2011 31st International Conference on Distributed Computing Systems Workshops

Enforcing Policy and Data Consistency of Cloud
Transactions

Marian K. Iskander

Dave W. Wilkinson

Adam J. Lee Panos K. Chrysanthis

Department of Computer Science, University of Pittsburgh
{marianky, dwilk, adamlee, panos}@cs.pitt.edu

Abstract—In distributed transactional database systems de-
ployed over cloud servers, entities cooperate to form proofs
of authorizations that are justified by collections of certified
credentials. These proofs and credentials may be evaluated and
collected over extended time periods under the risk of having
the underlying authorization policies or the user credentials
being in inconsistent states. It therefore becomes possible for a
policy-based authorization systems to make unsafe decisions that
might threaten sensitive resources. In this paper, we highlight the
criticality of the problem. We then present the first formalization
of the concept of trusted transactions when dealing with proofs
of authorizations. Accordingly, we define different levels of
policy consistency constraints and present different enforcement
approaches to guarantee the trustworthiness of transactions
executing on cloud servers. We propose a Two-Phase Validation
Commit protocol as a solution, that is a modified version
of the basic Two-Phase Commit protocols. We finally provide
performance analysis of the different presented approaches to
guide the decision makers in which approach to use.

Keywords-Cloud databases, authorization policies, consistency,
distributed transactions, atomic commit protocol

1. INTRODUCTION

Cloud computing has recently emerged as a computing
paradigm in which storage and computation can be outsourced
from organizations to next generation data centers hosted by
companies such as Amazon, Google, Yahoo, and Microsoft.
Such companies have gained a remarkable success by provid-
ing multiple services and paradigms referred to as Infrastruc-
ture as a Service (IaaS), Database as a Service (DaaS), and
Software as a Service (SaaS). This frees organizations that
rely on the cloud from requiring expensive infrastructure and
expertise in-house, and instead make use of cloud providers
to maintain, support, and broker access to high-end resources.
From an economics perspective, cloud consumers can save
huge IT capital investments and be charged on the basis of a
pay-only-for-what-you-use pricing model.

One of the most appealing aspects of cloud computing is
its elasticity, which provides an illusion of infinite, on-demand
resources [1]. This elasticity provides an attractive environ-
ment for highly-scalable multi-tiered applications. However,
this can create additional challenges for back-end transactional
database systems, which were designed without elasticity in

1545-0678/11 $26.00 © 2011 IEEE
DOI 10.1109/ICDCSW.2011.42

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:55:10 UTC from |IEEE Xplore. Restrictions apply.

253

mind. Despite the efforts of key-value stores like Amazon’s
SimpleDB, Dynamo, and Google’s Bigtable to provide scal-
able access to huge amounts of data, transactional guarantees
remain a bottleneck [2].

To provide scalability and elasticity, cloud services often
make heavy use of replication to ensure consistent perfor-
mance and availability. As a result, many cloud services rely
on the notion of eventual consistency when propagating data
throughout the system. This consistency model is a variant of
weak consistency that allows data to be inconsistent among
some replicas during the update process, but ensures that
updates will eventually be propagated to all replicas. This
makes it difficult to strictly maintain the ACID guarantees in
the face of data replication over large geographic distance, as
the ’C’ (consistency) part of ACID is sacrificed to provide
reasonable availability [3].

In systems that host sensitive resources, accesses are pro-
tected via authorization policies that describe the conditions
under which users should be permitted access to resources.
These policies describe relationships between the system prin-
cipals, as well as the certified credentials that users must
provide to attest to their attributes. In a transactional database
system that is deployed in a highly distributed and elastic sys-
tem such as the cloud, policies would typically be replicated—
very much like data—among multiple sites, often following
the same weak or eventual consistency model. It therefore
becomes possible for a policy-based authorization system to
make unsafe decisions using stale policies.

