Key-Key-Value Stores for Efficiently Processing
Graph Data 1n the Cloud

Alexander G. Connor, Panos K. Chrysanthis, Alexandros Labrinidis

Advanced Data Management Technologies Laboratory
Department of Computer Science, University of Pittsburgh

{agc7,panos, labrinid}@cs.pitt.edu

Abstract— Modern cloud data storage services have powerful
capabilities for data-sets that can be indexed by a single key
— key-value stores — and for data-sets that are characterized by
multiple attributes (such as Google’s BigTable). These data stores
have non-ideal overheads, however, when graph data needs to be
maintained; overheads are incurred because related (by graph
edges) keys are managed in physically different host machines.
We propose a new distributed data-storage paradigm, the key-
key-value store, which will extend the key-value model and
significantly reduce these overheads by storing related keys in the
same place. We provide a high-level description of our proposed
system for storing large-scale, highly interconnected graph data
— such as social networks — as well as an analysis of our key-
key-value system in relation to existing work. In this paper, we
show how our novel data organization paradigm will facilitate
improved levels of QoS in large graph data stores.

I. INTRODUCTION

Cloud computing is a broad class of techniques and
paradigms that reflect large-scale, distributed computing and
storage as a service. Customers of these cloud services pay per
use of storage space, bandwidth and processor time; the rate is
often determined by a Service-Level Agreement that specifies
the fee as a function of response time or availability for re-
quests [1]. Such services are used internally within computing
firms as well; in this setting, consumer-facing applications use
the internal cloud services for fulfilling business needs [1], [2].

Some of the more well-known internal cloud systems in-
clude Dynamo of Amazon.com [1], PNUTS of Yahoo! [2] and
BigTable from Google [3], which use key-value stores. Key-
value stores are data structures wherein there is a primary key
and an object; the object can only be referred to by the key.
The creators of Dynamo and PNUTS were motivated by the
observation that most of the data that applications work with
are indexed only by a primary key and most often are accessed
or modified one item at a time [1], [2]. BigTable manages
more complex data structures by allowing values to have many
attributes — these are still identified by only one key. G-Store
[4] and ecStore [5] are University prototypes of transactional
key-value stores that support multiple key manipulations with
strict consistency.

Motivating Example: Emerging cloud services often work
with requests for data identified by two keys — examples
include Facebook (facebook.com) and Twitter (twitter.com).
Consider Twitter, a social networking service where users send
status updates and read the status updates of their friends, or

people they follow. Twitter thus needs to be able to specify this
user to user relation: (userl,
For our example, suppose that relationship is follows and
alice is the user who follows bob. The relationship could
also be something else, such as blocked, where the first user
is not allowed to see the second user’s updates.

Users need to be able to ask queries such as who follows
bob? and who does alice follow? To implement these rela-
tions — the follows-list and the followers-list — in a key-value
store, both lists need to be maintained for both alice and
for bob. If only the follows-list was maintained, the follows-
list for every user in the graph would need to be examined
when determining the followers-list for bob — this means
a high-cost join. One could argue that edges of the graph
could be indexed in an intelligent fashion; even with the best
indexing the lists for alice and bob could still be stored on
separate machines. This creates an overhead in performance
or a potential inconsistency in the data [6].

We propose to unify these four lists by storing data as
a (source-key, target-key, value) relation; now, if
both alice and bob’s data are kept in the same place, then
both queries can be answered from one site. Our proposed
approach reduces the overhead of storage by eliminating dupli-
cate records and reduces performance overhead and improves
consistency by keeping related records in one site.

Unlike Pregel, a paradigm for distributed graph data pro-
cessing [7], our proposed system provides robust graph data
storage. Similar to cloud key-value stores, our system will
provide durable, available and fast key-value and key-key-
value data management with flexible consistency guarantees.
Our system could be used for implementing paradigms like
Pregel, and a variety of graph operations such as reachability
queries, shortest path queries and subgraph matching queries.
Applications performing such queries will be able to use our
key-key-value system’s API for effecient processing.

Contributions: In this work we contribute the following to
the literature:

user2, relationship).

e A novel model for scalable graph data stores that extends
the key-value model, the key-key-value store (Sec. II).

e A high-level design for the key-key-value system (Sec. III).

e A novel on-line algorithm for partitioning graph data in
key-key-value stores (Algorithm 1, given in Sec. III-F and
evaluated in Sec. IV).

