-to-point unicast connections between the distributed
nodes, as opposed to our work that considers broadcast push.
Further, these techniques do not consider energy consumption.

VI. CONCLUSIONS

In this paper, we proposed BOSe*, a query operator place-
ment algorithm that splits the load of CQ processing between
the DSMS and the mobile user devices in order to minimize
the overall energy consumption on the mobile devices. Our
extensive experimental evaluation showed the effectiveness of
BOSe* in distributing the query operators in a way that reduces
the size of the query results that need to be continuously
disseminated to the mobile users, BOSe* leads to an overall
reduction up to 53% in energy in mobile devices, compared
to the traditional centralized CQ processing at the DSMS.

REFERENCES

D. J. Abadi et al. Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12(2):120-139, 2003.

D. J Abadi et al. The design of the borealis stream processing engine.
In CIDR, 2005.

S. Acharya, M. Franklin, and S.Zdonik. Balancing push and pull for
data broadcast. In SIGMOD, 1997.

S. Acharya and S. Muthukrishnan. Scheduling on-demand broadcasts:
New metrics and algorithms. In MobiCom, 1998.

D. Aksoy, M. Franklin. RxW: A scheduling approach for large-scale on-
demand data broadcast. IEEE/ACM Trans. Netw., 7(6):846-860, 1999.
B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas. Operator
scheduling in data stream systems. VLDB J., 13(4):333-353, 2004.

N. Bansal and K. Dhamdhere. Minimizing weighted flow time. ACM
Trans. Algorithms, 3(4), 2007.

P. Pietzuch et al. Network-aware operator placement for stream-
processing systems. In /CDE, 2006.

Q. Hu, W.-C. Lee, and D. L. Lee. Power conservative multi-attribute
queries on data broadcast. In ICDE, 2000.

T. Imielinski, S. Viswanathan, and B. R. Badrinath. Energy efficient
indexing on air. In SIGMOD, 1994.

P. Neophytou, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis.
Power-aware operator placement and broadcasting of continuous query
results. In MobiDE, 2010.

M. Rodriguez-Martinez, N. Roussopoulos. MOCHA: A self-extensible
database middleware system for distributed data sources. In SIGMOD,
2000.

M. A. Sharaf and P. K. Chrysanthis. On-demand data broadcasting for
mobile decision making. MONET, 9(6):703-714, 2004.

Y.Ahmad and U. Cetintemel. Network-aware query processing for
stream-based applications. In VLDB, 2004.

Y. Zhou, B. Chin Ooi, and K.-L. Tan. Dynamic load management for
distributed continuous query systems. In ICDE, 2005.

(1]
(2]
(3]
(4]
(51
(6]
(71
(8]
(91
[10]

[11]

(12]

[13]
(14]

[15]

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:43:37 UTC from |IEEE Xplore. Restrictions apply.