Interesting consistency problems can arise as transactional
database systems are deployed in elastic cloud environments
and use policy-based authorization systems to protect sen-
sitive resources. In addition to handling consistency issues
amongst database replicas, we must also handle two types
of security inconsistency conditions. First, the system may
suffer from policy inconsistencies during policy updates due to
the relaxed consistency model underlying most cloud services.
For example, it is possible for several versions of the policy
to be observed at multiple sites within a single transaction,
leading to inconsistent (and likely unsafe) access decisions
being made during the transaction. Second, it is possible for

IEEE
computer
® psouety

Customers DB
(enforcing policy P)

Inventory DB
(enforcing policy P)

1 Begin Transaction !
CompuMe credentials issued

Read request

CompuMe rep?
Location ? OpRegion?

Send credentials

Access granted + read
credential

Bob has been Policy P changes to P’,
i changes are not reflected

to all sites

assigned to a
i different operational region,
i OpRegion credential is revoked

Write request

Read credentials ?

Send read credentials

Access granted

Fig. 1. A graphical representation of Bob’s interaction with the system

external factors to cause user credential inconsistencies over
the lifetime of a transaction [4]. For instance, a user’s login
credentials could be invalidated or revoked after collection
by the authorization server, but before the completion of the
transaction. In this paper, we address this confluence of data,
policy, and credential inconsistency problems that can emerge
as transactional database systems are deployed to the cloud.
In doing so we make the following contributions:

o We highlight, for the first time in the literature, the
criticality of the problem. We then describe possible
problems that can arise in the context of a motivational
example (Section II).

« We present the first formalization of the concept of trusted
transactions. Trusted transactions are those transactions
that do not violate credential or policy inconsistencies
over the lifetime of the transaction. We then present
a more general term, safe transactions, that we use to
identify transactions that conform to the ACID properties
of distributed database systems and are trusted in terms
of the validity of the policies evaluation (Section III).

« Since achieving ACID properties in distributed transac-
tional databases has been extensively studied [5], [6], our
focus in this paper is how to achieve trusted transac-
tions. Accordingly, we define different levels of policy
consistency constraints as well as different enforcement
approaches to guarantee the trustworthiness of transac-
tions executing on cloud servers (Sections IV).

o We propose a solution that involves an adaptation of
the Two-Phase Commit (2PC) protocol to enforce trusted
transactions, which we refer to as Two-Phase Validation
Commit (2PVC) protocol. The resulting protocol ensures
that a transaction is safe, as it ensures policy and cre-
dential consistency along with ensuring data consistency
(Section V).

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:55:10 UTC from |IEEE Xplore. Restrictions apply.

254

« We present a performance analysis study of our proposed
approaches to guide the decision makers in which ap-
proach to use in practice (Section VI).

Finally, Section VII describes previous related work, while
Section VIII presents our conclusions.

II. MoTIvATING EXAMPLE

Figure 1 illustrates one case in which inconsistencies among
policies and/or credentials can cause unsafe authorizations
to occur. In this scenario, Bob is attempting to access a
customer database that requires him to prove that he is a
sales representative for his company (CompuMe), that he is
currently assigned to sell within a particular geographical
region, and that he is currently located within that region. Bob
constructs such a proof of authorization, which is then verified
by the customer database. The database then permits access,
and returns Bob a credential indicating that he is permitted to
read from the database.

Bob is then assigned to a different operational region, and
the policy protecting resources within CompuMe is changed.
However, since CompuMe makes use of an eventual consis-
tency model for propagating policy changes, this new policy
is not immediately propagated to all databases. When Bob
attempts to access the inventory database, he is required to
either satisfy (the original) policy, or present a previously-
issued “read” credential indicating that the policy was satisfied.
Bob presents his read credential, and is then granted access
to the database. Note that Bob’s second access was granted
(1) using an old version of the access control policy and (ii)
under the false pretense that Bob was still assigned to a valid
operational region.