97 SulndhZdd i9hR6u 44k L%ét@%@/&gﬂybﬂﬁﬁsﬁurgh Library System. Downlddied on November 12,2025 at 17:43:09 UTC from |IEEE WER%@MM%@(H 1

II. SYSTEM MODEL

Our proposed system will have four layers of organization
beyond the general cloud infrastructure:

1) Physical Layer — We will assume that machines have
heterogeneous capabilities and are interconnected in a net-
work where each machine can reach every other machine
most of the time.

2) Logical Layer — Here, each node is not actually a physical
machine; it is a virtual machine. The services hosted at
each virtual node will see the rest of the system as a grid,;
a global distributed transactional table maps virtual nodes
to physical machines. In this way we can (1) maintain a
perfect grid, no matter how many machines we have, (2)
give more powerful machines heavier loads than weaker
machines by assigning more virtual nodes and (3) add or
remove machines from the system without disrupting the
logical organization. The grid structure allows our system
to organize key-key-values with the on-line partitioning al-
gorithm, as well as support efficient global communication.

3) Address Table — Our system maps individual keys to rows
and columns in the grid; this mapping cannot be made by
a hash function — it has to be stored. Our system thus uses
a distributed hash table — the Address Table — similar to
the hash table used by Dynamo [1].

4) Application Layer — User applications, also referred to as
users, see the entire system as a black box where basic
I/O operations are supported. Our system provides an API
for key-key-values, in addition to key-values.

We will discuss in the next section each layer and the
specifics of system structure and function at each layer in
detail; the key-key-value system needs to support a specific
set of operations at each layer beyond the key-value operations
to uphold the desired characteristics of cloud data stores and
interface with the other layers.

III. IMPLEMENTATION DETAILS
A. Application Layer

We begin our discussion with the application layer; this is
the layer of the system that outside users interface with. The
following user operations are supported:

® put (source-key, target-key,value) — Updates the
(source-key, target-key) specified with value. In
our example, put (alice,bob, follows) is called when
alice begins following bob. Both keys must be non-
null. If value is null, then the system deletes the record
for (source-key, target-key). If the key-pair does not
exist in the system, then it is inserted; if one key does not
exist in the system and the other does exist, then the new
key is inserted as a source-key in the same node as the
existing key.

® get (source-key,target-key) — Gets the value and
versions (as a vector clock [8], [9]) for a given
(source-key, target—-key) pair. If one key is null,
then this operation gets the list of records matching the

non-null key in the non-null key’s position. For example,
get (null, bob) will return a list of users who follow or
who block bob, and what relationship each has to bob.

e sync (source-key,target-key) — Blocks the user ap-
plication thread until the given key-pair is made consistent
with any other node that calls sync for the same key-pair.
Details on how this works are given in Section III-D.

The key-key-value system also supports key-value op-
erations, including get (key,value), put (key,value),
sync (key,value). The mechanics of these are the same
as their key-key-value counterparts, the only difference is
that these operate on data associated with only one key —
preserving the functionality of existing key-value systems.

B. Address Table

As stated above, our goal is to store keys that are related in
the same node for performance reasons. In an abstract graph,
however, determining which objects to store on which nodes
requires some computation. The grid-address, therefore, of
each key needs to be stored by our system, so that nodes know
where to look for a given key. Each node has a grid-map that
associates address-ranges to nodes (and physical machines).

Almost all key-value storage systems use a hash function
to determine where to store a specific key-value. This has the
benefit of each machine in the distributed system being able
to determine the location of a key-value in a local manner.
Unfortunately, the hash function will assign key-values to
nodes randomly by design, without any regard for how the
key-values are connected. In the case of graph data, this means
that related keys are likely to be stored in a variety of places. In
fact, the larger the set of related keys is, the higher the expected
number of different storage sites is. When working with the
graph data, an application will thus have to work with several
machines — creating overheads with consistency, availability
and performance. Our system eliminates such overheads by
assigning keys to machines based how they are related, and
using the global address table to keep track of their locations.

As the structure of the graph changes and the organization
of the grid changes, key addresses will need to change. When
this occurs, the Address Table is updated. The Address Table
is a distributed transaction-supporting structure; the ACID
properties are necessary for preserving the correctness of
address-change operations.

