Information Systems 36 (2011) 267-291

Contents lists available at ScienceDirect x
Information
- Sﬂems
Information Systems
journal homepage: www.elsevier.com/locate/infosys s

Optimized query routing trees for wireless sensor networks

Panayiotis Andreou?, Demetrios Zeinalipour-Yazti **, Andreas Pamboris P,
Panos K. Chrysanthis ¢, George Samaras ¢

@ Department of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus
b Department of Computer Science and Engineering, University of California—San Diego, San Diego, CA 92093, United States
€ Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, United States

ARTICLE INFO

Article history:

Received 6 February 2009
Received in revised form

19 March 2010

Accepted 2 June 2010
Recommended by: P. Pucheral

Keywords:

Query routing trees
Sensor networks
Critical path method

1. Introduction

ABSTRACT

In order to process continuous queries over Wireless Sensor Networks (WSNs), sensors
are typically organized in a Query Routing Tree (denoted as T) that provides each sensor
with a path over which query results can be transmitted to the querying node.
We found that current methods deployed in predominant data acquisition systems
construct T in a sub-optimal manner which leads to significant waste of energy. In
particular, since T is constructed in an ad hoc manner there is no guarantee that a given
query workload will be distributed equally among all sensors. That leads to data
collisions which represent a major source of energy waste. Additionally, current
methods only provide a topological-based method, rather than a query-based method,
to define the interval during which a sensing device should enable its transceiver in
order to collect the query results from its children. We found that this imposes an order
of magnitude increase in energy consumption.

In this paper we present MicroPulse®, a novel framework for minimizing the
consumption of energy during data acquisition in WSNs. MicroPulse® continuously
optimizes the operation of T by eliminating data transmission and data reception
inefficiencies using a collection of in-network algorithms. In particular, MicroPulse*
introduces: (i) the Workload-Aware Routing Tree (WART) algorithm, which is established
on profiling recent data acquisition activity and on identifying the bottlenecks using an
in-network execution of the critical path method; and (ii) the Energy-driven Tree
Construction (ETC) algorithm, which balances the workload among nodes and minimizes
data collisions. We show through micro-benchmarks on the CC2420 radio chip and
trace-driven experimentation with real datasets from Intel Research and UC-Berkeley
that MicroPulse™ provides significant energy reductions under a variety of conditions
thus prolonging the longevity of a wireless sensor network.

© 2010 Elsevier B.V. All rights reserved.

that can be utilized for the development of environmental
monitoring systems under diverse conditions. Sensor

Recent advances in embedded computing have made it devices are tiny computers, often as small as a coin or a
feasible to produce small scale wireless sensor devices credit card, that feature a low frequency processor that

reduces power consumption, an on-chip flash memory for
local storage, a wireless radio for communication, on-chip

* Corresponding author. Tel.: +35722892755; fax: +357 22 892701. sensors, and an energy source such as AA batteries or solar

E-mail addresses: panic@cs.ucy.ac.cy (P. Andreou),

dzeina@cs.ucy.ac.cy (D. Zeinalipour-Yazti), apambori@cs.ucsd.edu
(A. Pamboris), panos@cs.pitt.edu (P.K. Chrysanthis),
cssamara@cs.ucy.ac.cy (G. Samaras).

0306-4379/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.is.2010.06.001

panels [33]. Large-scale deployments of Wireless Sensor
Networks (WSNs) have already emerged in environmental
and habitant monitoring [51,33], structural monitoring

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2010.06.001
mailto:panic@cs.ucy.ac.cy
mailto:dzeina@cs.ucy.ac.cy
mailto:apambori@cs.ucsd.edu
mailto:apambori@cs.ucsd.edu
mailto:panos@cs.pitt.edu
mailto:cssamara@cs.ucy.ac.cy
dx.doi.org/10.1016/j.is.2010.06.001

268 P. Andreou et al. / Information Systems 36 (2011) 267-291

[27] and urban monitoring [38]. Due to the limited energy
source, WSN applications have to be founded on the
premise of energy-conscious algorithms.

A decisive variable for prolonging the longevity of a
WSN is to minimize the utilization of the wireless
communication medium. It is well established that
communicating over the radio in a WSN is the most
energy demanding factor among all other functions, such
as storage and processing [63,35,34,65,59]. The energy
consumption for transmitting 1 bit of data using the MICA
mote [11] is approximately equivalent to processing 1000
CPU instructions [34]. In order to cope with this energy
challenge sensing devices are forced to power-down' their
radio transceiver (transmitter-receiver) between conse-
cutive data acquisition rounds (i.e., epochs).

It has been shown that sensors operating at a 2% duty
cycle can achieve lifetimes of 6-months using two AA
batteries [35]. Supplementary approaches to cope with
the energy challenge have been proposed at virtually all
layers of the sensing device stack ranging from the
hardware layer [42,11] to the operating system layer
[23], the programming language [16], the network layer
[67] and the data management layer (e.g., storage [65,36],
compression [14,46], query processing [34,44,63,
24,59,35,43,32,66] and prediction [18]). A general theme
in these supplementary approaches is to reduce the
number of messages communicated between sensors
prolonging in that way the lifetime of a WSN.

It is important to notice that the majority of existing
approaches is established on the premise of Query Routing
Trees (denoted as T), which provide each sensor with a
path over which query answers can be transmitted to a
centralized querying node (i.e., sink). Our study reveals
that predominant data acquisition frameworks [59,34,35]
have overlooked the important parameter of constructing
efficient query routing trees and that negatively impacts
the energy efficiency of these systems. In particular, since
T is constructed in an ad hoc manner there are two major
sources of inefficiencies:

e Data reception inefficiencies: T structures do not define
the waking window t of a sensing device (i.e., the
continuous interval during which a sensor node has to
enable its transceiver, collect and aggregate the results
from its children, and then forward these results to its
own parent). Note that 7 is continuous because it
would be very energy-demanding to suspend the
transceiver more than once during the interval of an
epoch (as shown in Section 7.1 with a series of micro-
benchmarks). Consequently, 7 is an over-estimate that
leads to significant energy waste. For instance, a
typical query with an epoch of 31s over a three-tier
network in TinyDB [35,34] will enforce each sensor to
activate its transceiver for as much as 10s while the
required 7 interval might only be a few milliseconds
(as shown in Section 4.1).

! The notion of powering-down the transceiver can be interpreted in
this work either in a literal manner (i.e., the transceiver is completely
powered-down) or in a metaphoric manner (i.e., the transceiver is
configured in low-power listening mode [37] instead).

e Data transmission inefficiencies: T structures are con-
structed in an ad hoc manner and therefore there is no
guarantee that the query workload will be distributed
equally among all sensors. That leads to data collisions
during transmission which represent a major source of
energy waste. For instance in Section 7.1, we show that
the execution of a query over a node with 10 children
will lead to a 48% loss rate of data packets, while
executing the same query over a node with 100
children will lead to a 77% loss rate. These figures
translate into an approximately threefold increase in
energy demand due to inevitable re-transmissions of
data packets. Consequently, unbalanced trees can
severely degrade the network health and efficiency.

Contributions: In this paper we present MicroPulse”, a novel
framework for minimizing both the aforementioned sources
of inefficiencies. The main intuition behind our framework is
to continuously optimize the operation and structure of T by
utilizing a collection of in-network processing algorithms. In
particular, MicroPulse™ introduces:

e The Workload-Aware Routing Tree (WART) algorithm,
which minimizes data reception inefficiencies by
profiling recent data acquisition activity and by
identifying the bottlenecks using an in-network
execution of the critical path method. In particular, it
generates a time-synchronized topology in which
WSDs know exactly when and for how long they
should enable their transceiver; and

o The Energy-driven Tree Construction (ETC) algorithm,
which minimizes data transmission inefficiencies by
balancing the workload among participating nodes. In
particular, it generates a near-balanced tree topology in
which data collisions are minimized, thus WSDs have the
capability to power down their transmitter much earlier.

Energy-efficient query routing trees are useful in a
plethora of stationary sensor network systems. Below we
show their applicability in the context of a Bio-Harvesting
Sensor Network [55]. Additionally, we explain how such
structures can be adapted in order to become the
foundation of future applications in People-centric
Sensing [7,6] scenarios.

Example 1 (Voltree Climate Sensor Network). Recently,
Voltree Power [55] has engineered a bio-energy harvest-
ing technology that allows sensor devices to recharge
themselves by collecting the energy that is naturally
produced by living trees or other large plants. This
alternative, minimizes the cost of replacing batteries
frequently, especially in large-scale deployments. Many
Voltree devices form a wireless mesh network which is
composed of many inexpensive sensor nodes that collect
and report data on temperature, humidity, wind speed
and direction. Data collected by the nodes are recursively
transmitted from each node to its neighbors (i.e., forming
a query routing tree) until these measurements reach a
central base station that records the data for further
analysis. Such networks have already been deployed by
the United States Department of Agriculture (USDA) at

P. Andreou et al. / Information Systems 36 (2011) 267-291 269

five different sites [55]. These networks complement
the USDA Forest Service’s Remote Automated Weather
Stations network. The Voltree Climate Sensor Network
deploys Query Routing Tree structures much like its
predecessor technology, Battery-powered Wireless Sensor
Networks and constructing optimized trees are conse-
quently of major importance in this work.

Example 2 (People-Centric Sensing). People-centric sen-
sing [7,6] aims to support sensor-enabled applications that
engage the general public through the use of their own
personal mobile devices. The recent miniaturization and
integration of sensors into popular consumer mobile devices
(e.g., iPhone, HTC Touch Pro) has enabled a myriad of new
sensor based applications for personal, social and public
sensing. These applications can be utilized for increasing the
sensing coverage of large public spaces and collect targeted
information about their mobile device owners. The informa-
tion can be then uploaded to a centralized database system
or exchanged with neighboring mobile devices. What is
really important, is that these environments allow new
levels of data sharing among commodity devices. Specifi-
cally, a particular device can request sensor data from
available neighboring devices through the establishment of
an ad hoc link (e.g., through Bluetooth or Wi-Fi).

Fig. 1 illustrates a futuristic people-centric sensing
scenario where cyclists journey through the main streets
of a city. Each cyclist is equipped with a mobile device
that has the ability to interact with its integrated sensors
during the ride. The measurements retrieved from these
sensors can be used to quantify various aspects of the
cyclic performance (e.g., current/average speed, heart
rate, burned calories) as well as the environmental
conditions (e.g., CO, level, car density) during the
journey. The continuous sharing of these collected data

can be utilized to create collaborative scenarios (e.g.,
identify routes with low CO, levels in the city).

A central component to realize such scenarios is the
availability of some high-level communication structure,
such as query routing trees presented in this work. Such
structures can serve as a primitive mechanism for percolat-
ing query results to nodes that query the network. It must
be noted that in People-centric sensing applications, the
topology of the network might change frequently. Conse-
quently, it might be necessary to complement these
structures with update mechanisms (e.g., reconstructing
the query routing tree periodically either completely or
incrementally), although a more detailed exploration of this
aspect remains outside the scope of this paper.

This paper builds on our previous work in [64,4],
in which we presented the preliminary design of the
MicroPulse framework that minimizes the energy con-
sumption by tuning the waking windows locally at each
sensor. In this paper, we introduce several new improve-
ments and extensions that are summarized as follows:

e We present a new tree-balancing construction algo-
rithm, coined ETC, which investigates the effect of
balanced routing trees in wireless sensor networks.
This algorithm constructs near-balanced tree topologies
minimizing in that way the inherent collisions among
neighboring nodes in unbalanced tree topologies.

e We combine the ETC algorithm with our earlier work
in MicroPulse and create a uniform framework coined
MicroPulse™ that takes a holistic view on optimizing
query routing trees in Sensor Networks. In particular,
MicroPulse® optimizes both data reception deficien-
cies and data transmission deficiencies.

e We introduce an elaborate experimental study and
solid experimental evidence for the motivation and

Fig. 1. People-centric sensing example: cyclists collect data through their sensor equipped mobile devices (e.g., CO, level) during their ride. A given cyclist

can query its neighborhood by constructing an ad hoc query spanning tree.

270 P. Andreou et al. / Information Systems 36 (2011) 267-291

efficiency of our propositions using a variety of real
traces, querysets and a series of real micro-bench-
marks on the CC2420 radio transceiver [52]. Finally,
we perform an extensive experimental assessment of
ETC both in isolation and in integration with the
MicroPulse™ framework.

e For completeness, we provide an overview of related
work that has been proposed at different layers of the
communication stack (i.e.,, physical layer, network
layer, transport layer, etc.). We also qualitatively
explain the differences and similarities of these
techniques compared to the MicroPulse® framework.

Overall, this paper makes the following contributions
to the state-of-the-art:

e We formulate the problem of adapting the waking
window 7 of a sensing device in order to conserve energy
that can be used to prolong the longevity of the network
and hence the quality of results. We solve the waking
window problem by proposing the WART algorithms.

e We formulate the problem of constructing and main-
taining an energy efficient query routing tree in a
wireless sensor network. We solve this problem by
introducing the ETC algorithm.

e We experimentally validate the efficiency of our
propositions with an extensive experimental study
that utilizes real sensor readings and a series of
microbenchmarks. Our results are useful to any type
of multi-hop network that relies on Query Routing
Trees for data acquisition.

Roadmap: Section 2 formalizes our system model.
Section 3 presents an overview of MicroPulse® as well
as a description of its main components. Sections 4 and 5
thoroughly describe the WART and ETC algorithms that
comprise the MicroPulse® framework. Section 6 presents
our experimental methodology whereas Section 7 the
results of our evaluation. Section 8 overviews the related
work of the paper while Section 9 concludes this paper.

2. System model

In this section we will formalize our system model and
the basic terminology that will be utilized in the
subsequent sections. The main symbols and their respec-
tive definitions are summarized in Table 1.

Let S denote a set of n sensing devices {s1,52,...,Sn}.
Assume that s; (i<n) is able to acquire m physical
attributes {a;,a,, ...,a,,} from its environment at every
discrete time instance t. This generates at each t and for
each s; (i<n) one tuple of the form {t,a;,a, ...,a;}. This
scenario conceptually yields an n x m matrix of readings
R := (Sij)nxm for each timestamp. This matrix is horizontally
fragmented across the n sensing devices (i.e., row i contains
the readings of sensor s; and R = U;;R;). Now let G=(S,E)
denote the network graph that represents the implicit
network edges E of the sensors in S. The edges in E are
implicit, because there is no explicit connection between
adjacent nodes, but nodes are considered neighbors if they

Table 1
Definition of symbols utilized in the paper.

Symbol Definition

Q A continuous query

n Number of sensors S={s1,55, ..., Sn}

Si Sensor number i (So denotes the sink)

m Number of sensor recordings {ai,ay, ..., am}
e Epoch duration of query Q

T=(S,E) Query routing tree (S=vertices, E=edges)
d Depth of the routing tree T

w; Wake-up time of sensor s;

T Waking window of sensor s;

V] Total time needed to answer query Q
children(s;) Children list of sensor s;

APL(s;) Alternate parent list of sensor s;

B Balanced branching factor of network S

are within communication range (i.e, a fundamental
assumption underlying the operation of a radio network).