In general, many such problems can be encountered due
to policy and/or credential inconsistencies. If any problems
of policy consistency are not alleviated, the company or indi-
vidual may suffer. The company may leak information about
customers and face harsh penalties and loss of credibility. The
individual may lose commission or other benefits for a sale.

III. SysteEM ASSUMPTIONS AND PROBLEM DEFINITION
A. System Model

We assume a cloud infrastructure consisting of a set of S
servers, where each server is responsible for hosting a subset
D of all data items D belonging to a specific application
domain (D c D). Users interact with the system by submitting
queries or update requests encapsulated in ACID transactions.
Transactions submitted to the system are first forwarded to
a Transaction Manager (TM) that distributes the queries to
the involved servers and coordinates their execution. Multiple
TMs could be invoked as the system workload increases for
load balancing, but each transaction is handled by only one

TM. We denote each transaction as T = ¢y, g2, ..., gy, Where

g N Transactions

DB
Verifiable Trusted Third
Parties (CAs)

Fig. 2.

Interaction among the system components

q; € Q is a single query/update belonging to the set of all
queries Q. The start time of each transaction is denoted by
a(T), and the time at which the transaction finishes execution
and is ready to commit is denoted by w(7). Without loss of
generality, we assume that queries belonging to a transaction
execute sequentially and without any restriction on the servers.
That is, two queries of the same transaction may execute on the
same server at different instances in time but not concurrently.
These assumptions simplify the way we present our model and
definitions, but does not affect the correctness or the validity
of our consistency definitions.

Let P denote the set of all authorization policies, each autho-
rization policy P : P € P enforced by a server s; governing the
access to the subset of data items D is defined as Py, (D), where
the policy P is a mapping such that P : Sx 22 — 28x A x N.
The value R indicates the set of inference rules used to define
the authorization policy, A refers to the authorization policy
administrator who is in charge of dictating an application’s
policy to the cloud servers, and N is the set of natural numbers
and is used to identify the policy version v.

We will refer to the set of all credentials as C. We assume
that users’ certified credentials are issued by an arbitrary
number of Certificate Authorities (CAs) that exist in the
system. We assume that each CA offers an online method that
allows any server to check the current status of a particular
credential issued by the CA [7]. Given a credential ¢; € C,
a(cy) denotes the time at which the credential was issued by
the CA, while w(cy) denotes the credential expiration time.
Credentials can prematurely expire if they are revoked, and
they can only be revoked by the issuing CA. Different cloud
servers can also issue access credentials that act as capabilities
allowing the user to continue submitting queries to other
servers during the transaction lifetime (as was the case with
Bob’s read credential in Section II). Servers can verify access
credentials issued by each other.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:55:10 UTC from |IEEE Xplore. Restrictions apply.

255

We assume that a transaction does not fork to other sub-
transactions. This assumption is necessary to simplify the
proof of correctness of our proposed scheme as presented later
in Section V. Transactions also do not externalize any data
items to the users until commit time. Figure 2 illustrates the
interaction among the different system components.

We now present a formal definition of a proof of autho-
rization. Let f;, = (g, s, Ps,(m(g;)), t;, C), denote the proof of
authorization evaluated at server s;, where ¢; is a query defined
over a set of read/write requests submitted to that server. Py,
denote the proofs of authorizations enforced by server s; and
belonging to the same administrative domain A. Function m
is a mapping such that m : Q — 2P, that is, m identifies the
set of data items that are being touched by query ¢. Time ¢; is
the time instance at which the proof of authorization is being
evaluated, and finally C is a set of credentials presented by
the querier to complete the proof of authorization such that
ccce.

Let ¥ denote the set of all proofs of authorizations, and the
set TS contain all possible timestamps. The validity of each
proof of authorization f € F at time instance ¢ is evaluated
using the predicate eval(f, f) such that eval : ¥ XT'S — B. The
boolean sign is true if the proof of authorization is valid. The
validity of a proof of authorization is asserted in two cases:

1) (Credentials are syntactically and semantically valid)
According to the definitions in [4], a credential ¢y is
syntactically valid if the following conditions hold: (i) it
is formatted properly, (ii) it has a valid digital signature,
(iii) the time a(cy) has passed, and (iv) the time w(cy)
has not yet passed. A credential ¢, issued at time ¢
is semantically valid at time ¢ if an online method of
verifying ¢, ’s status indicates that ¢, was not revoked
at time ¢ and 1; <t <1t.

