DILoS: A Dynamic Integrated Load Manager and
Scheduler for Continuous Queries™

Thao N. Pham, Lory Al Moakar, Panos K. Chrysanthis, Alexandros Labrinidis
Department of Computer Science, University of Pittsburgh

{thao, lorym, panos, labrinid}@cs.pitt.edu

Abstract—In a Data Stream Management System (DSMS),
continuous queries (CQs) registered by different applications
inherently have different levels of importance (i.e., quality of
service (QoS) and quality of data (QoD) requirements). Moreover,
the shift to cloud services and the growing need for monitoring
applications will inevitably lead to the establishment of data
stream management cloud services. In such a multi-tenant envi-
ronment, it is expected that the different applications/users will
demand different QoS and QoD requirements for their CQs. In
this work, we are proposing an approach that exploits the synergy
between scheduling and load shedding to effectively handle
different ranks of CQ classes, each associated with different QoS
and QoD requirements. The proposed approach was implemented
and evaluated within AQSIOS, our DSMS prototype.

I. INTRODUCTION

Today the ubiquity of sensing devices as well as mobile and
web applications generates a huge amount of data in the form
of streams. Consequently, monitoring applications, which are
based on continuous queries (CQs) that look for interesting
events over data streams, are becoming popular. These ap-
plications are made possible by a Data Stream Management
System (DSMS) (e.g., [1], [2], [3]), which processes the data
streams on the fly.

One important measure of how well a CQ is serviced by
the DSMS is the response time of the query output, i.e., the
gap between the time an input tuple enters the system and
the time the related output is produced. Another important
measure is the accuracy of the result. This concern arises when
the incoming workload is higher than the system capacity and
the system has to apply load shedding to avoid accumulated
delay. These two evaluation metrics are commonly referred
to as Quality of Service (QoS) and Quality of Data (QoD),
respectively.

CQs registered by different applications inherently have
different levels of criticality, and hence different levels of QoS
and QoD. For example, consider two continuous queries:)1,
which detects fire conditions in a forest (e.g., high temperature,
low humidity, and strong wind) and (2, which records the
average temperature and humidity for scientific observation
purposes. As such, @)1 should have higher priority than Qs:
(1 should have lower response time and, if the system is
overloaded, it should suffer less data loss than Q5.

Soon, a DSMS is expected to be available as a multi-tenant
service on the cloud. In that case, some stream applications

*This work was partially supported by NSF awards I1S-0534531 and IIS-
0746696 and by a VOSP Fellowship from Vietham Government.

using the service would be willing to pay more to have a better
guarantee on the service. When we also consider the inherent
differences in criticality of CQs, the need for the DSMS to
support priority-based QoS and QoD becomes evident.

Previous works have partially addressed these requirements,

both through scheduling and load shedding ([4], [5], [6]).
However, none of the previous works, including ours, have
exploited the synergy of scheduling and load shedding policies
in honoring the priorities of different classes of queries. An
ad-hoc plug-in of a prioritized load shedder and scheduler
in a system could make it hard for a DSMS to define the
actual meaning of the priorities to its users. In this work,
we focus on building an integrated approach in which the
scheduler and load shedder work in concert to consistently
satisfy the priority-based QoS and QoD requirements, as well
as to efficiently exploit the system resources.

Toward this, we make the following contributions in this

paper:

« We define a priority-based quality model for a DSMS,
specifying both QoS and QoD agreements for different
classes of queries.

e We propose DILoS, a dynamic, i.e., self-managed, inte-
grated load manager and scheduler, in which we combine
our two separate previous works (i.e., the adaptive load
manager ALoMa [7] and the class-based scheduler CQC
[5]) into a novel, unified model. In this model, the load
manager is aware of the way the scheduler is enforc-
ing the priorities and therefore can act appropriately to
control overloading situations while strictly following the
prioritized scheduling policy. In addition, the synergy
between the load manager and the scheduler in DILoS
allows the system capacity to be used more efficiently.

e We implement and evaluate DILoS in AQSIOS, our
DSMS prototype. The experimental results demonstrate
that DILoS, while still being consistent in preserving the
classes’ priorities, maximizes the utilization of the system
capacity, hence significantly reducing data shedding due
to overloading.