A user specifies a continuous query Q to be evaluated
once during the interval of an epoch (denoted as e), which is
the time interval after which each s; (i < n) will re-compute
Q. For simplicity let us adopt a declarative SQL-like syntax
(similar to [35,59]) to express the ideas presented in this
paper in brevity. For instance, the following query declares
that each sensing device should recursively collect the
node identifier and the temperature from its children every
31s and communicate the results to the sink.

SELECT nodeid, temp
FROM sensors
EPOCH DURATION 31 seconds

Note that our model also supports continuous aggre-
gate queries. For instance, the following query declares
that each sensing device should aggregate the average
light measurement for each room from its children every
31s and communicate the results to the sink.

SELECT roomid, AVG (light)
FROM sensors

GROUP BY roomid

EPOCH DURATION 31 seconds

Essentially, our framework supports any type of query
as long as the query produces a continuous result which is
percolated to the sink. Based on these continuous
transmissions, we profile the workload of each sensor
and compute the critical path.

A user submits Q at some centralized querying node
(denoted as sp, or sink node) prior deployment and the
system then initiates the execution of Q by disseminating it
to the n sensors. In particular, the sink sends Q to one sensor
s1. Subsequently, s; recursively forwards Q to all of its
neighbors until all n sensors have received the given query.
Without loss of generality, we adopt the First Heard From
(FHF) mechanism which is utilized in a variety of data
acquisition frameworks such as [35,59,66,63] and where each
sensor s; selects as its parent the first node from which Q was
received. This creates an acyclic subset of the communication
graph G (i.e,, a spanning tree) which is denoted as T = (S, E'),

P. Andreou et al. / Information Systems 36 (2011) 267-291 271

where E’ C E. Each s; also maintains a Child Node List (denoted
as children(s;)), which is trivially constructed during the
creation of T (i.e., using an acknowledgment from each child
to its parent). In more recent frameworks, like GANC [43] and
Multi-Criteria Routing [32], T can be constructed based on
query semantics, power consumption, remaining energy and
others. In more unstable topologies a node can maintain
several parents [10] in order to achieve fault tolerance but
this might impose some limitations on the type of supported
queries. We additionally supplement each sensor s; with an
Alternate Parents List (denoted as APL(s;)). The APL list is
constructed locally at each sensor by snooping (i.e., monitor-
ing the radio channel while other nodes transmit and
recording neighboring nodes) and comes at no extra cost.
Such a list will be utilized by the ETC algorithm we propose in
this paper but could also be utilized to select alternate
parents in cases of failures.

3. The MicroPulse* framework

In this section we provide an overview of the
MicroPulse” framework. In particular, we will introduce
the Workload-Aware query Routing Tree (WART) algorithm
and the Energy-driven Tree Construction (ETC) algorithm.
We shall start with a detailed analysis that reveals the
motivation behind our propositions and then provide an
outline for each individual algorithm.

3.1. Motivation and preliminaries

We have already defined that the continuous interval
during which a sensing device s; (i<n) enables its
transceiver, collects and aggregates the results from its
children, and then forwards them all together to its own
parent is defined as the waking window 7. It is important to
mention that the exact value of 7 is query-specific and
cannot be determined accurately using current techniques.
For instance, s; (i < n) does not know in advance how many
tuples it will receive from its children. Choosing the correct
value for 7 is a challenging task as any wrong estimate
might disrupt the synchrony of the query routing tree.

Therefore, we aim to automatically tune 7, locally at
each sensor without any a priori knowledge or user
intervention. Note that in defining t we are challenged
with the following trade-off:

e Early-off transceiver: Shall s; (i<n) power-off the
transceiver too early reduces energy consumption but
also increases the number of tuples that are not
delivered to the sink. Thus, the sink will generate an
erroneous answer to the query Q; and

e Late-off transceiver: Shall s; (i <n) keep the transceiver
active for too long decreases the number of tuples that are
lost due to powering down the transceiver too early but
also increases energy consumption. Thus, the network
will consume more energy than necessary which is not
desirable given the scarce energy budget of each sensor.

The WART algorithm presented in this paper utilizes a
novel algorithm for the dynamic adaptation of the 7 values

and is established on profiling recent data acquisition
activity and on identifying the bottlenecks using an
in-network execution of the Critical Path Method.

The Critical Path Method (CPM) [20] is a graph-theoretic
algorithm for scheduling project activities. It is widely
used in project planning (construction, product develop-
ment, plant maintenance, software development and
research projects). The core idea of CPM is to associate
each project milestone with a vertex v and then define the
dependencies between the given vertices using activities.
For instance, the activity v; < v; denotes that the
completion of v; depends on the completion of v;. Each

.. weight
activity is associated with a weight (denoted as P)

which quantifies the amount of time that is required to
complete v; assuming that v; is completed. The critical
path allows us to define the minimum time, or otherwise
the maximum path, that is required to complete a project
(i.e., milestone vp). Any delay in the activities of the
critical path will cause a delay for the whole project. In
order to adapt the discussion to a sensor network context
assume that each sensor s; is represented by a CPM vertex.
More formally, we map each s; to the elements of the
vertex set V={vq,v,,...,v,} using a 1:1 mapping function
f :si—v;, i<n. Also, let the descendent-ancestor relations
of the sensor network be denoted as edges in this graph.

Fig. 2 illustrates an example which will be utilized
throughout the paper. The weights on the edges of the
figure define the workload of each respective node (as the
required time to propagate the query results between
the respective pairs). It is easy to see that the total time to
answer the query at the sink in the given network is at

. . . 40 30 29
least =99, since the critical path is sp<Ss;<53<ss.

Having this information at hand, enables the scheduling of
transmission between sensors. In particular, consider sqg
that operates solely in reception mode. Given that the
maximum workload it expects from its only child s; is 40,
So only needs to enable its transceiver in the interval
[59..99]. Similarly, s;, which operates in both transmission
and reception modes, needs to enable its transceiver for
listening during the interval [29..59] to accommodate the
most demanding child s; with workload 30. Additionally,
it needs to enable its transceiver for transmitting to its
own parent during the interval [59..99]. Consequently, s;

Sink (sq) [Critical Path
T 40 30 29
40 S0 < 851 53 < g
v =99
137 30 2
11y 229 4

560 o) 6

Fig. 2. Nine sensing devices (shown as vertices) and the respective
workload between them (shown as edges) in order to answer some
continuous query Q at the sink (sp). The WART algorithm utilizes this
information in order to locally adapt the waking window of each device
using the Critical Path Method.

272 P. Andreou et al. / Information Systems 36 (2011) 267-291

needs to keep its transceiver enabled during the interval
[29..99]. A similar intuition also applies to other nodes.

Note that although the listening interval for each
sensor s; (i <n) will be scheduled by our approach, each
sensor also keeps track of which children s; (j <n) have
already responded. When all children s; (j<n) have
reported their results to their parent then the parent
node s; (i <n) can immediately turn off its receiver as it
does not expect any additional results from the s;'s (j <n).
Yet, it is obligated to wait for the right listening interval of
its parent (i.e., parent(s;)) before proceeding with the
transmission of its own result. Finally, we would like to
point out that a sensor s; (i<n) might delay the
transmission if its results for a number of reasons (e.g.,
sensor malfunction). In these cases, s; will enable its
transceiver only if it can catch the listening interval of its
parent node (as the parent of s; (i<n) will only be
available during the given time interval).

Finally, note that the critical path allows a sensor s;
(i <n) to identify the interval during which its parent s;
(i<n) is expected to enable its own transceiver for
reception. This is very useful because in the subsequent
epochs and under a different workload than the one
utilized to compute its current 7 interval, s; can identify
with local knowledge if it can still deliver the new
workload without notifying s; to adjust its 7 interval.

It should be noted that the edges in Fig. 2 have
different weights. This is very typical for a sensor network
as the link quality can vary across the network [51].
Another reason is that some sensors might have a
different workload than other sensors. Note that our
scheduling scheme is distributed which makes it funda-
mentally different from centralized scheduling approaches
like DTA [62] and TD-DES [8] that generate collision-free
query plans at a centralized node. Additionally, our
approach is also different from techniques such as [45]
which segment the sensor network into sectors in order to
minimize collisions during data acquisition.

Although the proposed approach significantly reduces
the energy consumption of the sensors by scheduling
communication activities based on the workload, it still
does not take into account the fact that the tree topology
might be unbalanced. To facilitate our description, consider
the example depicted in Fig. 3 (left), which illustrates the
initial ad hoc query routing tree T created on top of a 10-
node sensor network with the First-Heard-From approach.
In the example we observe that node s, is inflicted with a
high workload (i.e., 5 child nodes) while other nodes at the
same level (i.e., s3 and s4), only have zero and one child
nodes, respectively. Notice that both sg and s;o are within
communication range from s3 (i.e,, the dotted circle), thus
these nodes could have chosen the latter one as their parent.
Unfortunately, the FHF approach is not able to take these
semantics into account as it conducts the child-to-parent
assignment in a network-agnostic manner. Additionally,
unbalanced topologies pose some important energy con-
sumption challenges which are summarized as follows:

e Decreased lifetime and coverage: Since the majority of
the energy capacity is spent on transmitting and

Sink (so) Sink (so)

KT
ﬁ@h o %

EEHEHE

Fig. 3. Left: The initial ad hoc query routing tree constructed using the
First Heard Frommethod. Right: The optimized workload-aware query
routing tree constructed using the in-network ETC balancing algorithm.

receiving data, the available energy of sensors with a
high workload will be depleted more rapidly than the
others. For example, in Fig. 3 (left) sensor s,’s energy
will be depleted 93/12=7.75 faster than sz, that
is (MG (s;, 52)+ (52, 51)) /(oG " (s, 53)+ (53, 51)),
and 3.72 times faster than s, (i.e., 93/25). In addition,
if sy’s energy is depleted and no alternate parents are
available for sensors ss_; then the coverage of the
network will be reduced dramatically.

e Increased data transmission collisions: An unbalanced
workload increases data transmission collisions which
represent a major source of energy waste in wireless
communication. Our micro-benchmarks on the CC2420
radio transceiver, presented in Section 7.1, unveil that
crowded parent hubs like s, might yield loss rates of up
to 80%, thus inflicting many re-transmissions to success-
fully complete the data transfer task between nodes.

3.2. Outline of operation

We shall now outline the operation of our framework
in which the execution of the ETC algorithm is succeeded
by the execution of the WART algorithm. In particular, the
ETC algorithm is executed as a two step process that is
summarized as follows:

(1) Discovery phase: In this phase, the sink queries the
network for the total number of sensors n and the
maximum depth of the routing tree d. When variables
n and d are received, the sink calculates a uniform
Optimal Branching Factor (f3) for each sensor.

(2) Balancing phase: In this phase, the sink disseminates
the f value back to the n nodes. Upon receiving f3,
each sensor conducts a number of local rearrange-
ments to its local topology in order to create a near-
balanced topology (a formal definition is provided in
Section 5.1).

As soon as the ETC module completes the reconstruc-
tion of the query routing tree, our framework executes the
WART algorithm which disseminates the continuous
query Q to the network. WART then determines the
period during which each s; should wake up and the

P. Andreou et al. / Information Systems 36 (2011) 267-291 273

precise duration of this wake-up. In particular, WART is
executed as a 3-phase process that is summarized below:

(1) Construction phase: In this phase, the sink constructs a
query routing tree and then queries the network for
the total workload value .

(2) Dissemination phase: The sink disseminates i to the
network and each sensor tunes its waking window
accordingly.

(3) Adaptation phase: This phase is executed either
periodically or when a topology change occurs. With
this step each sensor adapts its waking window t
according to the new workload.

The next two sections will provide a more thorough
description of the individual steps of our algorithms.
Although the WART algorithm succeeds the operation of
the ETC algorithm we shall present them in opposite order
as the WART algorithm determines the most significant
energy savings in the MicroPulse® framework.

4. The Workload-Aware Routing Tree (WART) algorithm

In this section we describe the first algorithm of the
MicroPulse® framework, coined WART. The objective of
the WART algorithm is to generate a time synchronized
topology in which sensing devices know exactly their
waking window (i.e., they know when and for how long
they should enable their transceiver). We start out with
background work on waking window mechanisms in
popular data acquisition systems such as TAG [34,35] and
Cougar [59] and then describe the steps of our WART
algorithm. For the subsequent sections let us assume that
some arbitrary query Q has already been disseminated to
the n sensors of the wireless sensor network.

4.1. Preliminaries and background

In this subsection we will describe the waking window
mechanism of the TAG and Cougar frameworks.

Tiny Aggregation (TAG): In this approach, the epoch e is
divided into d fixed-length time intervals {eq,eo, ...,eq},
where d is the depth of the routing tree rooted at the sink
that conceptually interconnects the n sensors. The core idea
of this framework is summarized as follows: “when nodes at
level i+1 transmit then nodes at level i listen”. More formally, a
sensor s; enables its transceiver at time instance w; = |e/d]
(d—depth(s;)) and keeps the transceiver active for t; = |e/d]
time instances. Note that Z?: 4(€), where e; defines
the epoch at level i, provides a lower-bound on e, thus the
answer will always arrive at the sink before the end of the
epoch. Setting e as a prime number ensures the following
inequality E?: 4(ei) <e, which is desirable given that the
answer has to reach the sink at time instance e.

For instance, if the epoch is 31s and we have a three-
tier network (i.e., d=3) like Fig. 4 (top, left), then the epoch
is sliced into three segments {10, 10, 10}. During interval
[0..10), nodes at level 3 will transmit while nodes at level 2
will listen; during interval [10..20) level 2 nodes transmit
while level 1 nodes listen; and finally during [20..30), level

TAG sink Cougar
sink
Level 0
Level 1
d d
Level 2 t
Level 3
0 e 0 e
Micropulse sink
Level 0
d
Level1 [Listening
Level 2 Il Processing
Level 3 [Transmitting
0 e

Fig. 4. The waking (listening) window (7) in TAG, Cougar and
MicroPulse*’s WART algorithm.

1 nodes transmit and the sink (level 0) listens. Thus, the
answer will be ready prior the completion of time instance
31 which is the end of the epoch.

The parent wake-up window 7 is clearly an over-
estimation (in the above example 105s!) of the actual time
that is required to transmit between the children and a
parent. The rationale behind this over-estimation is to
offset the limitations in the quality of the clock synchro-
nization algorithms [34] but in reality it is too coarse.
In the experimental Section 7, we found that this over-
estimation is three orders of magnitudes larger than
necessary. Additionally, it is not clear how 7 is set under a
variable workload which occurs under the following
circumstances: (i) from a non-balanced topology, where
some nodes have many children and thus require more
time to collect the results from their dependents; and
(ii) from multi-tuple answers, which are generated because
some nodes return more tuples than other nodes (e.g.,
because of the query predicate).