(The inference rules are satisfiable) A policy is a set
of inference rules that are encoded by policy makers to
capture systems access control regulations. Given policy
P, and user credentials C, if the inference rules of the
policy can be satisfied using the user credentials, then
the proof of authorization is said to be valid and the
access is granted accordingly.

2)

B. Problem Definition

As we mentioned earlier, a safe transaction is a more
general term for a transaction that satisfies the correctness
properties of proofs of authorizations, in which case we refer
to as a trusted transaction, and also satisfies the data integrity
constraints. Since data integrity and consistency has been
extensively studied within the distributed database community,
in this section we focus on defining the new concept of trusted
transaction.

Since transactions are executed over time, the state informa-
tion of the credentials and the policies enforced by different
servers are subject to changes at any time instance, therefore
it becomes important to introduce precise definitions for the
different consistency levels that could be achieved within a
transactions lifetime. These consistency models strengthen the
trusted transaction definition by defining the environment in
which policy versions are consistent relative to the rest of the
system. Before we do that, we define a transaction’s view in
terms of the different proofs of authorizations evaluated during
the lifetime of a particular transaction.

Definition 1: (View) A transaction’s view V7 is the set of
proofs of authorizations observed during the lifetime of a
transaction [a(T), w(T)] and defined as V7 fs | fu =
(i 5i, P5,(m(g)), 1, CY A g € T}. *

Following from Definition 1, a transaction’s view is built
incrementally as more proofs of authorizations are being
evaluated by servers during the transaction execution.

We now present two increasingly more powerful definitions
of consistencies within transactions.

Definition 2: (View Consistency) A view V7
{<Qi’ Siy Ps,v(m(qi)): 1, C), e <q;1, Sns Ps,,(m(qn)): T, C>}
view consistent, or ¢-consistent, if VT satisfies a predicate
¢-consistent that places constraints on the versioning of the
policies such that ¢-consistent(V7) < V; j 1 ver(Py) = ver(Py))
for all policies belonging to the same administrator A, where
function ver is defined as ver : P — N. *

is

With a view consistency model, the policy versions should
be internally consistent across all servers involved in the
transaction. That is, a snapshot of the system is what is used to
evaluate the decision of a trusted transaction with the servers
agreeing among themselves. The view consistency model is
weak in that the policy version agreed upon by the subset
of servers within the transaction may not be the latest policy
version v. It may be the case that a server outside of the S
servers has a policy P that belongs to the same administrative
domain A and with a version v' > v. A more strict consistency
model is the global consistency and is defined as follows.

Definition 3: (Global Consistency) A view
VT K% Sis Ps,v(m(%'))’ L, C), R <qn7 Sns Ps,,(m(qn))y In, C>}
global consistent, or y-consistent, if VT satisfies a predicate
y-consistent that places constraints on the versioning of the
policies such that i-consistent(V7) & V; : ver(Py,) = ver(P)
for all policies belonging to the same administrator A, and
function ver follows the same aforementioned definition,
while ver(P) refers to the latest policy version. *

With a global consistency model, policies used to evaluate
the proofs of authorizations during a transaction execution

256

@ : query start time
sk : proof of authorization
S1| @ i*
Sz ® i*
S3 ° i
a(T) o(T)

time ——>

Fig. 3. Deferred proofs of authorization

among S servers should match the latest policy version among
the entire policy set P, for all policies enforced by the same
administrator A.

Given the above definitions, we now have a precise vocab-
ulary for defining the conditions necessary for a transaction to
be asserted as “trusted”.