C. Cache operations

Each logical node in the network acts as the entry point
in the system for user requests. These connections are routed
to physical machines arbitrarily by DNS; if a cache for the
session already exists on some virtual node, then that node is
used for the connection. For each new session, a virtual node
is selected by load balancing and a cache is created. The node
uses the following operations to pull data into the cache and
propagate it out:

e address (key) — Gets the grid-address of key from
the Address Table. Once the location [of the key is
established, (key, [) is inserted into the cache.

Authorized licensed use limited to: University of Pittsburgh Library System. Downld¥ded on November 12,2025 at 17:43:09 UTC from IEEE Xplore. Restrictions apply.

e read(node, source-key, target—-key) — When the
user application calls the get operation, the cache reads
the replica at node for (source-key, target-key) into
the cache. If the cache has available space, the source-key’s
data and list of target keys is also read.

® write (node, source-key, target-key,value) — A
background thread in the cache periodically writes mod-
ified key-pairs back to the replica at node. Note
that this occurs periodically whether or not the key-
pair has been evicted from the cache, thus it is a
lazy write-through policy. When the user application
calls sync (source-key, target—-key), any un-written-
through updates to the key-pair are immediately sent to the
replicating node. Once this has succeeded, the user thread
is unblocked.

The read and write operations can return with key not
found. In this case, the cache uses address to find the latest
location of the requested source-key.

D. Critical Reads and Writes

In the case where user applications are working with data
that has to be fresh, our system provides this guarantee through
the sync operation. In our example, suppose a user connected
to node B makes a critical update — bob blocking eve. Shortly
after (in global time), another user thread connected to node F
requests a list of all people that have a connection to eve. After
calling put (bob, eve,blocked), B calls sync (bob, eve).
This forces the cache to call write (R, bob, eve,blocked)
for each node R that replicates (bob, eve).

At node E, the user application first calls sync (bob, eve).
This forces the application thread to wait until the cache has
gotten a fresh copy of the value at (bob,eve) from some
replica X — as each replicating node has gotten the write
from B, E will read the fresh data. Now, the user thread will
resume, and get the update that bob has blocked eve.

Order Consistency: Although using the sync operation
guarantees consistency, our system has an order consistency
guarantee by default: updates made at the same node are
always propagated to replicas in the same order. This is a
standard functionality of existing cloud key-value stores — our
system supports it as well, and supports it for key-key-values.
When a user application makes a connection to our system, the
system will guarantee that the application is interacting with
the same node throughout the session. Once the application
has ended the session, this guarantee is voided.

E. Logical Layer

Each virtual node in the logical layer will be responsible for
managing a set of source keys; each source key has some data
associated with it as in a key-value store (in our example, the
user’s profile and status updates) and a list of target keys that
the source key links to in the graph. These are stored in the
key-key-value table; in our example, this would be the table
that stores the follows-list for every user whose data is hosted
at that node. Each key-pair, furthermore, has a value — in our
example, this value can be the follows or blocked relationship.

Also stored in the same key-key-value table is an inverse
mapping of keys; for every source key, each inverse key is
stored as a (inverse-key, source-key, value) tuple.
Consider alice and bob. The tuple (alice,bob, follows)
is stored in the node that hosts all of alice’s data; the same
tuple is stored in the node that hosts all of bob’s data (in his
followers-list). If both alice and bob are hosted in the same
node, then only one (alice,bob, follows) tuple needs to
be stored in that node.

As stated earlier, virtual nodes in our system are mapped
to a grid. This grid maintains the logical organization of the
network — it is the basis for decisions about where replicas
are placed, and where messages are sent to and pulled from.
The grid-map is a global distributed structure that stores
the (row-range,
relation — the row-range and column-range give the ranges
of key addresses; physical-machine gives the physical network
address of the machine that hosts the virtual node that manages
keys with addresses that fall in the given ranges.

The grid-map furthermore supports transactions; this is
because some updates to the grid-map involve changing many
parts of the map atomically and the grid-map must be consis-
tent for all nodes. Other updates involve changing only one cell
of the grid, as we will see later. We posit that during normal
systems operations, changes to the grid-map will be infrequent
and applications will need information from a limited number
of locations in the grid-map in a session — a side-effect of
locality by computation (discussed below in Section III-F).