Cougar: In this approach, each sensor maintains a child
waiting list that specifies the children for each node. Such a
list can be constructed by having each child explicitly
acknowledging its parent during the query dissemination
phase. Having the list of children enables a sensor to power
down its transceiver as soon as all children have answered.
This yields a set of non-uniform waking windows {t1,7, ...}
as opposed to TAG where we have a single T which is
uniform for all sensors (i.e., |e/d]). The main drawback of
Cougar is that a parent node has to keep its transceiver
active from the beginning of the epoch until all children
have answered. In particular, it holds that 7;>7; if
depth(v;) < depth(vj). In order to cope with children sensors
that may not respond, Cougar deploys a timeout h. To
understand the drawback of Cougar consider Fig. 4 (top,
right), where level 2 and level 1 nodes have activated their
transceivers at time instance zero and wait for the leaf
nodes to respond. If a failure at some arbitrary node x occurs
(e.g., at level 3) then each node on the path x— --- —sg has
to keep its radio active for h additional seconds.

A recent paper that proposes a scheduling algorithm
for wireless sensor networks has been presented in [3]. The
authors define a probabilistic model that allows the

274 P. Andreou et al. / Information Systems 36 (2011) 267-291

evaluation of the packet loss probability that results from
the reduced radio activity. Based on the probabilistic model,
the algorithm chooses the radio activity intervals that
achieve optimal probability of successful packet delivery
using three different strategies. The key differences between
MicroPulse® and this approach are (a) the proposed
approach assumes that only one channel can be active at a
given time whereas in our case all sensors that participate in
a continuous query are active, and (b) the scheduling of the
wake-up times is based on a probabilistic model whereas in
our model the scheduling is based on profiling recent
activity and determining the workload of each sensor. While
this approach might be beneficial in cases of snapshot
queries our approach is focused on continuous queries.

In the following three Sections 4.2-4.4, we will
detail the operation of the WART algorithms we propose
in this paper. In particular, we will describe the construc-
tion phase, the dissemination phase and the adaptation
phase.

4.2. WART phase 1: construction

The first phase of the WART algorithm starts out by
having each node select one node as its parent. This
results in a waiting list similar to Cougar [59]. To
accomplish this task, the parent is notified through an
explicit acknowledgment or becomes aware of the child’s
decision by snooping the radio.

In the next step, each sensor profiles the activity of the
incoming and outgoing links and propagates this informa-
tion towards the sink. In particular, each sensor s; executes
one round of data acquisition by maintaining one counter
for its parent connection (denoted as s‘) and one counter
per child connection (denoted as sﬁg). where j denotes the
identifier of the child. These counters measure the workload
between the respective sensors (as the required time to
propagate the query results between the respective pairs)
and will be utilized to identify the critical path cost in the
subsequent epochs. Note that these counters account for
more time than what is required had we assumed a
collision-free MAC channel. Additionally, it is important to
mention that we could have deployed a more complex
structure rather than the counters s and s}j’, that would
allow a sensor to obtain a better statistical indicator of the
link activity, but these ideas are outside the scope of this
paper. By projecting the time costs obtained for each edge to
a virtual spanning tree creates a distributed Query Routing
Tree similar to the one depicted in Fig. 2.

The final step is to percolate these local edge costs to
the sink by recursively executing the following in-net-
work function f at each sensor s;:

if s; is a leaf,
fsi)= maXVjechildren(Si)(f(Sj)+S;:3v) otherwise.
The critical path cost is then f{(sy) (denoted for brevity as
). Using our working example of Fig. 2, we will end up
with the following values: f(Ss<;j<9)=0, f(s4)=4,
fls3) =29, f{s2) =11, f(s1) = 59 and ¥ = f(s9) = 99.

4.3. WART phase 2: dissemination

In this phase each sensor s; (i < n) locally defines three
parameters using the critical path cost ;. These para-
meters enable s; to derive: (i) the time instance during
which it should wake up (i.e., w;), (ii) the interval during
which it should listen for readings and to transmit results
(i.e., 7;), and (iii) the workload increase tolerance of the
parent of s; (i.e., 4;) which signifies when the synchrony of
the query routing tree might be disrupted.

Algorithm 1 presents the main steps of this procedure
which propagates ; top-down, from the sink to the leaf
sensors, with a message complexity of O(n). The first step
aborts the case where the critical path is larger than the
epoch (which signifies an error in the user query). The
second step calculates the wake up time instance w;, such
that s; has enough time to collect the tuples from all its
children s; (Vj € children(s;)). In practice, this is defined by
the child of s; with the largest workload (i.e., s™qxchia)-
The second step also defines the waking window of ;,
which is the complete window during which s; will enable
its transceiver. In the third step, the children of s; are
notified with the adjusted critical path cost (i.e., 1//—5;?“‘).
Concurrently with step three, s; also notifies its children s;
with the workload increase tolerance of s; (i.e., 4;) and
a flag which signifies whether these nodes belong to the
critical path. Thus, s; can intelligently schedule its
transmissions in cases of local workload deviations.

Algorithm 1. WART dissemination phase

Input: n sensing devices {s1,53, ..., Sy} and the sink sy, the Critical Path
cost y, the epoch e.
Output: A set of n waking windows t; (i < n), wake-up time
instances w; (i < n) and workload increase tolerance thresholds 4;
(i<n)
Execute these steps beginning from s, (top-down) and assuming
that =
(1) If ; > e then abort “The Critical Path is larger than the Epoch”.
(2) For each child s; of s; (Vs; € children(s;)), find the maximum s§§.
The child with the maximum s is denoted as s{%axchiia. The
wake time w; is calculated as follows:

Wi =i =S axchitg—a—b—C, (1)

where a, b and c are three variables which offset the costs of
processing, the inaccurate clock and collisions at the MAC layer,
respectively.

The waking window of s; is the interval:

Tj = (Wi Wi+ S cnita + 7)) @)

3

Disseminate the following information to each s;’s child s;
(Vj € children(s;)):
(a) The value ;.

Upon receiving y;, each s; computes its own y; as follows:

vy =i—s 3)

(b) The value s:‘.'tlnaxc_hilm

Upon receiving sifnaxchiia» €ach s; utilizes this value to define
the workload increase tolerance (/;) of s; as perceived by s;, as
follows:

7. oin out
4§ = Si maxchild —Sj 4)

(4

Repeat steps 2-5, recursively until all sensors in the network
have set w;, 7; and /;, respectively (i <n).

P. Andreou et al. / Information Systems 36 (2011) 267-291 275

To facilitate our presentation we will now simulate
the execution of Algorithm 1 on the example of Fig. 2. To
simplify the discussion, assume that the costs a, b and ¢
(which account for processing, the inaccurate clock and
the collisions at the MAC layer) are all equal to zero.
Additionally, assume that the critical path cost is small
enough to fit within the epoch (i.e., ¥ <e). In particular,
with =99 we get the following quadruples (s;, w;, Tj, 4;)
at each sensor: {(so,59,[59..99),0), (51,29,[29..99),0),
(52,46,[35..59),17), (s3,29,[0..59),0), (s4,37,[33..63),8),
(ss5,35,[35..46),0), (s 39,[39.46),4), (57,27,[27..29),27),
(s8,0,[0..29),0), (so,33,[33..37),0)}.

To understand the benefits of the workload increase
tolerance parameter /;, consider the scenario where node
s; increases its workload by 15 time instances. Since
A7 =29-2 =27, s; knows that the transceiver of its parent
s3 is enabled for 27 additional time instances, thus s; can
start delivering the workload earlier (i.e., w,;=12 instead
of w;=27) succeeding in completing the transmission
on-time.

4.4. WART phase 3: adaptation

In this section we describe an efficient distributed
algorithm for adapting the WART query routing tree in
cases of workload changes.

First notice that the naive approach to cope with
workload changes is to re-construct the WART tree in every
epoch. The message cost of such an approach is analyzed as
follows: the WART construction phase has a message
complexity of O(1) as it can be executed in parallel with
the acquisition of data tuples from sensors (i.e., the critical
path cost can be piggybacked with data tuples). The
dissemination phase on the other hand has a message
complexity of O(n) as it requires the dissemination of the
critical path cost to all n nodes in the network. The algorithm
we propose in this section can circumvent the O(n) cost
incurred by the dissemination phase in every epoch by
deploying a set of rules we describe in the next algorithm.

Algorithm 2 presents the WART adaptation algorithm
which proceeds in three steps. The first step of the
algorithm (lines 2-11) calculates the workload indicators
of the current epoch (i.e., workload;) and the previous
epoch (i.e., workload;). If the workload has changed by
more than a user defined user threshold ¢ in line 9, we
consider this change as significant and proceed with the
adaptation of the routing tree in line 12. Otherwise, we
disregard this deviation and abort the algorithm. Assum-
ing a significant deviation, step 2 in line 12 handles the
case where the change occurs on the critical path. In such
a case, s; has to request the re-construction of the routing
tree using the construction and dissemination phases.
For instance, if the workload of s; changes from 30 time
instances to 35 time instances (see Fig. 2) then this will
trigger the re-construction of the WART routing tree and
this change should be propagated to all nodes in the
network. Although this case is possible, our experimental
study in Section 7 has shown that it is not frequent.

Finally, step 3 of Algorithm 2 (lines 17-26) handles the
more common case where the change does not occur on the

critical path. In such a case, if the workload is decreased by x
(line 18) then a sensor locally delays its wake up variable by
x (i.e., to w; + x). For instance, if the workload of s, drops
from 13 to 11 (thus, x=2), then w5*V=w, + x=46 + 2=48.
Similarly if the workload is increased by x (line 20) then
there are two cases: (i) the increase is less or equal to the
slack 4; and (ii) the increase is greater than the slack 4.
For the first case (i) consider a workload increase at s,
from 13 to 18 (thus, x=5 that is smaller than 1, =17).
This yields the following adaptation of the wake up time
wh®=w; —x=46 —5=41. For the second case (ii) consider a
workload increase at s, from 13 to 32 (thus, x=19 that is
larger than A, =17). This yields the re-construction of the
tree as such an increase might potentially create a new
critical path.

Algorithm 2. WART adaptation phase

Input: A sensor s;, the critical path value ;, the wake-up time w;, the
waking window t;, a flag which indicates if s; lies on the critical path,
an error threshold o.

Output: An updated set of w;, 7; and /; values.

1: procedure Adapt(s;)

2 > Step 1: Calculate Workload Indicators

3 workload;=y;—w;; > Workload of previous epoch
4: for j=1 to children(s;) do

5: add(tuples(s;), workload;); > Build new workload
6: end for

7 add(tuples(s;), workload;); > Append local tuples
8: x = |workload;—workload;| > Workload Deviation
9: if (x < J) then

10: signal(finished); > Negligible Workload Change
11: end if

12: > Step 2: Important Workload Change on the CP

13: if (cp;) then

14: send(“Critical Path Re-construction”, s;);

15: signal(finished);

16: end if

17: > Step 3: Important Work Change NOT on the CP

18: if (workload; decreased by x) then

19: w;=w; + x; > Adjust local wakeup time

20: else > Workload was Increased by x

21: if (x < /;) then > x is less than the available slack
22: w;=w; —x; > Adjust local wakeup time

23: else

24: send(“Request Critical Path Re-construction”, s;);
25: end if

26: end if

27: signal(finished);
28: end procedure

5. Energy-driven Tree Construction (ETC) algorithm

Even though the proposed WART algorithm can
efficiently solve the waking window problem it does not
optimize the query routing tree and that leads to
increased collisions during data transmission. In this
section we describe the second algorithm of the Micro-
Pulse® framework coined ETC. Assuming an arbitrary
query routing tree Tinp,: constructed using the FHF
approach, the objective of ETC is to transform Tipp,, into
a near-balanced tree Tgrc in a distributed manner. We
start out with some definitions on balanced trees and
then present the ETC algorithm both in a centralized setup
and a distributed setup. Notice that the ETC algorithm
logically precedes the operation of the WART algorithm

276 P. Andreou et al. / Information Systems 36 (2011) 267-291

but we choose to present them in opposite order as the
WART algorithm determines the most significant energy
savings in our framework.

5.1. Preliminaries and background

In this section we will provide an overview of balanced
trees in order to better frame the problem the ETC
algorithm seeks to solve. As we have already mentioned in
the motivation of this work, balanced trees have the
following desirable properties: (i) they decrease collisions
during data transmission, and (ii) they decrease query
response times and (iii) they increase system lifetime and
coverage. Balanced trees can improve the asymptotic
complexity of insert, delete and lookup operations in
trees from O(n) time to O(logy,n) time, where b is the
branching factor of the tree and n the size of the tree. We
shall next provide some formal definitions to be utilized
in our description:

Definition 1 (Balanced tree (Tpqianced))- A tree where the
heights of the children of each internal node differ at most
by one.

The above definition specifies that no leaf is much
farther away from the root than any other leaf node. For
ease of exposition consider the following directed tree:
T,=(V,E)=({A,B,C, D}, {(B,A),(C,A), (D, B)}), where the pairs
in the E set represent the edges of the binary tree. By
visualizing T;, we observe that the subtrees of A differ by
at most one (i.e., |height(B)—height(C)|=0) and that the
subtrees of B differ again by at most one (i.e,
|height(D)—height(NULL)| = 1). Thus, we can characterize
T; as a balanced tree.

Notice that V has several balanced tree representations
of the same height (e.g., the directed tree T>=({A,B,C, D},
{(B,A),(C,A),(D,(C)})). Similarly, V has also many balanced
tree representations of different heights (e.g., the directed
tree Ts3=({A,B,C,D},{(B,A),(C,A),(D,A)}) which has a
height of one rather than two). Finally, in a balanced tree
every node has approximately f children, where f is equal
to /n (the depth of every balanced tree is d =logg n, thus
p%=n and B=¥n). The ETC algorithm presented in this
section focuses on the subset of balanced trees which
have the same height to Tip, as this makes the
construction process more efficient.

In order to derive a balanced tree (Tpaanced) iN a
centralized manner we could utilize the respective
balancing algorithms of AVL Trees, B-Trees and Red-Black
Trees. However, that would assume that all nodes are
within communication range from each other which is not
realistic. Thus, the ETC algorithm seeks to construct a
Near-Balanced tree (Tpear paianced)> defined as follows:

Definition 2 (Near-Balanced tree (Tnear baianced))- A tree in
which every internal node attempts to obtain a less
or equal number of children to the optimal branching
factor f.

The objective of Thear palanced 1S to yield a structure
similar to Tpqiances Without imposing an impossible net-
work structure (i.e., nodes will never be enforced to

connect to other nodes that are not within their commu-
nication range). We shall later also define an error metric
for measuring the discrepancy between the yielded
Thear_balancea and the optimal Tpgianceqs. We will additionally
show in Section 7.3.1 that constructing Tpear paianced With
the ETC algorithm yields an error of 11% on average for the
topologies utilized in this paper.

5.2. The Centralized ETC (CETC) algorithm

Let us first devise an algorithm for constructing a
near-balanced query routing tree in a centralized manner.
In particular, we will devise the Centralized ETC (CETC)
algorithm, which obtains global knowledge before pro-
ceeding into the generation of the near-balanced tree
(the tree will be denoted for clarity as Tcgrc). We show
that such a centralized solution poses an extremely high
complexity rendering it inefficient for wireless sensor
networks. This necessitates the use of a lower complexity
distributed approach. For this, we devise in the next
section the distributed ETC algorithm that constructs a
structurally similar tree to Tcgrc in a distributed manner.