II. SYSTEM MODEL

This work is part of the AQSIOS project, in which we build
a new generation of DSMS. AQSIOS (Fig. 1) is based on the
STREAM prototype source code [2], which we have extended
to include new scheduling policies, such as CQC (discussed in
Section III-A) and the ALoMa load manager (Section III-B).

97 SulndhZdd i9hR6u 44k Lﬁ%ét@%@/&gﬂybﬂﬁﬁsﬁurgh Library System. Downlddded on November 12,2025 at 17:42:45 UTC from |IEEE %QER%MMQOI 1

A query can share with others some of its operators, such
as (1 and @2 in Fig. 1. In this work we assume that
there are no operator sharing between queries that belong to
different classes. Currently, the system is single-threaded, so
all the operators in the query network are scheduled to run
sequentially. The processing delay, or response time, of a tuple
is the time elapsed since the tuple enters the system until the
related result is output.

The stream applications that register CQs also specify the
class the query belongs to. Each class has a specific priority,
which determines:

o The Quality of Service (QoS) the class should receive.
In our model, QoS is defined as the response time of
the query output. The system considers two types of
QoS: the normal-state response time and the worst case
response time (i.e., delay target). The scheduler considers
the relative priorities of the classes. When the system is
not overloaded, the average response time of a class with
higher priority should be less than or equal to that of
another with lower priority (given the same workload).
The worst case response time is used by the load manager
to control the maximum response time of each class when
the system is overloaded.

o The Quality of Data (QoD) for each class. In our model,
QoD is defined as the percentage of tuples retained in
the queries’ output in the case the system is overloaded.
Currently we do not support a hard threshold for the QoD,
but instead aim to provide better QoD for the class of
higher priority, i.e., QoD should be degraded according
to the class priority.

Informally, if a class of queries has a priority P out of a
total Pjtq1, the class may use up to Pf,i — of the system
capacity when it needs to, and any load exceeding that portion
of capacity is subject to load shedding if the system cannot
find any available capacity from the other classes.

We use the approach proposed in [6] to estimate the system
load: the total load L per time unit is approximated based on
the processing costs and selectivities of the operators, and the
input rate of the stream sources. We can think of L as the total
time needed to process all the tuples that come to the system in
one time unit (say, a second). This total time has to be less than
the time unit in order not to overload the system. Hence we
can think about the system capacity as 1 time unit. However,
since the system spends part of its processing capacity on other
tasks such as context switching, statistics collection, etc., the
actual portion of the system capacity that can be spent on
tuple processing is commonly estimated by a headroom factor,
typically in the range of (0,1). Note that if query processing
can be carried out in parallel on multiple processing units,
then the headroom factor can be greater than 1.

ITI. BACKGROUND
A. CQC: a prioritized operator scheduler

In [5], we presented the CQC (Continuous Query Class)
scheduler to optimize the QoS of query classes with differ-
ent priorities. CQC is a two level scheduler that performs

AQSIOS
Administrator

Scheduler Statistics Load
Set the delay target collector Manager
for each query L ? ¢
Query networks

5 O Q,
N
S

Continuous queries > 5 Q2
o
>
Q
3 O———0—0 %

Stream applications

-~ ~

/" Data stream sources)
N -

Fig. 1. AQSIOS System model

scheduling of the query classes on level 1 and of the individual
operators on level 2.

Level 2 consists of a set of HR (Highest Rate) [12] sched-
ulers, which are designed to minimize the average response
time. In particular, HR sets the priority of an operator to be its
output rate. In this work, each HR scheduler is responsible for
a set of operators that belong to a specific class. In AQSIOS, a
source operator is considered part of a query, so each HR class
scheduler is implemented in a way that distinguishes between
the source and the other non-source operators and schedules
them independently according to their input queues. At each
scheduling point, an HR class scheduler first schedules the
non-source operators and switches to the source operators only
when all the other operators have empty input queues.

On level 1, a Weighted Round Robin (WRR) scheduler
allocates to each query class 7 a quota (c;) equal to a time
slice of T; time units. 7} is the product of the priority of query
class 7 (P;) and a configurable time period & divided by the
sum of all the class priorities (3_7_, P;). In AQSIOS, WRR
does not preempt HR class schedulers, but uses a negative
credit system. If any HR class scheduler ¢ exceeds its quota
(¢;), WRR deducts the excess amount from its future quotas.