In order to support such transactional operations, most cloud
data stores have some unified protocol for communication
between nodes. These can cover both sending messages about
system state [2] and propogating replicas [1]. Our system
will de-couple these; it will propogate replicas passively and
use a distributed mutual exclusion protocol (DME) similar to
Maekawa’s [10] for system state updates.

column-range, physical-machine)

(a) A sends to all nodes (b) B reads from all (c) A’s message reaches
on its line. nodes on its line. B through two nodes.

Fig. 1. FPP-based communication in the grid.

Our distributed mutual exclusion scheme (Fig. 1), like
Maekawa’s, use a finite project plane (or FPP). An FPP is a
geometric structure characterized by the following axioms: ev-
ery point is incident on exactly two lines and every line passes
through exactly two points. This is at the core of Maekawa’s
protocol — a node in the distributed system corresponds to
one point and one line in the FPP. This technique requires
between 3v/N and 5v/N messages to create mutual exclusion
— an asymptotic improvement over the previous methods that
required O(N) messages [10].

Authorized licensed use limited to: University of Pittsburgh Library System. Downlded on November 12,2025 at 17:43:09 UTC from IEEE Xplore. Restrictions apply.

The key-key-value system will use a relaxed version of
FPPs in its communication protocols. As stated above, each
physical machine in our system can have several virtual nodes,
which are organized in a grid. Each virtual node will send
system state updates to and request state information from
nodes that lie in the same row and column. This ensures the
following properties: every point is incident on at least two
lines and every line passes through at least two points. Think
of each virtual node representing a point and a line. The point
that the node corresponds to is its grid cell. The line that it
corresponds to is the set of virtual nodes that lie on the same
row and column. Suppose some node A sends a message to
every point-node incident on the A-line. If another node B
requests messages from every point-node on its B-line, then
the message from A will reach B through two point nodes (see
Figure 1). In this way, if a failure in one of the connecting
nodes occurs, the message will still be passed.

Load Maintenance Operations: Each logical node has a set of
operations available to it for completing application requests
and for managing load. The load management operations
allow a virtual node to split if it is overloaded, and merge
with neighbor virtual nodes if all nodes are underloaded.
When these operations are performed, they must maintain the
structure of the grid (as in Figure 2), and for this reason
distributed mutual exclusion is necessary to ensure that a
history’s splits and merges are serializable for the grid. For
instance, if some node X receives two separate requests to
split, then it can accept both requests without compromising
the grid structure. On the other hand, if X receives a request to
split row-wise and merge column-wise, it must choose (based
on the logical clock of requests) which request to honor.

split
alc [
C c3fca [
—
merge
X x1[x2

Fig. 2. Splitting and merging a node.

Splitting: Splitting is necessary to prevent overloading; when
a node C' has load greater than some threshold, it initiates a
split. The first step is to contact each node X that lies in
the same row or column as C' (referred to as the line I, see
Figure 2) and determine if a split is possible and to acquire
the split-lock. If there is another node Y in [that is involved
in a conflicting merge operation, Y contacts the merging node
Z to make sure that the merge will succeed. If the merge will
succeed, then C' must wait to split; otherwise, C' tells all nodes
in [to split. Once each splitting node has succeeded, then C
updates the grid map and releases its split-lock.

Merging: When some virtual node C' has load less than
a certain threshold (measured by CPU utilization and disk
utilization) it contacts each adjacent node Cj to test if a merge
is possible (see Figure 2). If each of three C; responds that it
has load less than the threshold, each C'; contacts every node

X}, that lies in the same row and column to determine X}’s
load and propose a merge. If every X, that was contacted has
load below the threshold, then C' tries to acquire the merge-
lock. For each set of merging nodes C1,...,C4 a node C is
created that handles keys in the in unioned key-range of nodes
C1, ...,C4. Each of the nodes C1, ..., Cy stays on-line, but only
as a router that forwards every request to C'. All nodes X1, X5
in the merging rows and columns similarly merge into new
nodes X, as illustrated in Figure 2. Once C' has confirmed
that the merge has succeeded, it updates the grid-map and the
nodes C1,...,Cy are notified by C that they can shut down;
finally, the merge-lock is released.