The CETC algorithm consists of three steps:

(1) A sink (sg) node executes an in-network query in
order to acquire the initial input tree Ty, and the
alternative parent list of each sensor. The alternative
parent list will be useful in defining a set of parent re-
assignments that can lead to Tcgrc.

(2) The sink sg conducts an exhaustive search of all
possible Tcerc trees and estimates their balancing
error w.r.t. the optimal Tpqianceq tree. It finally chooses
the one with the least cost using the Balancing_Error
formula presented in Section 7.3.1.

(3) The sink sq disseminates the identified tree back to the
n nodes so that these can make the required
adjustments.

It is easy to see that the first step of the CETC algorithm
has a message complexity of O(n) (i.e., each node will
transmit exactly one message) but each message has a
size of O(n?) (i.e., in a fully connected graph each node
will have n—1 alternate parents). The second step is
conducted on the sink node and requires in the worst
case to explore the complete solution space which has
a size of O(n?!. Note that the CETC algorithm is a
computationally intensive algorithm and therefore the
second step of the algorithm might end up delivering a
solution which does not match the initial acquired state of
the network that was acquired in step 1 (as the network
state might have changed). Finally, the algorithm needs to
propagate the solution back to the n nodes and that has
again a message complexity of O(n) with each message
being O(n?).

5.3. The distributed ETC algorithm

The ETC algorithm presented in this section overcomes
the problems of the Centralized ETC algorithm by
conducting the calculation of the optimized routing tree

P. Andreou et al. / Information Systems 36 (2011) 267-291 277

in a distributed manner. In particular, given an arbitrary
query routing tree Tinpy the objective of ETC is to transform
Tinpur into a near-balanced tree Tgrc in a distributed
manner. The ETC algorithm consists of a discovery and
distributed balancing step which are described next.

5.3.1. ETC phase 1: discovery

The first phase of the ETC algorithm starts out by
having each node select one node as its parent using the
FHF approach. During this phase, each node also records
its local depth (i.e., depth(s;)) from the sink. Notice that
depth(s;) can be determined based on a hops parameter
that is included inside the tree construction request
message. In particular, the hops parameter is initialized
to zero and is incremented each time the tree construc-
tion request is forwarded to the children nodes of some
node. A node s; also maintains a child node list children
and an alternate parent list APL according to the
description we provided in Section 2.

The sink then queries the network for the total number
of sensors n and the maximum depth of the routing tree d.
Such a query can be completed with a message complex-
ity of O(n). When variables n and d are received, the sink
calculates, similar to the CETC algorithm, the Optimal
Branching Factor ().

5.3.2. ETC phase 2: balancing

The second phase of the ETC algorithm involves the
top-down reorganization of the query routing tree Tinpy
such that this tree becomes near-balanced. In particular,
the sink disseminates the f value to the n nodes using the
reverse acquisition tree. When a node s; receives the f
value from its parent s, it initiates the execution of the
CETC algorithm in which s; will order parent re-assign-
ments for its children. The presented algorithm is divided
into two main steps: (i) lines 3-8: s;’s connection to its
newly assigned parent newParent; and (ii) lines 9-25: the
transmission of parent reassignment messages to children
nodes, in which the given nodes are instructed to change
their parent.

In line 2 of the CETC algorithm each node s; (Vs; € S—sg)
waits in blocking mode until an incoming message
interrupts the receive() command. When such a message
has arrived, s; obtains the f value and the identifier of its
newParent. The next objective (line 4) is to identify
whether newParent is equal to NULL, in which case s;
does not need to change its own parent (i.e., we proceed
to line 9). On the contrary, if newParent has a specific node
identifier then s; will attempt to connect to that given
node (lines 4-8). Notice that if newParent cannot
accommodate the connect request from s; then the
procedure has to be repeated until completion or until
the alternative parents are exhausted.

In line 9 we proceed to the second step of the
algorithm in which s;’s children might be instructed to
change their parent node. We choose to do such a
reassignment at s;, rather than at the individual child s;,
because s; can more efficiently eliminate duplicate parent
assignments (i.e., two arbitrary children of s; will both not
choose newParent). In line 10 we skip s; if the number of
children is less than f. In the contrary case (line 14), we

have to eliminate |children(s;)|—f children from s;. Thus,
we iterate through the child list of s; (line 16) and attempt
to identify a child s; that has at least one alternate parent
(line 17). If an alternative parent cannot be determined for
node s; then it is obviously not meaningful to request a
change of s;’s parent (line 22).

Algorithm 3. ETC balancing algorithm

Input: A node s;; The children-list of s; (denoted as children(s;)); The
alternate parent list for each child of s; (denoted as APL(s;), where
s; € children(s;)); The Optimal Branching Factor f§; The new parent s;
should select (denoted as newparent(s;)).

Output: A Near-Balanced Query Routing Tree Tcgrc.

Execute these steps beginning at s, (top-down):

1: procedure Balance_Tree (s;; children(s;); v:,echimren(s,)APL(Sj)i)

2: (B,newParent)=receive(); > Acquire info from s;'s
parent.
3: > Step 1: Connect to new parent if needed
4: while (newParent!=NULL) do
5: if (!connect(newParent)) then > Cannot become a child of
newParent.
6: newParent=getNewParent(parent(s;)) > Involves 1

round-trip. Parent returns NULL if no new Parent is
available (in which case s; stays with its current parent).

7: end if

8: end while

9: > Step 2: Adjust the parent of the children nodes.

10: if (|children(s;)| < = 8) then > Skip s; as no change is
necessary.

11: for j=1 to |children(s;)| do

12: send(f,NULL,s;); > Send f and no newParent

to child.

13: end for

14: else > Ask |children(s;)|—f nodes to change their parent.

15: while (|children(s;)| > f3) do

16: sj=getNext(children(s;));

17: if (|APL(sj)| > 1) then

18: newParent=AlternParent(APL(s;), s;);

19: send(f5,newParent,s;); > Send to s;.

20: children(s;)=children(s;) — s; > Remove from

children.

21: else

22: send(f,NULL,s;); > Report No change.

23: end if

24: end while

25: end if

26: end procedure

Let us now simulate the execution of the ETC algorithm
using the illustration of Fig. 3. In particular, Fig. 3 (left)
displays n=10 sensors arranged in an ad hoc topology
Tinpue With a depth d=2. In order to transform Tjppy: into a
near-balanced topology each node has to obtain approxi-
mately f=3.16 children (i.e., <10). To simplify our
discussion, but w.l.o.g., let us assume that the only
sensors with multiple entries in their alternate parent
list (APL) are sg and s1o. In particular, assume that we have
the following values: APL(sg)={s3} and APL(s¢)={s3}.

The ETC algorithm is initiated at the sink node sq. Since
so has less than f=3.16 children it transmits £ and
newParent=NULL to its only child s;. Similarly, s;
transmits f# and newParent=NULL to its children s, s3
and s, Let us now consider s, which receives the above
parameters in line 2 of Algorithm 4. Since newParent =
NULL, S» does not need to change its parent (lines 3-8).
It has to however instruct some of its children to change

278

their parents as | children(sy)| > f. Thus, it processes
its children nodes in sequential order, starting at ss and
ending at sqq, instructing some of them to change their
parent. In particular, ss_g are instructed to retain their
initial parent while sg and s;o are instructed to change
their parent to s3 (i.e., they receive the messages
send(3.16,s3,53) and send(3.16,s3,510), respectively). In
our example s3 can accommodate sg's and s1¢’s request as
|children (s3)|=0. Under different conditions, however,
satisfying such requests might not be possible. Thus, each
node might request from its parent another alternative
parent (i.e., lines 5-7). The updated near-balanced tree
Terc is presented in Fig. 3 (right).

6. Experimental evaluation methodology

In this section we describe our experimental metho-
dology which involves both a set of real micro-bench-
marks on the CC2420 radio chip [52], utilized on MICAz,
TelosB and IMote2 sensing devices, and a set of trace-
driven simulations with real datasets from Intel Research
Berkeley and UC-Berkeley. The experimental evaluation
described in this section focuses on three parameters: (i)
the Energy Construction Cost, for creating the WART and
ETC structures proposed in this paper, (ii) the Energy
Maintenance Cost, for maintaining the two structures
between consecutive epochs and (iii) the Balancing Error,
for the construction of the near-balanced tree with the
ETC algorithm. We shall next describe the sensing device
used in the experiments, the respective datasets and
query workloads.

6.1. Sensing device

We use the energy model of Crossbow’s TelosB [11,42]
research sensor device to validate our ideas (see Fig. 5
(left)). TelosB is an ultra-low power wireless sensor
equipped with an 8 MHz MSP430 core, 1 MB of external
flash storage, and a 250kbps Chipcon (now Texas
Instruments) CC2420 RF Transceiver that consumes

Y-axis

P. Andreou et al. / Information Systems 36 (2011) 267-291

23 mA in receive mode (Rx), 19.5mA in transmit mode
(Tx), 7.8 mA in active mode (MCU active) with the radio
off and 5.1 pA in sleep mode. Our performance measure is
Energy, in Joules, that is required at each discrete time
instance to resolve the query. We utilize a failure rate of
20% in our trace-driven experiments in order to simulate
failures. In particular, a sensor has a probability of 0.2 to
not participate in a given epoch.

6.2. Experimental testbed

We have implemented MicroPulse® in nesC [16], the
programming language of TinyOS [23]. TinyOS is an open-
source operating system designed for wireless embedded
sensor nodes. It was initially developed at UC-Berkeley
and has been deployed successfully on a wide range of
sensor devices (e.g., Mica, Telos, IMote2, RISE [5] mote,
etc.). TinyOS uses a component-based architecture that
enables programmers to wire together in on-demand
basis the minimum required components. This minimizes
the final code size and energy consumption as sensor
nodes are extremely power and memory limited. nesC
[16] is the programming language of TinyOS and it
realizes its structuring concepts and its execution model.

To compare our MicroPulse® framework with TAG and
Cougar, we have implemented stripped-down editions of
these protocols according to the description provided in
Section 4.1. We did not choose to use the TAG imple-
mentation (integrated within TinyDB) as there was no
practical way to separate its implementation from the
rest system due to low-level implementation details.
Additionally, Cougar never emerged to an open source
implementation stack.

We utilize the TOSSIM [31] environment to conduct
realistic simulations of our code when required. TOSSIM
[31] provides a scalable, high fidelity simulation environ-
ment of TinyOS sensor networks. It simulates the TinyOS
network stack, allowing experimentation with low-level
protocols in addition to top-level application systems. In
order to conduct fine-grained power modeling in TOSSIM,

Intel54 Dataset - Mote Locations

35 T T T T CIJ R T i T T
uery Routing Tree
28 6 38

30
25
20
15 47]

10

0 5 10 15 20 25 30 35 40 45
X-axis

Fig. 5. Left: Crossbow’s TelosB Mote (TPR2420). Our micro-benchmarks and trace-driven experiments utilize the energy model of the TelosB sensor
device and the CC2420 radio transceiver. Right: The location of the 54 sensors in the Intel54 dataset and an ad hoc query tree constructed using the FHF

approach.

P. Andreou et al. / Information Systems 36 (2011) 267-291 279

we use PowerTOSSIM [47], a popular power modeling
extension to TOSSIM. As TelosB is not part of the
PowerTOSSIM module, we had to extend PowerTOSSIM
by incorporating a new energy model for TelosB. Power-
TOSSIM has been shown [47,65], to be more than 90%
accurate. In particular, the authors in [47] measure the
energy for executing the demonstration examples
bundled with TinyOS both using PowerTossim and on
real sensors (measured with a multi-meter). The authors
show that this yielded an average error of only 4.7%.
Similar observations also apply for more complex applica-
tions like TinyDB and Surge that were shown to have an
error of 9.5% on average.

In addition to our base implementation, we have also
implemented a graphical user interface that allows us to
visualize the connectivity of query routing trees by
displaying sensor nodes in circles and the connections to
their parents using straight lines. Our simulation experi-
ments were performed on a Lenovo Thinkpad T61p PC
with an Intel Core 2 Duo CPU running at 2.4GHz and
2.0 GB of RAM.

6.3. Datasets

We utilize the following three realistic datasets in our
trace-driven experiments in order to simulate regular-
scale, medium-scale and large-scale wireless sensor
networks.

(i) Intel Research Berkeley (Intel54): This is a real dataset
that is collected from 58 sensors deployed at the
premises of the Intel Research in Berkeley [25] between
February 28 and April 5, 2004. The sensors utilized in
the deployment were equipped with weather boards
and collected time-stamped topology information
along with humidity, temperature, light and voltage
values once every 31s (i.e., the epoch). The dataset
includes 2.3 million readings collected from these
sensors. We use readings from the 54 sensors that
had the largest amount of local readings since some of
them had many missing values. More specifically, we
utilize the real coordinates of the 54 sensors (see Fig. 5
(right)). The depth of the initial query routing tree
constructed with the FHF approach is 14.

(ii) Great Duck Island (GDI140): This is a medium-scale
realistic dataset from the habitat monitoring project
deployed in 2002 on the Great Duck Island which is
15km off the coast of Maine [51], USA. We utilize
readings from the 14 sensors that had the largest
amount of local readings in order to synthetically
derive a sensor network composed of 140 nodes that
follows the same distribution with the initial dataset.
The GDI140 dataset includes readings such as: light,
temperature, thermopile, thermistor, humidity and
voltage. The average depth of the initial query routing
tree constructed with the FHF approach is 24.

(iii) Intel Research Berkeley (Intel540): In order to evaluate
our approach on a large-scale sensor network we
synthetically derive a 540-node network based on
the Intel54 dataset. The distribution of the dataset
follows again the same distribution with the Intel54

dataset. The average depth of the initial query routing
tree constructed with the FHF approach is 22.

The need of efficient query routing trees originates
from the fact that many applications require the acquisi-
tion of data from large-scale environments (e.g., Wireless
Sensor Networks, VANETSs, People-centric Sensing, etc.).
On the other hand, small-scale networks will possibly not
require any specialized communication structures as
these nodes might be only a few hops away from the
sink. Consequently, we focus our experimental evaluation
on these larger-scale network (i.e., 54 nodes, 140 nodes
and 540 nodes).

6.4. Query sets

We utilize three representative queries from two
predominant classes of queries in wireless sensor networks.

The first class of such queries is aggregate selection queries
[59,34] (i.e., SELECT agg () FROM sensors). Roughly, these
queries can be distinguished in: (i) distributive aggregates,
where records can be aggregated in-network without
compromising correctness (e.g., Max, Min, Sum, Count)
and (ii) holistic aggregates, where in-network aggregation
might compromise the result correctness (e.g., Median),
thus all tuples have to be transmitted to the sink before the
query can be executed. The separation between the above
cases is important as each individual case defines a different
workload per edge (i.e., distributive aggregates have a fixed
workload of one tuple per edge while holistic aggregates a
variable workload).

The second class of representative queries is non-
aggregate selection queries (e.g., SELECT moteid FROM
sensors). Assuming a static topology such queries
generate a fixed workload per edge, unless we apply a
predicate on the query (e.g., temperature>Xx) and
generate in this manner a variable workload per edge.