B. ALoMa: An Adaptive Load Manager

ALoMa [7] is a practical load management module that
can be easily incorporated within any DSMS. ALoMa does
not require the manual, off-line tuning of the system and
workload-dependent parameters such as the headroom factor.
Also, ALoMa is generic enough to handle all types of query
networks. In [7] we showed that ALoMa, while is self-tuned,
can achieve equivalent or better performance compared to that
of CTRL [8], the state-of-the-art manually-tuned approach.
Interestingly, as we will discuss in this paper, the adaptation
ability of the load manager not only absolves the system
administrator from manual tuning of the headroom factor, but
also plays a key role in enabling the synergy between the
scheduler and the load manager.

ALoMa has two basic components that interact with each
other: the statistics-based load monitor and the response time
monitor. The core idea behind ALoMa is to use information
about the actual response time, provided by the response time
monitor, to adjust the estimation of the system capacity that is
spent on processing the tuples (i.e., the headroom factor), so

Authorized licensed use limited to: University of Pittsburgh Library System. Downldalied on November 12,2025 at 17:42:45 UTC from IEEE Xplore. Restrictions apply.

1e+06 F class 1 pr— :
class 2 --eeeeeee

100000 F A S

10000 F |
1000 |
100 F |
10 F |

1 L L L L L L L
50 100 150 200 250 300 350
time(s)

response time (ms)

Fig. 2. Response times with S. and no load shedder

there is no need to manually tune it. Below we use the term
system capacity and headroom factor interchangeably to refer
to the part of capacity spent on processing the tuples.

The intuition that drives the ALoMa is typical of all control
systems. The system starts with an initial, reasonable value
of the headroom factor (for example, 0.8). Later on, if the
load monitor estimates that the system is overloaded but the
response time monitor does not observe any abnormality, then
ALoMa decides that the system capacity should be higher.
On the contrary, if the response time monitor detects that the
system is overloaded but the estimated load is still less than
the capacity, ALoMa decreases the capacity. When the two
components agree with each other, the difference between the
estimated load and the system capacity is the amount of load
that needs to be removed or can be added to the system.

Let L be the current load and L the current system
capacity when ALoMa decides that L¢ should be adjusted. We
adopt the approach expressed by Equation 1 to calculate how
much the load manager should increase/decrease the headroom
factor.

o = LC + M
k
where k :{ L7Ee %100, if £2E2 %100 > 1

1, otherwise

Le (L —Lc) (D

The equation is based on the intuition that we can be more
aggressive when the gap between L and Lo is small, but
should be more conservative when it is big, since the estimated
capacity is expected to converge around the correct value.

IV. SCHEDULER - LOAD MANAGER SYNERGY
A. Why Sheduler - Load Manager Synergy?

When the load is heavy, in a DSMS with a prioritized
scheduler we observe that the lowest priority classes receive
very bad QoS: their response times quickly exceed their delay
targets and keep increasing unboundedly if load shedding is
not applied. In other words, these classes are overloaded while
the other classes, with higher priority, are not.

In this section, we demonstrate, through a set of experi-
mental results, why a simple combination of a scheduler and
a load manager is not as effective as a unified model that
integrates the two and makes them aware of each other. These
experiments, running in our AQSIOS prototype, use a query
network that consists of three classes of queries of the same
size, whose priorities are 6, 3 and 1 and delay targets are

10000

class 1 —— class 3 --------

m class 2 «reeeeeee delay target
£ 1000 B E
[} o A s haa Al
£
° 100 E
(2}
=4
[s]
2 10 F 4
o I\

1 L L L L L L L

50 100 150 200

time(s)

250 300 350 400

Fig. 3. Response times with S. and one common load shedder

TABLE 1
AVERAGE RESPONSE TIME AND DATA LOSS, WITH S. AND ONE COMMON
LOAD SHEDDER
| || Class 1 | Class 2 | Class 3 |

3.00 3.13 | 517.07
11.42 1143 11.60

Response time (ms)
Data loss (%)

300ms, 400ms and 500ms, respectively. We use the queries
and input data stream S, described in Section V.