In the event that a failure is detected in either process
(by timeout), each node that becomes aware of the failure
considers the operation cancelled. The current failed operation
is reversed and the relevant locks released. Once recovery has
occurred and has been confirmed, the originating node C' will
re-start the operation if necessary.

F. Computation of Locality

Although a key’s grid-address is assigned arbitrarily when it
is first inserted into a virtual node, the node that it first resides
in may not be the optimal place to store that key. Our system,
thus, needs to be able to determine reasonably good locations
for keys, such that related keys are stored in the same or grid-
adjacent virtual nodes. In order to achieve this, we introduce
the concept of computation of locality.

Spatial data structures, especially grid files, take advantage
of spatial locality by storing items that are (spatially) related
to one another in the same place, or at worst in a nearby
place. Note that traditional grid files achieve this locality by
hashing keys to rows and columns in the grid; a cell in the grid
represents a set of key-pairs determined by the hash function
[11]. For our system, which stores graph data, this scheme
will cause related keys to be spread out across whole rows
and columns. Instead, our key-key-value system will store all
data for some deliberately selected, related keys in one grid
cell.

Unfortunately, for abstract structures such as social net-
works, spatial locality is not intrinsically available for systems
to exploit. We propose to use a novel on-line graph partitioning
algorithm to determine the grid-addresses of keys. On each
node, a continuously-running background process calls the on-
line partitioning algorithm (Algorithm 1) on each source-key
in an arbitrary order. The structure of the graph changes in the
following events, which may lead to the migration of source-
keys:

Split Event: When a virtual node splits, each of the source-
keys stored in that node must be re-addressed. The node
arbitrarily assigns a new grid-address to each key. The keys are
then immediately transferred and the Address Table is updated;
in this way the split can be completed quickly and the new
nodes can begin operations. Once the split has succeeded, the
new nodes start up the on-line partitioning algorithm to better
organize the recently moved keys.

Authorized licensed use limited to: University of Pittsburgh Library System. Downl&lied on November 12,2025 at 17:43:09 UTC from IEEE Xplore. Restrictions apply.

Merge Event: When a group of nodes merge, the process is
much simpler: each source-key is updated with the new node’s
grid-location intervals. Merging has the benefit of reducing
storage overhead in the new node by eliminating duplicate key-
key-value entries in the merged nodes. Also, all of the edges
that crossed between the merged nodes will be contained in
the same node; improving both performance and availability.

Target Key Insert or Delete Event: When a user inserts or
deletes a key-pair, a target key is added to or removed from
a source key’s list. A potentially better arrangement of the
source-keys may then exist. If the source key needs to be
moved, a copy is made on the new hosting node. The address
table is then updated with the new location; finally, the old
host node will delete the source-key from its store.

Within each node’s data store, we maintain not only the
key-key-values and source-key’s data, we also maintain some
aggregates about each source-key. These include a list of nodes
that host the source-key’s target-keys and inverse-keys, and
the number of target-keys and inverse-keys hosted on each
node. Using these counts, our on-line algorithm can quickly
determine if a key can be placed in a better location. After
each key-pair insertion or deletion, these counts are updated
as part of the operation. Our proposed algorithm is similar
to that proposed by Zanghi et al [12]; however, their work
focused on the on-line addition and removal of graph vertices
whereas we are concerned with operations on edges. To our
knowledge, the only other similar approaches to ours are those
by Sun et al [13], Kernighan and Lin [14], and Fiduccia and
Mattheyses [15]; these work in an off-line fashion.

Algorithm 1 On-line algorithm for determining the optimal

host virtual node for a source-key.
Input: Source-key s; node H where s is hosted; list
(H',I(H"),c(H')) where H' is a node, [(H') is the storage
overhead at H', ¢(H') is a count of target-keys and inverse-
keys of s that are hosted on H'; capacity ¢, threshold 4.
Output: Node H' such that H”’s storage requirement if
s were hosted on H’ is less than some threshold and the
number edges that cross between nodes from s is minimal.