In our experiments we utilize the following query-sets
which encapsulate all the above cases:

e Single-Tuple queries (ST): where a sensor transmits
exactly one tuple per epoch. Distributive aggregates
belong to this category. We utilize the following
representative query in our study:

SELECT moteid, temperature

FROM sensors

WHERE temperature=MAX (temperature)
EPOCH DURATION 31 seconds

o Multi-Tuple queries with Fixed size (MTF): where a
sensor transmits a set on f tuples per epoch, where f is
a constant. Holistic aggregates and non-aggregate
selection queries with a fixed workload belong to this
category. We utilize the following representative query
in our study:

SELECT moteid, temperature
FROM sensors
EPOCH DURATION 31 seconds

e Multi-Tuple results with Arbitrary size (MTA): where a
sensor transmits a set of f’ tuples per epoch, where f’ is

280 P. Andreou et al. / Information Systems 36 (2011) 267-291

a variable that might change across different epochs.
Non-aggregate selection queries with a variable work-
load belong to this category. We utilize the following
representative query in our study:

SELECT moteid, temperature
FROM sensors

WHERE temperature > 39
EPOCH DURATION 31 seconds

Each query features an epoch duration which specifies
the amount of time that sensors have to wait before re-
computing the continuous query. Additionally, for the
Cougar and WART algorithms, we set the child waiting
timer h to 200 ms. If the timer for a sensor s; runs out then
s; will not wait for any more results from its children.
Such a timer is deployed to avoid situations where nodes
have to wait for children nodes for an unspecified amount
of time.

6.5. Communication protocol

Our communication protocol is based on the ubiqui-
tous for sensor networks IEEE standard 802.15.4 (the basis
for the ZigBee [67] specification used by most sensor
devices including the TelosB sensor device). ZigBee uses
the CSMA/CA collision avoidance scheme where a node
employs a random exponential back-off algorithm that
backs-off for a random interval of 0.25-0.5s before
retransmission. Although collisions might be handled at
a certain degree by the MAC layer [56], this scheme is
agnostic of the data semantics exhibited at the higher
levels of the communication stack. In this paper we
exploit these higher level semantics in order to yield
better collision handling.

Our data frames are structured as following [31]: Each
message is associated with a 5 Byte TinyOS header [30].
This is augmented with an additional 6B application layer
header that includes: (i) the sensor identifier (1B), (ii) the
message size (4B) and the depth of a cell from the
querying node (1B). In each message we allocate 2B for
environmental readings (e.g., temperature, humidity,
etc.), 4B for aggregate values (max, min and sum) and
8B for timestamps. ZigBee’s MAC layer dictates a max-
imum data payload of 104 bytes thus we segment our
data packets whenever this is required.

7. Experimental evaluation results

In order to assess the efficiency of the algorithms
presented in this paper we have conducted four experi-
mental series. In the first series we have conducted two
micro-benchmarks on the CC2420 radio transceiver in
order to quantify the transmission and reception ineffi-
ciencies in a real setting. In the second series we have
compared the energy consumption of the WART algo-
rithm to the respective algorithms deployed in the Cougar
and TAG frameworks under a variety of query workloads
and topologies. In the third series we have studied the
balancing error and the energy consumption of the ETC
algorithm and in the fourth series we have evaluated the

efficiency of the overall MicroPulse® framework focusing
on energy consumption and system lifetime.

7.1. Experimental series 1: micro-benchmarks

In the first experimental series we have conducted two
micro-benchmarks on the CC2420 radio chip [52] (both
attached to the TelosB [11] sensor and in TOSSIM [31]) to
justify why data reception and data transmission ineffi-
ciencies have to be optimized in current data acquisition
systems. For the first type of inefficiency we show why a
sensing device should not change the state of its
transceiver more than once during the interval of an
epoch. That supports our argument that query results
have to be communicated between sensors at a specific
time instance rather than at several time instances. For
the second type of inefficiency we justify why a sensor
network should minimize the number of hub nodes (i.e.,
nodes with several children) as these increase collisions
during data transmission and thus also increase energy
consumption.

In the first micro-benchmark we transfer 1000 16-byte
packets from a TelosB sensing device A to another TelosB
sensing device B and measure the energy consumption of
sensor A when this transfer is conducted in 1, 10, 100 and
1000 rounds, respectively. In particular, we configure
sensor B with an always-on transceiver and sensor A with
a transceiver that changes its state from on (STXON/
SRXON) to of £ (SRFOFF), 1 to 1000 times, respectively. In
order to measure the energy consumed by sensor A for the
above function we utilized a multi-meter, to measure the
circuit current, and we also measured the wall clock time
until the given operations completed successfully.

Fig. 6 (left) shows the result of the first micro-
benchmark. We observe that by changing the trans-
ceiver status 1000 times consumes 195p while
conducting the same operation one time requires only
128 pJ. Although in both cases we transfer precisely the
same amount of data, in the former case we spent 65%
more energy. This increase occurs even though the
CC2420 transceiver has very quick start-up times
compared to other transceivers. Notice that during the
startup of the RF module a voltage regulator and crystal
oscillator have to be started as well and become stable
[52]. Thus, it is quite inefficient to change the transceiver
state (from on to off and vice versa) more than once
during the interval of an epoch. The WART algorithm
presented in this paper assigns a specific time interval to
each child node during which query results have to be
transmitted to a parent node, thus the transceiver is
enabled only once.

In the second micro-benchmark we justify why a
sensor network should minimize the number of hub
nodes (i.e., nodes with a large in-degree). For this purpose
we construct 20 star topologies Net; (10>i>30) with
each of which features i children nodes, and evaluate the
loss rate when all children nodes attempt to transmit
data packets to a given sink node. In particular, each
node attempts to transmit a 16-byte packet to a given
sink node for 60s (that accounts to approximately

0 Evaluation of the receiver module (CC2420)

190

P. Andreou et al. / Information Systems 36 (2011) 267-291

]I»

180
170
160
150

140
I

130 R

120 - - - :
1 10 100 1000
Receiver status change frequency

Energy (nJ)

Loss Rate

57%
56%

Loss Rate for all topologies

55%
54%
53%
52% //
51%
50%
49%
48% L L L

10 15 20 25 30

Topology (Net;)

Fig. 6. Micro-benchmarks using the CC2420 communication module. Left: Changing the transceiver status from on to off many times significantly
increases energy consumption. Right: Increasing the number of children per node x also increases collisions during data transmission to node x.

250 messages in our setting). We utilized the TOSSIM
environment along with its LossyBuilder module that
created “lossy” radio models for each topology. The lossy
model we have created (for each of the topologies)
places the sensors at various distances from the sink
node and generates a Gaussian packet loss probability
distribution for each distance. TOSSIM then generates
packet loss rates for each sensor-sink pair by sampling
these distributions and translates this into independent
bit error rates.

For each topology Net; (10 > i > 30) we measure: (i) the
Total Packets Sent from all sensors to so (denoted as P!)
and (ii) the Total Packets Received from sq (denoted as P?).
We next evaluate each topology’s loss rate by using the
formula:

0
LossRate(Net;) = 1— (;) ®)
i

Fig. 6 (right) illustrates the loss rate for the 20 presented
topologies. We can observe an almost linear increase in
the loss rate for topologies with more than 10 children
nodes. For a setup of 30 children nodes we observe a
loss rate of over 56%. We tried to scale the experiments to
100 children nodes and observed that the loss rate peaked
at 77%. But even for smaller-scale cases, many data
packets do not reach their designated destination in the
first attempt and need to be re-transmitted (the energy
cost of this deficiency will be documented in the
subsequent experiments). It should be noted these
findings are highly correlated with the lossy model
generated by the TOSSIM'’s LossyBuilder component. More
pessimistic lossy models would have generated even
higher loss rates. However, investigating the results of
our experiments indicates that nodes closer to the sink
node manage to transmit more messages successfully and
that is why the loss rates may appear somewhat
optimistic. The MicroPulse* algorithm presented in this
paper distributes the children of overloaded nodes to
neighboring nodes and assigns different wake-up times
decreasing in that way data transmission collisions and
energy consumption.

7.2. Experimental series 2: evaluation of the
WART algorithm

In the second experimental series we assess the
efficiency of the WART algorithm in isolation from the
ETC algorithm, presented in Section 7.3, in order to highlight
the distinct properties of WART (in Section 7.4 we shall also
present them in conjunction). Additionally, we will measure
the energy of the radio transceiver independently from the
rest of the components (flash, data acquisition board, etc.) in
order to more accurately capture the differences between
the presented algorithms.

7.2.1. Energy consumption of WART

We study the energy consumption of the WART,
Cougar and TAG algorithms for the different combina-
tions of query sets (ST, MTF and MTA) to datasets (Intel54,
GDI140 and Intel540) as these were described in
Section 6.

Energy consumption for single-tuple answers: Fig. 7
(top-left) shows the energy consumption for the Intel54
dataset using the single-tuple query ST. We observe that
TAG requires 11,227 +2mJ, which is two orders of
magnitudes more energy than the energy required by
WART (i.e., only 53 + 35 m]j). This is attributed to the fact
that the transceiver of a sensor in TAG is enabled for
~2.14s in each epoch (i.e., |e/d] =31 (epoch duration)/
14 (tree depth)), while in WART it is only enabled for
~ 146 ms on average. Enabling the transceiver for over
two seconds in TAG is clearly the driving force behind its
inefficiency. Fig. 7 (top-left) also shows that the WART
energy curve quickly drops to the mean value of 53 m]J
within the first epoch (i.e., the sudden drop at the
beginning of the curve). Notice that WART runs very
much like Cougar during the first epoch but our algorithm
then intelligently exploits the waking window cost to
preserve energy.

Fig. 7 (top-left) also shows that the Cougar algorithm
requires on average 882 + 250 mJ, which is one order of
magnitude more than the energy required by WART. The
disadvantage of the Cougar algorithm originates from the

282

P. Andreou et al. / Information Systems 36 (2011) 267-291

Energy Consumption for Query Set:
ST (for all n sensors)
Dataset:Intel54, n=54, d=14, e=31,

link=250kbps
100000 3 T T T T T T T TAG T
F —_—
F COUGAR -------
[WART ----x--
10000 €
= :
£ [
> x X X x X A
B 1000 Bl nx st W e Sl g
@ i * i ¥ i
w ;
100 [:

10 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Epoch Number

Energy Consumption for Query Set:
MTF (for all n sensors)
Dataset:Intel54, n=54, d=14, e=31,

link=250kbps
100000 T T T T T T T T T T
TAG ——
COUGAR ---x---+
WART =%
—~ 10000 ¢ E
3
E
S8 X
£ 1000 B B Pt pun 25t o % ol (KIS0
100 [;
10 L L L L L L L L L L

0 100 200 300 400 500 600 700 800 900 1000
Epoch Number

Energy Consumption for Query Set:

MTA (for all n sensors)
Dataset:Intel54, n=54, d=14, e=31,

link=250kbps
100000 T T T T T T T
COUGAR v
WART ----%e---
10000
€
= X & % 5 R w0
8 1000 Puistaeenl™y &‘&ﬁ;&s&wﬁ*‘@*"fg‘x’?f% it xf‘s‘ix,ﬁ
Lﬁ A
100 .
10 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000

Epoch Number

Fig. 7. Energy consumption for single-tuple (top-left) and multi-tuple (top-right and bottom) answers. The plots indicate the individual results for the
TAG, Cougar and WART data acquisition algorithms. In all figures we observe that WART is at least one order of magnitude more efficient than its

competitors.

fact that the parents keep their transceivers enabled until
all the children have answered or until the local timer h
has expired (in cases of failures). Thus, any failure is
automatically translated into a chain of delayed waking
windows all of which consume more energy than
necessary. One final observation regarding the Cougar
algorithm is that it features a large standard deviation
(i.e., 250 mJ), which signifies that certain nodes consume
more energy than others. This is attributed to the fact that
the cost of failures in Cougar is proportional to the depth
of the node that caused the failure. In particular, failures
at a large depth (i.e., closer to the leaf nodes) will generate
a larger chain of waking windows, thus will be more
energy demanding than failures that occur at a small
depth (i.e., closer to the sink).

Energy consumption for multi-tuple answers: We shall
next measure the energy cost of the queries with multi-
tuple answers (i.e., MTF and MTA) again over the Intel54
dataset and present our results in Fig. 7 (top-right and
bottom) and also summarize these results in Table 2 (first

row). From the figures and the table we can draw the
following conclusions: (i) the WART algorithm has the
same compelling benefits compared to TAG and Cougar,
although the incurred workload for the three queries is
very different; and (ii) the MTA query consumes on
average less energy than the ST query for all algorithms
(see Table 2 (first row)). This is attributed to the fact
that MTA is associated with a predicate that limits the
cardinality of sensor answers below one in certain cases,
while the ST query yields exactly one answer per sensor.
On the contrary, the MTF query has an increased energy
consumption compared to the ST query (i.e., between 1
and 10 mJ) as it generates multiple tuples at each node. To
explain this, first notice that it is relatively inexpensive to
pack a small number of additional tuples into a message,
given that the transmission cost is dominated by the
packet header and not by the payload. As the cardinality
of an MTF query is bounded above by the number of
sensors n (see query MTF), in practice this yields only a
small increase in the number of messages. Thus, the

P. Andreou et al. / Information Systems 36 (2011) 267-291 283

Table 2

Energy consumption results for experimental series 2: evaluation of the WART, Cougar and TAG algorithms under different queries and datasets.

Dataset Algor. Query
ST MTF MTA

Intel54 TAG (m]) 11,227 + 02 11,228 + 02 11,225 + 01
Cougar (m]) 882 + 250 893 +239 877 +239
WART (m)) 53435 56 + 37 50 + 21

GDI140 TAG (m]J) 58,380 + 24 58,380 + 25 58,374 + 26
Cougar (m]) 1435+ 176 1443 + 181 1432+ 176
WART (m]J) 429+ 39 438 + 37 425+ 34

Intel540 TAG (m]) 189,691 + 53 189,707 + 49 189,670 + 51
Cougar (m]) 7269 + 37 7317 +37 7257 + 37
WART (m]) 3431+ 14 3510+ 12 3398 +13

additional energy consumption of the MTF query over the
ST query is very small.

By evaluating the same algorithms over the medium-
size GDI140 dataset, presented in Table 2 (second row),
we observe that WART continues to maintain a compe-
titive advantage over the other two algorithms. Another
observation is that the TAG algorithm has a slightly better
performance compared to the previous experiment but its
performance is still two orders of magnitudes worse than
WART. In particular, we noticed that the TAG-to-WART
performance ratio is slightly decreased (i.e., 136%)
compared to the respective performance ratio recorded
with the Intel54 dataset which was 211%. Such a decrease
is explained as follows: the depth of the query routing
tree in GDI140 was 22 and thus each sensor has to
maintain its radio open for ~1.40s in each epoch (i.e.,
le/d] =31 (epoch duration)/22 (tree depth)). On the
contrary, the depth of the query routing tree in Intel54
was 14 and thus each sensor has to maintain its radio
open for a larger window in each epoch (i.e., ~2.145s).

7.2.2. Probing WART in a large-scale network

In the third experiment of this series we evaluate the
WART algorithm against the Cougar algorithm using the
Intel540 dataset, which represents a large-scale wireless
sensor network. We have omitted the presentation of the
TAG algorithm as it has a very high energy cost (i.e.,
189,707 mJ). To facilitate our presentation we also
summarize the mean and standard deviation of our
results in Table 2 (third row).