Fig. 2 shows the response time of the three classes when
there is no load shedding. We also plot the delay target of class
3 (in this set of experiments the other classes never reach their
delay targets so they are not plotted). We see that the response
time of class 3 exceeds its delay target (500ms) by a huge
amount, while those of the other classes stay at around 3ms.
Note that the x-axis is the timestamp of the input tuple related
to the output, which explains the decrease in the response time
of class 3 at the end of the experiment: due to the huge waiting
time, by the time these tuples of class 3 get processed the other
two classes have already finished processing all of their input
tuples, leaving the full system to class 3.

To satisfy the worst-case response time constraint, one idea
is to apply load shedding to keep the response time of class 3
at or below its delay target. We tried this idea by enabling our
ALoMa load manager in AQSIOS. The load manager, being
unaware of the prioritized scheduling policy, calculates the
excess load and applies the shedding to all the inputs of all
classes evenly. Fig. 3 shows the detailed response times of the
three classes under this scheme, and Table I summarizes the
average response time and data loss for each class.

Although the load manager successfully controls the re-
sponse time of class 3 to satisfy the QoS on worst case
response time, it does not honor the priorities of the classes
with respect to QoD: the three classes lose the same amount of
data, and class 1 and class 2 suffer from data loss even though
they are not overloaded. One might think of a solution in which
load shedding applies only to those queries whose response
times exceed the delay target. However, if, for example, both
class 2 and class 3 suffer from overloading (i.e., their response
times exceed their delay targets), such a scheme would not
recognize how much to shed from class 2, and how much
from class 3. Therefore, for any thorough solution, the load
manager should be able to take into account the priorities of
the classes.

Authorized licensed use limited to: University of Pittsburgh Library System. Downldeded on November 12,2025 at 17:42:45 UTC from IEEE Xplore. Restrictions apply.

10000

class 3
delay target

class 1 ——
class 2

1000 ¢

response time (ms)
=)
o
T
m

1 ! ! ! ! ! ! !

TABLE 11
AVERAGE RESPONSE TIME AND DATA LOSS, WITH S. AND ONE LOAD
SHEDDER PER CLASS
| [[Class 1 | Class 2 | Class 3 |

Response time (ms) 3.55 375 | 492.84
Data loss (%) 0 0 3595

50 100 150 200
time(s)

400

class1 ——
0.8 | b

0.6

headroom factor

50 100 150 200

time(s)

250 300 350 400

Fig. 4. Response times and estimated headroom factors, with S. and one
load shedder per class

B. Scheduling-Aware Load Manager

Instead of building a separate algorithm for the load man-
ager, we propose an approach that allows it to follow the
scheduler’s policy in honoring the classes’ priorities. We
believe (and justify later in this paper) that an integrated
approach for the scheduler and the load manager enable us
to further optimize the usage of the system capacity while
still being consistent in providing prioritized QoS and QoD.

With a prioritized scheduling policy like CQC, each query
class can be considered to be receiving a portion of the system
capacity that is roughly proportional to the class’ priority.
Then, the ability of ALoMa to automatically recognize the
headroom factor solves the problem: all we need to do is to
create a separate instance of ALoMa for each class. At run
time each instance can automatically recognize the portion
of the capacity that the class actually has, and use it to
calculate the excess load that will be shed from the class. This
implies that each load manager instance detects and follows
the priority enforced by the scheduler.

The top plot in Fig. 4 shows the detailed response time of
the three classes under this scheduling-aware load management
scheme, in which the response times of the classes are all well
controlled and Table II gives the summary of response time
and data loss for each class. As expected, with this approach,
only class 3, which is the one that is overloaded, experiences
load shedding.