Add each H’ to a priority queue ¢, ordered by c(H’).
while true do
Let X < top(q); pop ¢.
Return H only if ¢(X) < c(H) + 4.
if H # X,1(X) + storageCost(s) < ¢ then
Move s to X.
for each target-key or inverse-key ¢ of s do
Update t’s count-list, reflecting s’s new location.
Return X.
end for
end if
end while

G. Replication

Each node additionally has a set of key-ranges that it is
responsible for replicating. These ranges are defined as the set

of keys in the same logical column or the same logical row as
the node. Suppose that node A is sending copies of data item
d to d’s replicating nodes. A first sends it to the adjacent nodes
in the grid; each of which returns a success or failure message.
A counts the number of distinct physical locations that have
received a copy, and if that number is less than some threshold
W, A sends the update of d to the next adjacent nodes in its
row and column. This is repeated until W or more physical
copies have been made. Our system, thus, uses W + R < N
replication, in the interest of greater availability and lower
response times [16].

Each logical node has the following replication operations:

e push (node, source-key, target-key) — sends the
versions for the given key-pair to node. This is done
periodically in the background; when a node’s load is
below a certain threshold or when enough time has passed
since an update, it begins pushing to its neighbors. After
each push, the receiving node will reply indicating success
or that it is busy and the push should be performed again
later. If the pushing node has not gotten a reply from the
receiving node after some period of time, it will assume
the receiving node has failed and initiate recovery.

e pull (node, source-key, target—key) — requests the
versions for the given key-pair from node. A node only
does this when it first comes on-line or begins replication
of the key-pair.

Conflict Resolution: Suppose that some node Z re-
ceives two or more conflicting updates d; and de of a
(source-key, target-key). Each of d; and ds has a set of
versions identified by vector clocks; each clock contains the ID
of the virtual node that made the update and that node’s local
timestamp. Z will merge the versions of d; and ds, eliminating
old versions where possible [1], [9].

H. Physical Layer

In any large-scale system, the ability to add and remove
hardware resources as demands change and recover gracefully
from hardware failures is essential [1]. We subdivide these
hardware changes into two categories: planned and unplanned.
Planned changes include incorporating a new machine, taking
an old machine off-line or temporarily removing a machine
for maintenance and upgrades. Unplanned changes are the
result of unexpected hardware or software failures; generally,
these lead to a machine becoming isolated from the network —
our system utilizes existing well-known distributed and cloud
recovery schemes [1], [17], [18] to handle physical failures.

Adding Resources: Adding resources generally means adding
a machine to the network. When this is done, the physical
controller running on the machine starts up and takes over
a virtual node from another physical machine. Occasionally,
a logical split needs to take place before the migration is
complete. Once the migration of a virtual node from one
machine to another is complete, the grid-map is updated to
reflect the node’s new location.

Authorized licensed use limited to: University of Pittsburgh Library System. Downl&&ed on November 12,2025 at 17:43:09 UTC from IEEE Xplore. Restrictions apply.

Removing Resources: When a machine needs to be removed
from the system, an administrator connects to that machine’s
physical controller and issues a shutdown command. The
machine then tries to migrate all of its virtual nodes to other
machines. When this succeeds, it shuts itself down. In some
circumstances, this can be done automatically — e.g., the
machine senses that it is over-heating or detects disk failures.

IV. EVALUATION

In addition to demonstrating the advantages of our proposed
system through the theoretical foundations presented earlier,
we also briefly present the experimental evaluation of our
proposed on-line partitioning algorithm. So as to evaluate our
proposed algorithm, we have generated graphs with incoming
branching factors between 10% and 100% of the number
of vertices in the graph. Branching factors fall on a Zipf
distribution with o = 1.5. This is to reflect the observation
that in social networks, some users have far more followers
than others.

In our experiments, we generated three graphs for each eval-
vated graph size (number of vertices) and fixed the partition
size to be at most 30 vertices. We measured the percentage of
edges that cross between partitions and the number of vertices
moved between partitions for both our proposed algorithm
and the off-line algorithm from the work of [15] and [14].
In our implementation of the off-line algorithm, the graph is
partitioned hierarchically until all partitions are smaller than
the size limit. In each partitioning, the algorithm is allowed
to iterate until the increase of the moving average of the
improvement from each of the last ten iterations is greater
that 99%. For our on-line algorithm, we generate a random
sequence of edge insertions and run the algorithm periodically,
after every |V|/10 insertions where |V| is the number of
vertices in the graph.