The plots in Fig. 8 show that WART requires only
3446 m] on average (i.e., the mean of the plots for all three
queries) while Cougar requires as much as 7281 m] for the
acquisition of values from all 540 nodes. This shows that
WART retains a significant competitive advantage over
Cougar even for large-scale wireless sensor networks. For
all queries we noticed that the WART-to-Cougar per-
formance ratio is slightly increased (i.e., 47%) compared to
the respective performance ratio noticed with the Intel54
dataset (which was only 6%). Such an increase was
expected as larger networks have a higher probability of
transient network conditions and arbitrary failures. The
above characteristics are causes that lead to the disruption
of the query routing tree synchrony. Nevertheless, the

WART approach is still 53% more energy efficient than
Cougar under these limitations, thus WART can have many
practical applications in large-scale environments.

7.2.3. WART adaptation phase evaluation

In the last experiment of this series we evaluate the
WART adaptation algorithm. So far we have assumed that
the critical path is re-constructed in every epoch during
the execution of a query, thus introduced an additional
cost of O(n) messages. In the following experiments we
aim to investigate the efficiency of the WART adaptation
algorithm and verify the savings we claimed in Section
4.4, We compare WART with no adaptation against a
version that employs the adaptation rules of Algorithm 2
during data acquisition. For this experimental series we
utilize the Intel54, Intel540 and GDI140 datasets and
present the results for the MTF query only as the other
two queries expose a similar behavior.

Fig. 9 (top-left, top-right) shows that the invocation of
the adaptation rules in Algorithm 2 for the Intel540 and
GDI140 large scale networks can yield additional energy
savings of 60 and 36 my]J, respectively. Given that one
packet in our setting was 128 bytes we can estimate that
the transmission of such a packet requires 144] (see
Section 6). In the case of the Intel540 dataset, the quantity
of 60 mJ is approximately equivalent to 416 messages (i.e.,
60mJ/144) whereas in the case of the GDI140 dataset
the quantity of 36 mJ is approximately equivalent to 290
messages (i.e., 36 m]/144 pJ). This result is consistent with
our analysis where we expected O(n) additional messages
during the dissemination phase. Fig. 9 (bottom) shows the
adaptation algorithm on a small scale network (i.e.,
Intel54). The result indicates that even for such small-
scale networks we might observe some energy savings
but these are not very significant (i.e., only 2 m]J). This is
attributed to the fact that the adaptation rules in small-
scale networks are not invoked as frequently as workload
deviations occur more rarely.

7.3. Experimental series 3: evaluation of the ETC algorithm

In the third experimental series we assess the efficiency
of the MicroPulse™ ETC algorithm. We start out by assessing

284
Energy Consumption for Query Set:
ST (for all n sensors)
Dataset:Intel540, n=540, d=22, e=31,
link=250kbps
9000 T T T T T T T T
COUGAR -
WART---x---
8000 % % x .
)i' X&,,g:‘. ?‘k ";‘""’Sg &;,(}.'K;ZS
5 7000 | LY T
13 4
2 6000 | .
w5000 g
4000 | 1
T E S N e
3000 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Epoch Number

P. Andreou et al. / Information Systems 36 (2011) 267-291

Energy Consumption for Query Set:
MTF (for all n sensors)
Dataset:Intel540, n=540, d=22, e=31,
link=250kbps

9000
8000

7000 $4

6000

Energy (mJ)

5000 | .

4000 []
T L B e N L LWL L P
3000 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000

Epoch Number

Energy Consumption for Query Set:
MTA (for all n sensors)
Dataset:Intel540, n=540, d=22, e=31,
link=250kbps

9000

8000
7000

6000 |

Energy (mJ)

5000 f

4000 [

3000

oSt sl 0 iy P RS N S0 3 S
1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Epoch Number

Fig. 8. Energy consumption in a large-scale sensor network (Intel540). The plots indicate the individual results for the ST, MTF and MTA queries using the
Cougar and WART algorithms (we omit the TAG curve in this plot due to its inefficiency (i.e., 189,707 m])).

the construction quality of the ETC algorithm and then
proceed with an in-depth evaluation of our algorithm.

7.3.1. Measuring the balancing error

Our first objective is to measure the quality of the tree,
with regard to the balancing factor, that is generated by
the ETC algorithm. Thus, we measure the balancing error
of the generated trees as this was presented in Section 5.3.
Recall that the Balancing_Error of a query routing tree was
defined as follows:

n
Balancing_Error(Tcere) =y
=0

n
B=> " PM;
j=0

where = ./n and PM;;=1 denotes that node i is a parent
of node j and PM;;=0 the opposite. Notice that this table is
fragmented vertically in the case of the distributed ETC
algorithm but can be obtained easily with a message
complexity of O(n), where each message has a size of
0(n?) in the worst case.

For this experiment we generated one query routing
tree per dataset (i.e., Intel54, GDI140 and Intel540) using
the three described algorithms: (i) the First-Heard-From
approach, which constructs an ad hoc spanning tree Tippu,
without any specific properties; (ii) the CETC algorithm,
which transforms Tinp,, into the best possible near-
balanced tree Tcerc in a centralized manner; and (iii) the
ETC algorithm, which transforms T, into a near-
balanced tree Tgrc in a distributed manner.

Fig. 10 (left) presents the results of our evaluation
which demonstrates the following properties: (i) All three
approaches feature some balancing error, which indicates
that in all cases it is not feasible to construct a fully
balanced tree Tpgianceq- This is attributed to the inherent
structure of the sensor network where certain nodes
are not within communication radius from other nodes.
(ii) The second observation is that the FHF approach has
the worst Balancing_Error, which is an indicator that FHF
can rarely produce any proper balanced topology and
that increases data transmission collisions and energy
consumption (shown in next experiment). In particular,

P. Andreou et al. / Information Systems 36 (2011) 267-291 285

WART Adaptation Algorithm Evaluation for Query Set:

3700
3650
3600

3 3550

E

< 3500

=

E 3450
3400
3350
3300
3250

MTF (for all n sensors)

WART Adaptation Algorithm Evaluation for Query

Dataset:Intel540, n=540, d=22, e=31, Set:MTF
link=250kbps Dataset:GDI140, n=140, d=25, link=250kbps
T T T T T T T T T 600 T T T T T T T T T
WART ---¢--- WART —+—
WART (Adaptation) ----x---- | 550 WART (Adaptation) ------ |

| | | | | 200 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 900 1000
Epoch Number Epoch Number

Energy (mJ)

68
66
64
62
60
58
56
54
52

WART Adaptation Algorithm Evaluation for Query

Set:ST
Dataset:Intel54, n=54, d=14,
link=250kbps

WART ——
WART (Adaptation) ------

0 100 200 300 400 500 600 700 800 900 1000
Epoch Number

Fig. 9. WART's adaptation algorithm evaluation for the Intel540 dataset (top-left), GDI140 dataset (top-right) and the Intel54 dataset (bottom).

1600
1400
1200
1000
800
600

Balancing Error

400
200

Balancing Error for all datasets

Energy Consumption due to collisions
(for all n sensors)
Dataset:Intel540, n=540, d=22, e=31,
link=250kbps

Empm E 4000

ETC

Tcere

3500 [, ..

3000 7

2500 7

2000 7

Energy (mJ)

1500 | b

1000 [b

[e

500 Lo X, K, XX, 0 OOt O s SRR

Intel54

: 0
GDI140 Intel540 0 100 200 300 400 500 600 700 800 900 1000
Dataset Epoch Number

Fig. 10. Left: Measuring the balancing error of the FHF (Tinpu), CETC (Tcerc) and ETC (Tgrc) algorithms. Right: Energy consumption due to re-transmissions
in an unbalanced topology (Tipu) and in a near-balanced topology (Tgrc).

286

the balancing error of the FHF approach is on average 91%
larger than the respective error for the CETC algorithm.
(iii) The third and most important observation is that the
distributed ETC algorithm is only 11% less accurate than
the centralized CETC algorithm. Therefore, even though
the ETC algorithm does not feature any global knowledge,
it is still able to create a near-balanced topology in a
distributed manner.

7.3.2. Energy consumption of ETC

In order to translate the effects of the Balancing_Error
into an energy cost, we conduct another experiment using
the Intel540 dataset. Specifically, we generate two query
routing trees: (a) Tinpur, constructed using the First-Heard-
From approach, and (b) Tgrc constructed using the ETC
algorithm. We configure our testbed to only measure the
energy required for re-transmissions due to collisions in
order to accurately capture the additional cost of having
an unbalanced topology.

Fig. 10 (right) displays the energy consumption of the
two structures. We observe that the energy required for
re-transmissions using Tinpye iS 3314 4+ 50 mJ. On the other
hand, Tgrc requires only 566 + 22 mJ which translates to
additional energy savings of 83%. The reason why Tgrc
presents such great additional savings is due to the re-
structuring of the query routing tree into a near balanced
query routing tree which ensures that data transmissions
collisions are decreased to a minimum.

7.4. Experimental series 4: evaluation of the MicroPulse*
framework

In the fourth experimental series we assess the
efficiency of the complete MicroPulse* framework, which
deploys the ETC algorithm to balance the query routing
tree and then utilizes the WART algorithm to optimize the
waking windows of the sensor nodes. In particular, we
conduct two experiments focusing on energy consump-
tion and system lifetime.

Energy Consumption for Query Set:
MTF (for all n sensors)

Dataset:Intel540, n=540, d=22, e=31, link=250kbps
9000 T T T T T T T T T

WART —
- + 4
8000 MicroPulse (WART+ETC) ---%---

7000 t .
6000 | .
5000 .
4000
3000 .
2000 .
1000

Energy (mJ)

30000575750 MnetbanvosadtsRSasassantiotsl ot soomenlhassnasatittSaastioolSy

0
0 100 200 300 400 500 600 700 800 900 1000
Epoch Number

Energy (mJ)

P. Andreou et al. / Information Systems 36 (2011) 267-291

7.4.1. Energy consumption of MicroPulse™

In the first experiment of this series we measure the
energy consumption of the integrated WART and ETC
algorithms using the Intel540 dataset and the MTF query.
We have observed similar results for the other combina-
tions of query-to-datasets as well and omitted these
results for brevity.

Fig. 11 (left) illustrates the energy savings of using the
ETC algorithm in conjunction with WART. While WART
requires on average 3510 + 126 mJ, MicroPulse* uses only
749 4+269m] which translates in an additional 78%
decrease in energy consumption on average. In
particular, we have observed a threefold improvement
of MicroPulse®™ compared to the execution of the WART
algorithm in isolation. Additionally, we have noticed that
the near-balanced routing tree generated by the ETC
algorithm will not only reduce data collisions, and thus
data re-transmissions, but will also have a positive effect
on the WART scheduling algorithm.

The reason why the efficiency of the WART algorithm
increases under no failures can be explained as follows: In a
topology with limited failures the critical path cost is not re-
computed very often. Thus, the communication overhead is
minimized. Additionally, in a topology with a small number
of failures we also have a smaller number of parent waiting
for their children (i.e., a fewer number of expired h timers).
Consequently, minimizing data transmission collisions
automatically triggers a whole range of new characteristics
which improve the overall quality of our framework.

7.4.2. Network lifetime

The final performance criterion we have considered is
network lifetime. We define network lifetime as the average
amount of energy in the network. In particular, let the
following summation denote the amount of energy that is
available at time instance t in a network of n sensors:

n
Energy(t) = Z available_energy(s;,t)/n
i=1

Network Lifetime
Dataset:Intel540, Query Set: MTF,
n=540, d=22,e=30, link=250kbps

60000 -
i TAG
B COUGAR -----v--
50000 WART oo i
MicroPulse ~———
40000 i
30000 |
20000 | | 4 |
10000 | | %]

171 4433 9238

43824
Epoch Number

Fig. 11. Left: Energy consumption comparison of MicroPulse* against WART. The plot indicates that the ETC technique provides a threefold improvement
to the savings incurred by the WART algorithm. Right: Network lifetime for the various algorithms presented in this paper.

P. Andreou et al. / Information Systems 36 (2011) 267-291 287

where available_energy(s; t) denotes the energy that is
available at sensor s; (i <n) at time instance t. We define
the network lifetime, similar to [53], as the time instance t’ at
which Energy(t’) = 0. Note that this applies only to the case
where sensors operate using batteries. Double batteries (AA)
used in many current sensor designs (including the TelosB
sensor) operate at 3V voltage and supply a current of
2500 mAh (milliAmpere per hour). Assuming similar to [51],
that only 2200 mAh is available and that all current is used
for communication, we can calculate that AA batteries offer
23,760] (2200 mAh x 60 min x 60s x 3 V). In order to speed
up our experiments we start with an initial energy of
60,000 m] subtract at each epoch and for each sensor the
energy required for communication. When terminate this
iteration when the termination condition is satisfied.

Fig. 11 (right) illustrates the average energy status of
the sensor network, at each epoch, during the execution of
a query. We notice that the energy of sensors under TAG is
consumed far faster than the MicroPulse* framework,
leading to a lifetime of just 171 epochs (i.e., 85min).
Cougar comes second by offering 4433 epochs (i.e., 36 h)
and WART third with 9238 epochs (i.e.,, 77 h). Finally,
MicroPulse” reaches its limit far later at epoch 43,824
(i.e,, 365h) and this can be translated into a ~78%
increase of the network lifetime.

7.4.3. Multi-query execution

In a real system, it will be necessary to execute several
queries, possibly belonging to individual users, concur-
rently. In this subsection we discuss at an abstract level
how this can be realized. First, notice that the WART
algorithm, which minimizes data reception inefficiencies
by profiling recent data acquisition activity, can maintain
separate profiles for the individual queries running over a
given query routing tree. Furthermore, the ETC algorithm,
which generates a near-balanced tree topology that
minimizes data collisions, is query-independent. In parti-
cular, an ETC tree reconfigures itself based on a balancing
factor that is derived directly from the branching factor of
a node in a query routing tree. Consequently, the same
physical tree might apply to any query running over a
MicroPulse™ framework. The above discussion shows that
it is relatively easy to extend the MicroPulse® framework
into a multi-query execution environment although a
detailed investigation of this parameter is outside the
scope of this paper.

8. Related work

Power conservation mechanisms have been proposed
virtually at all layers of the traditional layered sensor
communication stack. All these approaches attempt to
decrease the energy consumption with two basic techni-
ques: (i) by disabling/hibernating the radio transceiver
during periods of inactivity, and (ii) by improving the
sensor node’s operation (e.g., voltage scaling, employing
multiple power levels). Most of these techniques are
complementary to the techniques described in this paper
while the rest come with their own trade-offs as we will
show shortly.

In this section, we present an elaborate overview of
techniques that decrease communication related power
consumption in WSNs, using the widely adopted ISO/OSI
communication stack [29]. Such a categorization allows
one to accurately capture the main focus and limitations
of each presented technique. We shall also refer to cases
of cross-layer optimizations individually. For the remain-
der of this section, we will present the universe of
techniques in a bottom-up manner, starting from the
physical layer and moving up to the application layer
where MicroPulse® belongs to. We omit the Presentation
and Session layers of the typical ISO/OSI stack as none
of the presented techniques addresses these layers
specifically.