The bottom part of Fig. 4 plots the headroom factors
estimated by each load manager of each class. At the beginning
of the experiment, we initialize the headroom factors for class
1, 2, and 3 to be 0.6, 0.3, and 0.1 respectively, which are
proportional to their priorities. However, we observed that at
run time the headroom factor for class 3 actually went up to
around 0.25, and that of class 3 slightly higher than 0.3. This is
due to the policy of CQC: if a class finishes executing all tuples
in its queues, the scheduler lets the next class in the round run,
even though the former class has not used up its quota. Thus,
when a class is lightly loaded (class 1 in this case), part of its

assigned capacity is automatically given to the other classes.
Note that the headroom factor of class 1, however, does not
change and still remains at the initial value because the load
manager does not have the necessary signals to decrease it —
the load manager decreases the headroom factor of a class
internally only when the class is under overload situation.
This observation motivated our design of DiLoS to explicitly
control the distribution of the excess capacity of a class to
the others and consequently, the load managers can use this
capacity distribution information to early adjust the headroom
factors.

C. DILoS: Scheduler-Load Manager synergy

DILoS is designed with two principles in mind that strongly
integrate the scheduler and load manager:

« Distributing the available capacity (e.g., from class 1) to
the classes in need based on their priorities.

« Exploiting batch processing to use the system capacity
more efficiently.

The second principle is originated from our previous work [7],
in which we observed that the higher the number of tuples an
operator can process in a batch, the lower the processing cost
per tuple. CQC, like most other DSMS schedulers, allows an
operator to process up to a certain number of tuples in each
scheduling round. However, if the workload is much less than
the processing capacity (as in the case of class 1), there are
very few tuples waiting in an operator’s input queue, so it
cannot take advantage of the assigned quota to reduce the
processing cost. By explicitly reducing the capacity portion of
the lightly-loaded class, we can increase the number of tuples
its operators process in batch and hence, the class can fit in
the smaller capacity without being overloaded, sharing more
capacity to the other classes.

Since each ALoMa instance can estimate the current load
as well as the capacity of the class it is in charge of, it can
keep track of the average capacity usage of the class, i.e., the
ratio between the load and the capacity. This capacity usage
of each class is periodically reported to the scheduler. Based
on that, for each class i the scheduler calculates:

« demand;: the additional percentage of the system capac-
ity the class needs in order to process all of its current
load without shedding.

o supply;: the percentage of the system capacity the class
can share with others, without itself being overloaded.

More specifically, let u; denotes the capacity usage of the
class, p; and pg; (both in %) denote its current and original
capacity portion, respectively, then demand; and supply; are
computed as follows:

Authorized licensed use limited to: University of Pittsburgh Library System. Downldeded on November 12,2025 at 17:42:45 UTC from IEEE Xplore. Restrictions apply.

10000

class 1 class 3 --------
class 2 -w--eee

1000 ¢ E

AVERAGE RESPONSE TIME AND DATA LOSS, WITH S. AND DILOS

TABLE III

response time (ms)

1 ! ! ! ! ! ! !

50 100 150 200
time(s)

400

0.6 T i

04 1

rptarmiismiiigcizess

headroom factor

02 F i

0 L L L L L L L
50 100 150 200 250 300 350 400

time(s)

Fig. 5. Response times and estimated headrrom factors, with S. and DILoS

(ui—l)xpi, if u; <1
0, otherwise

demand; = {

0.05Xpo;

(l—ui) Xpi—0.05 X Doy if u; <1— o

supply: = { 0, otherwise

Note that to increase the system stability, the scheduler does

not take all of the estimated redundant capacity from a class,

but conservatively leaves 5% of its original capacity portion.
The scheduler calculates budget = >, supply;, and redis-

tributes the system capacity based on the following criteria:

1) For a class i, after the redistribution either demand; is
satisfied (is 0) or it has at least it original capacity (i.e.,
original quota).

2) If the original priority of class i is higher than class
Jj, then demand; must be satisfied using the available
budget before demand,.

3) Any available budget, after satisfying all demands, is
given back to the classes whose quotas are less than their
original quotas. This distribution goes from the class of
highest original priority to the class of lowest one.

4) The sum of quotas does not change before and after the
redistribution.