In Figure 3(a) we see that our proposed on-line algorithm
does about as well in terms of partitioning as the off-line al-
gorithm, with the benefit of higher speed and parallelizability.
This improvement in performance is apparent in Figure 3(b);
where the average number of moved vertices is far less for the
on-line algorithm than for the off-line algorithm.

50 T T T 2000 T T T
On-line —‘— On-line —‘—
[%]
& 400 oftine —<—] g 1500 - Offline > |
(]
£
c 30 —
2 & 1000 |- ><>< -
8— 20 — § ;
c : = -
* 10 4 g S0 X
0 | | | 0 | |
0 100 200 300 0 100 200 300
No. vertices No. vertices

() Effectiveness; on-line per-

() Performance; on-line per-
forms as well as off-line

forms better than off-line

Fig. 3. Experimental evaluation of our proposed on-line algorithm.

V. CONCLUSION

We have provided here a high-level description of a system
that supports key-key-value stores. Such a system could be de-
ployed as a cloud service that gracefully manages tremendous
amounts of graph data, a characteristic of social networks.

Through using the principles behind Maekawa’s algorithm
and through unifying the data structures needed to maintain
graph data, our key-key-value system promises to reduce the
overheads encountered in a key-value-only store. Experimental
evaluation of our on-line partitioning algorithm further sup-
ports this promise. Our system is currently in development; we
plan to realize our key-key-value system’s potential through a
complete implementation.

ACKNOWLEDGMENT

We thank D. Cole of our Department’s Algorithms group
as well as N. Farnan, T.N. Pham and S. Snyder of our group
for their helpful feedback.

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, pp. 205-220, 2007.

[2] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” in Proc. VLDB Endow., vol. 1,
no. 2, 2008, pp. 1277-1288.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” in Proc. 7th USENIX Symp. on Oper.
Syst. Design and Impl., 2006, pp. 205-218.

[4] S.Das, D. Agrawal, and A. El Abbadi, “G-store: a scalable data store for
transactional multi key access in the cloud,” in Proc. 1st ACM symposium
on Cloud computing, 2010, pp. 163-174.

[5] H. T. Vo, C. Chen, and B. C. Ooi, “Towards elastic transactional cloud
storage with range query support,” in Proc. VLDB Endow., vol. 3, no. 1,
2010, pp. 506-517.

[6] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” SIGACT News,
vol. 33, no. 2, pp. 51-59, 2002.

[71 G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proc. 2010 intl. conf. on Management of data, 2010, pp. 135-146.

[8] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558-565, 1978.

[9] C.]J. Fidge, “Timestamps in message-passing systems that preserve the

partial ordering,” in Proc. of the 11th Australian Comp. Sci. Conf., 1988,

pp. 56-66.

M. Maekawa, “A VN algorithm for mutual exclusion in decentralized

systems,” ACM Trans. Computer Syst., vol. 3, no. 2, pp. 145-159, 1985.

J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The grid file: An

adaptable, symmetric multikey file structure,” ACM Trans. Database

Syst., vol. 9, no. 1, pp. 38-71, 1984.

H. Zanghi, C. Ambroise, and V. Miele, “Fast online graph clustering

via erdos-rnyi mixture,” Pattern Recognition, vol. 41, no. 12, pp. 3592

— 3599, 2008.

Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu, “Rankclus: inte-

grating clustering with ranking for heterogeneous information network

analysis,” in Proc. EDBT: Advances in Database Technology, 2009, pp.

565-576.

B. W. Kernighan and S. Lin, “An efficient heuristic procedure for

partitioning graphs,” Bell Systems Technical Journal, vol. 49, pp. 291—

307, 1970.

C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for

improving network partitions,” in Proc. 19th Design Automation Con-

ference, 1982, pp. 175-181.

W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1, pp.

40-44, 2009.

M. T. Ozsu and P. Valduriez, “Distributed database systems: where are

we now?” Computer, vol. 24, no. 8, pp. 68 —78, Aug. 1991.

M. Choy and A. K. Singh, “Efficient fault tolerant algorithms for

resource allocation in distributed systems,” in Proc. ACM symp. on

Theory of computing, 1992, pp. 593-602.

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

Authorized licensed use limited to: University of Pittsburgh Library System. Downl&ded on November 12,2025 at 17:43:09 UTC from IEEE Xplore. Restrictions apply.