Physical layer techniques: This layer relates to the low-
level sensor device hardware (circuitry, MCU, transceiver,
etc.) thus the opportunity for software-level power
management is fairly limited. Yet, there are a few works
[21,49] that look at individual and local power manage-
ment optimizations.

Examples of these techniques are the Dynamic Voltage
Scaling (DVS) and Embedded power supply for low power
Digital Signal Processor (DSP) [21] which are effective
techniques for reducing the energy consumption of the
CPU. The goal of these approaches is to adapt the
processor’s power supply and operating frequency to
match any given computation load without degrading
performance. Dynamic Power Management (DPM) [49] is
another work that utilizes different power models to shut
down various components (e.g., radio transceiver, CPU)
when these are not required to operate. All of the above
techniques, and generally any local power conservation
mechanism at the physical layer, are supplementary to
the MicroPulse* framework we presented in this paper.

MAC layer techniques: The Medium Access Control
(MAC) layer facilitates the transfer of messages to and
from the physical layer. Most of the protocols developed
for the MAC layer deploy explicit mechanisms to avoid
collisions when multiple sensor nodes attempt to access a
shared channel. Most of the sensor network related works
presented in this layer [50,48,60,40] minimize energy
consumption by minimizing collisions and overall usage
of the shared access medium.

The Coordinated Power Conservation algorithm (CPC)
[50] is an example of a MAC-layer power management
protocol that coordinates the sleeping intervals of sensor
nodes with the aid of a backbone. CPC starts out by
selecting a set of backbone nodes as CPC servers. Next all
CPC clients that run on non-backbone nodes request to
turn the transceiver of the sensor node off when there is
no communication activity in order to conserve power
and extend network lifetime. CPC servers running on
backbone nodes serve as coordinators to synchronize
sleeping schedules of nodes within their coverage areas.
The intuition of turning off the radio transceiver during
periods of inactivity is very similar to the WART algorithm
of the MicroPulse® framework. However, CPC servers
coordinate in a distributed manner without obtaining any
global information from the base station. That does not
provide CPC server with a universal view of the system.
Furthermore, the scheduling on WART is based on the

288 P. Andreou et al. / Information Systems 36 (2011) 267-291

query workload incurred on each sensor node while in
CRC misses the inclusion of such high-level semantics.

Power-aware Multi-Access Protocol with Signaling (PAMAS)
[48] is another MAC-layer power management protocol
that utilizes two independent radio channels in order to
avoid overhearing among neighboring nodes. PAMAS does
not attempt to reduce idle listening which is a major
disadvantage as nodes have their radio enabled during
periods of inactivity reception. However, battery power is
saved by intelligently turning-off sensor nodes that are not
in active transmission. On the other hand, the popular
Sensor-MAC (S-MAC) [60] utilizes a synchronization scheme
that allows sensor nodes to realize periodic listening and
sleeping during busy periods (i.e., when transmission from
other nodes is detected). Furthermore, S-MAC consists of
two additional components that handle: (i) collision and
overhearing avoidance by allowing sensor nodes receiving
control packages not destined to them go to sleep, and (ii)
message passing by segmenting long messages into smaller
ones and transmitting in a burst (i.e.,, RTS/CTS control
messages are not used for each fragment). S-MAC has been
further enhanced in [40] to minimize the end-to-end delay.
Both PAMAS and S-MAC achieve high energy savings by
allowing sensor to sleep periodically. However, none of
these approaches considers the underlying topology of the
sensor network, intra-sensor relationships and high-level
query semantics. In particular, these techniques do not
consider the workload of a continuous query, rather they
assume a random variable workload. Recall that in Micro-
Pulse*, we minimize collisions by constructing a near
balanced routing tree through the ETC algorithm. Never-
theless, since the S-MAC protocol has been successfully
integrated in TinyOS [60] as one of the primary MAC
protocols, these techniques extend the power management
capabilities of MicroPulse* inherently.

Sensornet protocol (SP) [41] introduces a unified link
level abstraction that is part of the sensor network
architecture proposed in [12]. Specifically, SP provides
shared neighbor management and message pool interfaces
that allow network protocols to exchange messages
efficiently and choose neighbors wisely without concen-
trating on link specifics. To accomplish this, these inter-
faces encapsulate the mechanisms of the particular link
and physical layers that operate below SP. The authors
show that various link-layer protocols can be expressed in
terms of SP and subsequently mapped efficiently to various
different link-level power management mechanisms.

Network layer techniques: This layer is responsible for
delivering packets from a source node to a destination
node through some routing mechanisms. In WSNs,
routing is accomplished using multi-hop messages, thus
many mechanisms in this layer attempt to discover
optimal routing paths for energy efficient delivery of
messages through intermediate hosts [19,13,58,22].

The Power-Aware Routing (PAR) [19] technique pro-
poses a routing policy that balances the overall power in
the network by discovering routes that consume the least
possible energy. Since in a non-uniform network, the
majority of nodes do not consume power in an identical
fashion, PAR favors nodes with generous power reserves.
Another technique is the Minimum Connected Dominating

Sets (MCDS) routing algorithm [13] which employs a
virtual backbone that provides shortest paths for routes as
well as route updates in cases of node movements in
order to minimize the overall energy required for routing
multi-hop packets.

Both PAR and MCDS approaches assume an a priori
established query routing tree. Any optimizations sug-
gested by both approaches do not alter the state of the
query routing tree. On the other hand, the MicroPulse*
differs from these approaches as the ETC algorithm
reconstructs a near-balanced tree in order to minimize
collisions prior to any further optimizations. Certain
modules of PAR and MCDS (e.g., shortest path discovery)
can be used in conjunction with MicroPulse” in order to
achieve even more energy savings.

In Modular Network Layer [15] the authors decompose
the network layer into smaller components that can be
used by several protocols in parallel. This network layer
operates on top of the popular Sensornet link-layer
Protocol [41]. The intuition behind their approach is that
the majority of network protocols have many common-
alities. Encapsulating these commonalities and exposing
them as service interfaces enables faster development of
new protocols and run-time sharing of components. The
authors evaluate their approach and find that Modular
Network Layer can reduce both the memory and code of
network protocols that run concurrently. Consequently,
this work is supplementary to MicroPulse*, as our
protocol could have been implemented using this inter-
mediate framework rather than in a standalone.

Transport layer techniques: The transport layer is
responsible for the transfer of messages between two or
more end systems using the network layer. One of the main
objectives of the transport layer is the reliable and cost
effective delivery of transferred messages between appli-
cations. The evolution of the techniques in this layer has
been severely hampered by the fact that sensor networks
feature node failures and collisions making reliable and
cost effective communication often impossible.

One of the few works that addresses the above issues is
the TCP-Probing [54] communication protocol, which
introduces the concept of a probe cycle instead of
standard TCP re-transmissions, congestion window and
threshold adjustments. During probe cycles, data trans-
mission is suspended and only probe segments are sent.
The proposed scheme achieves high throughput perfor-
mance whilst in parallel decreases the overall energy
consumption for transmission. This is done without
damaging the end-to-end characteristics of TCP. Flush
[26] is another transport layer protocol for multi-hop
wireless networks. Flush provides end-to-end reliability,
reduces transfer time and adapts to time-varying network
conditions. To accomplish these properties, Flush uses
end-to-end acknowledgments, implicit snooping of con-
trol information and a rate-control algorithm that oper-
ates at each hop along a flow.

In contrast to the probe cycles of TCP-Probing and
end-to-end acknowledgments of Flush, MicroPulse™ uses
the notion of a waking window during which a sensor
may transmit a message repeatedly until it is successfully
received by the recipient. The aforementioned techniques

P. Andreou et al. / Information Systems 36 (2011) 267-291 289

would introduce further delays as well as more energy
waste since the sensors would have to exchange more
messages in order to synchronize.

Application layer techniques: The main objective of this
high level layer is to exploit the semantics of the network
or application and low-level data in order to optimize the
network structure among nodes and boost power man-
agement. Consequently, this layer has implicit interac-
tions with lower levels of the communications stack
(often referred to as cross-layer optimizations [2]). The
techniques in this category can roughly be classified in the
following categories: (i) local techniques, in which low-
level data semantics dictate the reaction of the applica-
tion, and (ii) cluster-based techniques, in which the
reaction of the application is dictated by the cluster
semantics (e.g., network proximity).

Application-Driven Power Management for Mobile Com-
munication (ADPM) [28] is an example of an application-
layer technique that enables the dynamic power config-
uration of the communication device. The goal of this
work is to determine the appropriate trade-off for battery
lifetime versus response delay, while adjusting the sleep
duration of the communication device. ADPM, just like the
techniques in the physical layer, which adjust the power
supply of the processor, is supplementary to our
approach. Adaptive Energy-Conserving Routing (AdECoR)
[57] is another application layer protocol that utilizes two
algorithms for routing in resource constrained WSNs. The
intuition behind this approach is that although switching-
off the communication device may result in energy
conservation it may also introduce delays in the network.
AdECoR attempts to find a trade-off between energy
conservation and latency by utilizing application-level
information. AdECoR differs from MicroPulse® as its
application-level information does not include the high
level query semantics used in MicroPulse®. Furthermore,
the concept of introducing delays in order to conserve
power is not acceptable in MicroPulse® as we assume that
queries have specific response time requirements that
must be met.

The second class of application layer techniques
includes those techniques that use clustering mechanisms
[58,22,9]. An example of these techniques is Geographical
Adaptive Fidelity (GAF) [58], which obtains location
information using the Global Positioning System (GPS)
in order to connect sensor nodes to a virtual grid (i.e., a
semantic overlay based on geographical proximity. It then
saves energy by keeping sensor nodes located in a
particular grid area in sleeping state. The sleeping
schedule uses a turn-based approach that aims to balance
the load incurred on each sensor. Energy-Efficient Com-
munication Protocol for Wireless Micro-Sensor Networks
(LEACH) [22] is another cluster-based technique that
minimizes overall energy consumption in WSNs by
rotating the cluster head nodes in a random manner. This
rotation allows the distribution of the energy load evenly
among the sensor nodes in the network without draining
the energy resources of an individual sensor node. One
final cluster-based protocol is SPAN [9], which builds on
the observation that when a region of a shared-channel
has a sufficient density of nodes, only a small number of

them need to be present at any time to forward traffic
for active connections. To accomplish this, SPAN utilizes a
distributed, randomized algorithm that allows sensors to
make local decisions as to when sleeping is appropriate.

GPS and SPAN, like MicroPulse® take advantage of
global information to preserve energy like MicroPulse®.
Both approaches switch-off some sensors based on some
application-level parameters and force other sensors to
seek alternate routing paths. However, switching-off
some sensors means that they cannot participate in a
given query and as a result, valuable results may be lost
even for shorts period of time. LEACH differs from our
approach since in MicroPulse* all nodes participate in a
given query and none plays a separate role (e.g., cluster
head) nor has more energy reserves than others.

The recent trend in wireless sensor networks is to
interconnect existing sensor networks through dedicated
web-based or geospatial-based information systems. Such
systems operate over different operating systems, com-
munication protocols and applications. To address the
problem of communicating with such diverse sensor
network systems, these works [1,39] have developed
middleware systems that enable integration and manage-
ment of many WSN sites. Additionally, multi-tier sensor
systems like TENET [17], that aim to combine the low-
power sensor devices we discuss in this work with
powerful 32-bit nodes (e.g., Stargates or ordinary PCs),
are another direction in sensor networks optimization.
Yet, all these techniques are complementary to the
approaches we have outlined in this paper as our
techniques structure efficient and well-formed WSN
deployments while middleware techniques utilize these
as a building block.

9. Conclusions and future work

In this paper we present MicroPulse®, a novel frame-
work for minimizing the consumption of energy during
data acquisition in WSNs. MicroPulse* introduces two
novel concepts: (i) the Workload-Aware Routing Tree
(WART) algorithm, which is established on profiling
recent data acquisition activity and on identifying the
bottlenecks using an in-network execution of the critical
path method; and (ii) the Energy-driven Tree Construction
(ETC) algorithm, which balances the workload among
nodes and minimizes data collisions. Our experimentation
with micro-benchmarks on the CC2420 radio chip and
trace-driven experimentation with real datasets from
Intel Research Berkeley and UC-Berkeley show that the
MicroPulse® algorithms provide orders of magnitudes
energy reductions under a variety of conditions prolong-
ing the longevity of a sensor network.

In the future we plan to study how these ideas can be
incorporated into existing data acquisition frameworks
such as TinyDB and deploy them in a real environment.
Integrating our ideas in a fully functional declarative
acquisition system poses many additional challenges that
we aim to tackle in the future (e.g., low-level protocol
integration, efficient internal structures, deployment
issues, etc.). We believe that by integrating these ideas

290 P. Andreou et al. / Information Systems 36 (2011) 267-291

in a fully functional system will enable us to study system-
level effects and thus better demonstrate the efficacy of
our proposed approaches.

Acknowledgments

We would like to thank Joe Polastre (UC Berkeley) for
the Great Duck Island data trace. This work was supported
in part by the Open University of Cyprus under the project
SenseView, the US National Science Foundation under
projects S-CITI (#ANI-0325353) and AQSIOS (#IIS-
0534531), the European Union under the project IPAC
(#224395) and CONET (#224053), and the Cyprus
national project MELCO (#TITE/OPIZO/0308/(BIE)/14).

References

[1] K. Aberer, M. Hauswirth, A. Salehi, Infrastructure for data proces-
sing in large-scale interconnected sensor networks, in: Proceedings
of the 2007 International Conference on Mobile Data Management,
Mannheim, Germany, May 7-11, 2007, pp. 198-205.

LF. Akyildiz, M.C. Vuran, O.B. Akan, A cross-layer protocol for

wireless sensor networks, in: Proceedings of the 40th Annual

Conference on Information Sciences and Systems, Princeton, NJ,

USA, March 22-24, 2006, pp. 1102-1107.

G. Amati, A. Caruso, S. Chessa, Application-driven, energy-efficient

communication in wireless sensor networks, Computer Commu-

nications 32 (5) (2009) 896-906.

P. Andreou, D. Zeinalipour-Yazti, P.K. Chrysanthis, G. Samaras,

Workload-aware optimization of query routing trees in wireless

sensor networks, in: Proceedings of the Ninth International

Conference on Mobile Data Management, Beijing, China, April

27-30, 2008, pp. 189-196.

A. Banerjee, A. Mitra, W. Najjar, D. Zeinalipour-Yazti, V. Kalogeraki,

D. Gunopulos, RISE Co-S: high performance sensor storage and co-

processing architecture, in: Second Annual IEEE Communications

Society Conference on Sensor and Ad Hoc Communications and

Networks, Santa Clara, CA, USA, 2005.

A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, R.A. Peterson,

People-centric urban sensing, in: Proceedings of the Second Annual

International Workshop on Wireless Internet, Boston, MA, Article

No. 18, 2006.

A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, R.A. Peterson,

H. Lu, X. Zheng, M. Musolesi, K. Fodor, G.S. Ahn, The rise of people-

centric sensing, IEEE Internet Computing 12 (4) (2008) 12-21.