In order to help each load manager to quickly adapt to the new
value of the capacity portion, the scheduler also changes the
headroom factor of each load manager, as in Equation 2. This
new value set by the scheduler does not need to be perfectly
accurate because the load manager is able to automatically
adjust it.

quotanew
headroommpew = ————

@

X headroomoiq
quotaoid

The top plot in Fig. 5 shows the detailed response time of
the three classes when the system implements our proposed
synergy between the scheduler and the load manager instances,
and Table III shows the average response time and data loss.
Interestingly, none of the classes has to shed data any longer,

[[Class 1 | Class 2 | Class 3 |

Response time (ms)

4.28

4.38

4295

Data loss (%)

0

0

0

meaning DILoS actually uses the system capacity much more
efficiently. The response times of class 1 and class 2 increase
by around 1ms, because the synergy forces the operators in
these classes to process more tuples in each batch so each tuple
has to wait for a longer time. However, we are still consistent
in providing better QoS for the class of higher priority: class
1 is still the one with the smallest average response time.
Note that the fluctuation in the response time of class 3 is
normal due to the fluctuation of the environment and the fact
that its capacity usage is around 100%. The bottom plot in
Fig. 5 shows that class 3 actually receives more of the system
capacity now, which explains why it does not need to drop
any data.

V. EXPERIMENTAL EVALUATION

As discussed above, we experimentally evaluated the perfor-
mance of DILoS in AQSIOS. In all the experiments reported in
this paper, we set 150ms to be the load management cycle, and
the scheduler considers redistributing the system capacity for
each class after 10 load management cycles (i.e., 1.5 seconds).
We ran each experiment five times; the numbers reported are
the average. We use a query network that consists of three
classes of queries, whose priorities are 6, 3 and 1 and delay
targets are 300ms, 400ms and 500ms, respectively. All the
three classes have the same set of 11 queries, consisting of
five aggregates, two window joins, and four selects.

We use the following two setups for the input data:

e Sc: All the input streams coming to the three classes have
constant input rate of 1300 tuples/sec, which, together
with the query network setting, creates a total load that
approximates the total system capacity.

e Ssteps: The input streams for classes 2 and 3 have a
constant input rate of 1500 tuples/sec and 900 tuples/sec,
respectively. These input rates are expected to overload
the classes if they are limited to their originally assigned
capacity portions. For class 1, which is the class of
highest priority, we change its input rate after every 50
second period (Fig. 6) in order to vary the amount of
excess capacity it can share with the other classes.

The S, input setup has been used in the set of experiments
presented in Section IV. The simple pattern of this input
allowed us to easily examine the behavior of each scheme
and build up our understanding. In this section we show the
experimental results using the input Sscps to demonstrate that
DILoS efficiently redistributes the system capacity to different
classes when the input rate suddenly changes significantly.

We show the response times of the three classes under
DILoS in Fig. 7, and summarize the average response time
and data loss in Table IV. In Fig. 8 we show the changes in
the capacity portion of each class, which is reflected through

Authorized licensed use limited to: University of Pittsburgh Library System. Downldkfied on November 12,2025 at 17:42:45 UTC from IEEE Xplore. Restrictions apply.

g 2500 ~
o

(7]

o 2000 - ~
[=5

2

@ 1500 |
5 I

3 1000 - ~
£

500 ‘ ‘ ‘ ‘ ‘ ‘ ‘
50 100 150 200 250 300 350 400
time(s)
Fig. 6. Input rates for class 1 - input setup Ssteps
class1 —— class 3 --------

z 10000 £ 0lass 2 -weeeeee

(o)
g 1000

Q

(2}

c

[s]

Q

7]

o

1 s s s s) s s

200
time(s)

Fig. 7. Response times with Ssteps and DILoS
the headroom factor estimated by each load manager instance,
and the corresponding changes in the shedding rates.

We observe that when the load of class 1 is low, DILoS
distributes the excess capacity from class 1 to the other two
classes, enabling them to shed less. However, as soon as the
load of class 1 increases (e.g., at the 100" second), DILoS
gives back to this class all or part of its original capacity so that
its performance, as specified by its class priority, is preserved.
(In other experiments, not reported due to space limitations,
we got similar results for classes with different set of queries.)

VI. RELATED WORK

Load shedding has been proposed in many DSMS architec-
tures as a method to handle overloading (e.g., [6], [9], [10],
[11], [8]) but few of them consider the priority of the CQs.
CQ priorities have been implicitly considered through loss-
tolerance QoS (i.e., QoD) graphs [6], or maximal tolerable
relative error [11]. However, the emphasis of these approaches
is on load shedding: the load shedder is unaware of the
scheduler and does not provide feedback to improve it.