U. Cetintemel, A. Flinders, Y. Sun, Power-efficient data dissemina-

tion in wireless sensor networks, in: Proceedings of the Third ACM

International Workshop on Data Engineering for Wireless and

Mobile Access, San Diego, CA, USA, 2003, pp. 1-8.

B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, Span: an energy-

efficient coordination algorithm for topology maintenance in ad hoc

wireless networks, in: Proceedings of the Seventh Annual Interna-
tional Conference on Mobile Computing and Networking (ACM

SIGMOBILE), Rome, Italy, July 16-21, 2001, pp. 85-96.

[10] J. Considine, F. Li, G. Kollios,]J. Byers, Approximate aggregation
techniques for sensor databases, in: Proceedings of the 20th
International Conference on Data Engineering, Boston, MA, USA,
2004, p. 449.

[11] Crossbow Technology Inc. ¢ http://www.xbow.com/).

[12] D. Culler, P. Dutta, C.T. Ee, R. Fonseca, J. Hui, P. Levis,]. Polastre,
S. Shenker, 1. Stoica, G. Tolle, J. Zhao, Towards a sensor network
architecture: lowering the waistline, in: Proceedings of the 10th
Conference on Hot Topics in Operating Systems, vol. 10, Santa Fe,
NM, June 12-15, 2005, p. 24.

[13] B. Das, V. Bharghavan, Routing in ad-hoc networks using minimum
connected dominating sets, in: IEEE International Conference
on Communications, Montreal, Que., Canada, June 08-12, 1997,
pp. 376-380.

[14] A. Deligiannakis, Y. Kotidis, N. Roussopoulos, Compressing histor-
ical information in sensor networks, in: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data,
Paris, France, 2004, p. 449.

[2

[3

[4

[5

[6

17

8

[9

[15] C.T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler,
S. Shenker, I. Stoica, A modular network layer for sensornets, in:
Proceedings of the Seventh Symposium on Operating Systems
Design and Implementation, Seattle, WA, USA, November 6-8,
2006, pp. 249-262.

[16] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler,
The nesC language: a holistic approach to networked embedded
systems, in: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, San Diego, CA,
USA, 2003, pp. 1-11.

[17] O. Gnawali, K.-Y. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein,
A. Joki, D. Estrin, E. Kohler, The tenet architecture for tiered sensor
networks, in: Proceedings of the Fourth International Conference
on Embedded Networked Sensor Systems (SenSys 2006), Boulder,
CO, USA, SenSys 2006, pp. 153-166.

[18] S. Goel, T. Imielinski, Prediction-based monitoring in sensor
networks: taking lessons from MPEG, ACM SIGCOMM Computer
Communication Review 31 (4) (2001) 82-98.

[19] J. Gomez, A.T. Campbell, M. Naghshineh, C. Bisdikian, Power-aware
routing in wireless packet networks, in: IEEE Mobile Multimedia
Communications, San Diego, CA, USA, November 15-17, 1999,
pp. 380-383.

[20]]J.L. Gross,]. Yellen, Graph Theory and its Application, Chapman &
Hall, CRC Press, 2005, ISBN: 158488505X.

[21] V. Gutnik, A.P. Chandrakasan, Embedded power supply for low-
power DSP, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 5 (4) (1997) 425-435.

[22] W.R Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient
communication protocol for wireless microsensor networks, in:
Proceedings of the 33rd Hawaii International Conference on System
Sciences, vol. 8, Washington, DC, USA, 2000, pp. 3005-3014.

[23]]. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System
architecture directions for networked sensors, in: Proceedings of
the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, Cambridge, MA,
USA, November 12-15, 2000, pp. 93-104.

[24] C. Intanagonwiwat, R. Govindan, D. Estrin, Directed diffusion: a
scalable and robust communication paradigm for sensor networks,
in: Proceedings of the Annual International Conference on Mobile
Computing and Networking, Boston, MA, USA, August 6-11, 2000,
pp. 56-67.

[25] Intel Lab Data <http://db.csail.mit.edu/labdata/labdata.html .

[26] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, I. Stoica, Flush: a reliable bulk transport protocol for
multihop wireless networks, in: Proceedings of the Fifth ACM
Conference on Embedded Networked Sensor Systems, Sydney,
Australia, November 6-9, 2007, pp. 351-365.

[27] S. Kim, S. Pakzad, D. Culler,]J. Demmel, G. Fenves, S. Glaser,
M. Turon, Health monitoring of civil infrastructures using wireless
sensor networks, in: Proceedings of the Sixth International
Conference on Information Processing in Sensor Networks, Cam-
bridge, MA, USA, April, ACM Press, 2007, pp. 254-263.

[28] R. Kravets, P. Krishnan, Application-driven power management for
mobile communication, Wireless Networks Journal 6 (4) (2000)
263-277.

[29] J.F. Kurose, KW. Ross, Computer Networking—a Top Down Approach,
fifth ed., Addison-Wesley, March 31, 2009, ISBN: 0-13-607967-9.

[30] P. Levis, TinyOS Implementation Documentation, 2007.

[31] P. Levis, N. Lee, M. Welsh, D. Culler, TOSSIM: accurate and scalable
simulation of entire TinyOS applications, in: Proceedings of the
First International Conference on Embedded Networked Sensor
Systems, Los Angeles, CA, USA, 2003, pp. 126-137.

[32] Q. Li, J. Beaver, A. Amer, P.K. Chrysanthis, A. Labrinidis, Multi-
criteria routing in wireless sensor-based pervasive environments,
Journal of Pervasive Computing and Communications 1 (4) (2005)
313-326.

[33] T. Liu, C. Sadler, P. Zhang, M. Martonosi, Implementing software on
resource-constrained mobile sensors: experiences with Impala and
ZebraNet, in: Proceedings of the Second International Conference
on Mobile Systems, Applications, and Services, Boston, MA, USA,
June 6-9, 2004, pp. 256-269.

[34] S.R. Madden, M. Franklin, J.M. Hellerstein, W. Hong, TAG: a Tiny
AGgregation service for ad-hoc sensor networks, in: Proceedings of
the Fifth Symposium on Operating Systems Design and Implemen-
tation, Boston, MA, 2002, pp. 131-146.

[35] S.R. Madden, M J. Franklin,].M. Hellerstein, W. Hong, The design of an
acquisitional query processor for sensor networks, in: Proceedings of
the 2003 ACM SIGMOD International Conference on Management of
Data, San Diego, CA, USA, June 9-12, 2003, pp. 491-502.

http://www.xbow.com/
http://db.csail.mit.edu/labdata/labdata.html

P. Andreou et al. / Information Systems 36 (2011) 267-291 291

[36] A. Mani, M. Rajashekhar, P. Levis, TINX: a tiny index design for flash
memory on wireless sensor devices, in: Proceedings of the Fourth
International Conference on Embedded Networked Sensor System,
Boulder, CO, USA, October 31-November 3, 2006, pp. 425-426.

[37] D. Moss, J. Hui, K. Klues, Low Power Listening, Core Working Group,
TEP 105.

[38] R. Murty, A. Gosain, M. Tierney, A. Brody, A. Fahad,]. Bers, M. Welsh,
CitySense: a vision for an urban-scale wireless networking testbed,
Harvard University Technical Report TR-13-07, September, 2007.

[39] S. Nath, J. Liu, F. Zhao, SensorMap for wide-area sensor webs, ACM
Computer Journal 40 (7) (2007) 90-93.

[40] N.A. Pantazis, D.J. Vergados, D.D. Vergados, C. Douligeris, Energy
efficiency in wireless sensor networks using sleep mode TDMA
scheduling, Ad Hoc Networks 7 (2) (2009) 322-343.

[41]]. Polastre, J. Hui, P. Levis,]J. Zhao, D. Culler, S. Shenker, I. Stoica,
A unifying link abstraction for wireless sensor networks, in:
Proceedings of the Third ACM Conference on Embedded Networked
Sensor Systems, San Diego, CA, USA, November 2-4, 2005, pp. 76-89.

[42]]. Polastre, R. Szewczyk, D.E. Culler, TELOS: enabling ultra-low
power wireless research, in: Fourth International Symposium on
Information Processing in Sensor Networks, Los Angeles, CA, USA,
April 25-27, 2005, pp. 364-3609.

[43] M.A. Sharaf,]. Beaver, A. Labrinidis, P.K. Chrysanthis, Balancing energy
efficiency and quality of aggregate data in sensor networks, The
International Journal on Very Large Data Bases 13 (4) (2004) 384-403.

[44] M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, TiNA: a
scheme for temporal coherency-aware in-network aggregation, in:
Proceedings of the Third ACM International Workshop on Data
Engineering for Wireless and Mobile Access, San Diego, CA, USA,
September 19, 2003, pp. 69-76.

[45] D. Sharma, V.I. Zadorozhny, P.K. Chrysanthis, Timely data delivery
in sensor networks using whirlpool, in: Proceedings of the Second
International Workshop on Data Management for Sensor Networks,
Trondheim, Norway, 2005, pp. 53-60.

[46] O. Shigiltchoff, P.K. Chrysanthis, E. Pitoura, Adaptive multiversion
data broadcast organizations, The Information Systems Journal 29
(6) (2004) 509-528.

[47] V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, M. Welsh,
Simulating the power consumption of large-scale sensor network
applications, ACM SenSys (2004) 188-200.

[48] S. Singh, CS. Raghavendra, PAMAS-power aware multi-access
protocol with signalling for ad-hoc networks, ACM SIGCOMM
Computer Communication Review 28 (3) (1998) 5-26.

[49] A. Sinha, A. Chandrakasan, Dynamic power management in
wireless sensor networks, IEEE Design and Test of Computers 18
(2) (2001) 62-74.

[50] C. Srisathapornphat, C.C. Shen, Coordinated power conservation for ad
hoc networks, in: Proceedings of the IEEE International Conference on
Communications (ICC 2002), vol. 5, May 2002, pp. 3330-3335.

[51] R. Szewczyk, A. Mainwaring,]. Polastre, J. Anderson, D. Culler, An
analysis of a large scale habitat monitoring application, in:
Proceedings of the Second International Conference on Embedded
Networked Sensor Systems, Baltimore, MD, USA, November 3-5,
2004, pp. 214-226.

[52] Texas Instruments, CC2420, Single-Chip 2.4 GHz IEEE 802.15.4
Compliant and ZigBee(TM) Ready RF Transceiver, in: Texas
Instrument Document, 2007, < http://www.ti.com/lit/gpn/cc2420).

[53] H. Thomas, S. Yi, H.D. Sherali, Rate allocation in wireless sensor
networks with network lifetime requirement, in: The ACM
International Symposium on Mobile Ad Hoc Networking and
Computing, Tokyo, Japan, 24-26, 2004, pp. 67-77.

[54] V. Tsaoussidis, H. Badr, TCP-probing: towards an error control
schema with energy and throughput performance gains, in:
Proceedings of the International Conference on Network Protocols,
Osaka, Japan, November, 2000, p. 12.

[55] Voltree Power Inc. <http://www.voltreepower.com/).

[56] A. Woo, D.E. Culler, A transmission control scheme for media access
in sensor networks, in: Proceedings of the Seventh Annual
International Conference on Mobile Computing and Networking,
Rome, Italy, July 16-21, 2001, pp. 221-235.

[57] Y. Xu, J. Heidemann, D. Estrin, Adaptive energy-conserving routing
for multihop ad-hoc networks, Technical Report TR-2000-527, USC/
Information Sciences Institute, October, 2000.

[58] Y. Xu, J. Heidemann, D. Estrin, Geography-informed energy
conservation for ad hoc routing, in: Proceedings of the Seventh
Annual International Conference on Mobile Computing and
Networking, Rome, Italy, 2001, pp. 70-84.

[59] Y. Yao, J.E. Gehrke, Query processing in sensor networks, in:
Proceedings of the First Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, January, 2003, pp. 5-8.

[60] W. Ye,]. Heidemann, D. Estrin, Medium access control with
coordinated adaptive sleeping for wireless sensor networks,
IEEE/ACM Transactions on Networking (TON) 12 (3) (2004)
493-506.

[62] V. Zadorozhny, P.K. Chrysanthis, A. Labrinidis, Algebraic optimiza-
tion of data delivery patterns in mobile sensor networks, in:
Proceedings of the Database and Expert Systems Applications, 15th
International Workshop, Zaragoza, Spain, August 30-September 3,
2004, pp. 668-672.

[63] D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis, G. Samaras,
MINT views: materialized in-network top-k views in sensor
networks, in: Proceedings of the International Conference on
Mobile Data Management, Mannheim, Germany, May 7-11, 2007,
pp. 182-189.

[64] D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis, G. Samaras,
A. Pitsillides, The microPulse framework for adaptive waking
windows in sensor networks, in: Proceedings of the International
Conference on Mobile Data Management, International Workshop
on Data Intensive Sensor Networks, Mannheim, Germany, May 11,
2007, pp. 351-355.

[65] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, W. Najjar,
MicroHash: an efficient index structure for flash-based sensor
devices, in: Proceedings of the Fourth Conference on USENIX
Conference on File and Storage Technologies, San Francisco, CA,
USA, December 13-16, 2005, pp. 31-44, {http://[www.usenix.org/
events/fast05/tech/zeinalipour-yazti.html).

[66] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki,
V. Tsotras, M. Vlachos, N. Koudas, D. Srivastava, The threshold join
algorithm for top-K queries in distributed sensor networks, in:
Proceedings of the Second International Workshop on Data
Management for Sensor Networks, Trondheim, Norway, August
29, 2005, pp. 61-66.

[67] ZigBee Alliance, ZigBee specification, In: ZigBee Document
053474r06, Version 1.0, 2004.

http://www.ti.com/lit/gpn/cc2420
http://www.voltreepower.com/
http://www.usenix.org/events/fast05/tech/zeinalipour-yazti.html
http://www.usenix.org/events/fast05/tech/zeinalipour-yazti.html

	Optimized query routing trees for wireless sensor networks
	Introduction
	System model
	The MicroPulseplus framework
	Motivation and preliminaries
	Outline of operation

	The Workload-Aware Routing Tree (WART) algorithm
	Preliminaries and background
	WART phase 1: construction
	WART phase 2: dissemination
	WART phase 3: adaptation

	Energy-driven Tree Construction (ETC) algorithm
	Preliminaries and background
	The Centralized ETC (CETC) algorithm
	The distributed ETC algorithm
	ETC phase 1: discovery
	ETC phase 2: balancing

	Experimental evaluation methodology
	Sensing device
	Experimental testbed
	Datasets
	Query sets
	Communication protocol

	Experimental evaluation results
	Experimental series 1: micro-benchmarks
	Experimental series 2: evaluation of the WART algorithm
	Energy consumption of WART
	Probing WART in a large-scale network
	WART adaptation phase evaluation

	Experimental series 3: evaluation of the ETC algorithm
	Measuring the balancing error
	Energy consumption of ETC

	Experimental series 4: evaluation of the MicroPulseplus framework
	Energy consumption of MicroPulseplus
	Network lifetime
	Multi-query execution

	Related work
	Conclusions and future work
	Acknowledgments
	References