Also, there are many proposals for scheduling the execution
of CQs in a DSMS with the objective of optimizing certain
performance goals such as minimizing latency ([4], [12])
or minimizing memory requirements ([13]). Related to our
work on multi-class CQ scheduling are the works in [1], [4],
[11] which consider latency-based QoS functions for each
query, and in [14], [15], [16] which schedule real time CQs
where each CQ has a deadline. These schemes, however,
try to optimize the overall benefit of the system rather than
explicitly guarantee the benefit of each class according to its
priority. Also, none of them considers the synergy between
the scheduler and the load manager as in our work.

VII. CONCLUSIONS

In this paper, we proposed to integrate the scheduler and
load manager in a DSMS and implemented DILoS in our
AQSIOS DSMS prototype to efficiently support priority-based
QoS and QoD for continuous queries. Through both analyses

class1 —— class 2 -+ class 3 --------
] 08 1
o
£
£
[}
o
o
[
Q
=
time(s)
100
. class 1
L gl class 2 - -
® class 3 --------
D
8 60 - 1
c
8
3 40f :]
o i
g 20 i ,
° ,"(1 § }-'?
0 i . JE
50 200 250 400
time(s)
Fig. 8. Shedding and estimated headroom factors, with Ss¢eps and DiLoS

TABLE IV
AVERAGE RESPONSE TIME AND DATA LOSS WITH Ssteps AND DILOS
| | Class 1 | Class 2 | Class 3 |

Response time (ms) || 6.67 96.77 226.05
Data loss (%) || 0 5.19 50.97

and experiments on AQSIOS, we have shown that the self-
managed synergy between the scheduler and load manager in
DILoS can significantly increase the utilization of the system
capacity while still being consistent in enforcing the QoS and
QoD of different classes of queries.

REFERENCES

[1] D.J. Abadi et al., “Aurora: a new model and architecture for data stream
management,” in VLDB Journal, 2003.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in PODS '02.

[3] S.Chandrasekaranet al., “Telegraphcq: continuous dataflow processing,”
in SIGMOD ’03.

[4] D. Carney et al., “Operator scheduling in a data stream manager,” in
VLDB ’03.

[5] L. A. Moakar et al., “Class-based continuous query scheduling for data
streams,” in DMSN ’09.

[6] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker,
“Load shedding in a data stream manager,” in VLDB '03.

[7]1 T.Pham, P. Chrysanthis, and A. Labrinidis, “An adaptive load manager
for the AQSIOS stream engine,” Technical Report TR-10-175, 2010.

[8] Y-C. Tu, S. Liu, S. Prabhakar, and B. Yao, “Load shedding in stream
databases: a control-based approach,” in VLDB '06.

[9] B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation

queries over data streams,” in /CDE "04.

F. Reiss and J. M. Hellerstein, “Data triage: An adaptive architecture

for load shedding in telegraphcq,” in ICDE ’05.

S. Chakravarthy and Q. Jiang, Stream Data Processing: A Quality of

Service Perspective Modeling, Scheduling, Load Shedding, and Complex

Event Processing. Springer Publishing, 2009.

M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, K. Pruhs, “Algorithms

and metrics for processing multiple heterogeneous continuous queries,’

ACM TODS, 2008.

B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas, “Operator

scheduling in data stream systems,” The VLDB Journal, 2004.

Y. Wei, S. H. Son, and J. A. Stankovic, “Rtstream: Real-time query

processing for data streams,” in ISORC ’06.

D. Kulkarni, C. V. Ravishankar, M. Cherniack, “Real-time load-adaptive

processing of continuous queries over data streams,” in DEBS’ 08.

S. Wu, Y. Lv, G. Yu, Y. Gu, and X. Li, “A qos-guaranteeing scheduling

algorithm for continuous queries over streams,” in APWeb/WAIM ’07.

[10]

(1]

[12]

[13]
[14]
[15]

[16]

Authorized licensed use limited to: University of Pittsburgh Library System. Downldaded on November 12,2025 at 17:42:45 UTC from IEEE Xplore. Restrictions apply.