Definition 4: (Trusted Transaction) Given a transaction T =

{91,952, ..., q,} and its corresponding view V7T, T is trusted iff
Vievr : eval(fs,,t), at some time instance ¢ : a(T) < t <
w(T)A (¢-consistent(VT) Vig-consistent(V7)) *

Following from Definition 4, a safe transaction is a trans-
action that is both trusted and satisfies the data integrity
constraints. A safe transaction is allowed to commit, while
an unsafe transaction is forced to rollback.

IV. TrRUSTED TRANSACTIONS ENFORCEMENT

In this section, we present several approaches for enforcing
trusted transactions. We show that each approach offers differ-
ent guarantees during the course of executing transactions over
cloud servers. This indicates that, like many other aspects of
distributed proving and consistency guarantees, the choice of
which approach to use is likely to be a strategic choice made
independently by each application. We delay all discussions
pertaining to the trade-offs to be considered when making the
choice until section VI-B. We now present our approaches
starting from the most permissive and gradually all the way
to the least permissive approach.

A. Deferred Proofs of Authorization

Definition 5: (Deferred Proofs of Authorization) Given a
transaction T and its corresponding view V7, T is trusted
under the deferred proofs of authorization approach, iff at
commit time w(T), Vf‘[evr s eval(fy,, w(T))A (¢-consistent(VT)
viy-consistent(V7)) *

Deferred proofs of authorization present an optimistic sys-
tem with weaker authorization guarantees, since different
portions of the transaction are allowed to execute without
being validated against the access policies. It is only at
commit time when the proofs of authorizations are evaluated

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:55:10 UTC from |IEEE Xplore. Restrictions apply.

@ : query start time
sk : proof of authorization
51| @ o %
Sy ® = i*
S3 ® £ i
oT) o(T)

timg ——m8¥ >

Fig. 4. Punctual proofs of authorization

simultaneously, that is, the proof trees are constructed and
credentials are syntactically and semantically validated at the
end point of the transaction. Accordingly, a decision is made
whether the transaction is trusted or not. Note that a deferred
proof of authorization has the choice of enforcing either view
or global consistency from Definitions 2 and 3 at commit time.
The choice of which consistency level to enforce is a choice
to be made by applications based on the required trust level.

Figure 3 shows a scenario where three servers si, 57, and s3
are involved in the execution of a transaction. The horizontal
lines define the transaction lifetime, and the dots represent the
arrival time of a query to each server. The stars indicate the
times at which each server validates a proof of authorization.
The vertical dotted line represents an enforcement of either
a view consistency among the three servers or a global
consistency between all servers. As shown in this figure, the
deferred proofs of authorizations requires only that proofs are
evaluated at the transaction commit time using either view or
global consistency.

By employing deferred proofs of authorizations, transac-
tions are most likely to execute faster but on the expense
of risking a transaction to be forced to rollback after it
has proceeded till the commit time if it violates the trusted
transaction condition.

B. Punctual Proofs of Authorization

Definition 6: (Punctual Proofs of Authorization) Given a
transaction T and its corresponding view V7, T is trusted
under the Punctual proofs of authorization approach, iff at
any time instance t; : &(T) < t; < w(T) fo’_evr seval(fs,, t;) A
eval(f;,, w(T))A (¢-consistent(V7) vig-consistent(V7)) *

Punctual proofs of authorizations present a more proactive
approach in which the proofs of authorizations are evaluated
instantaneously whenever a query is being handled by a server.
A re-evaluation of all the proofs of authorizations at commit
time is mandatory to ensure that throughout the window of
execution of the transaction, policies were not updated in a
way that would invalidate a previous proof, and/or credentials
were not invalidated.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:55:10 UTC from |IEEE Xplore. Restrictions apply.

257

@ : query start time
sk : proof of authorization
Si| ® S e
| ! 1
k| |
Sz ® i Ik
I
S
3 ° = I
a(T) , a(T)
time ———>
Fig. 5. Incremental Punctual proofs of authorization

Using this approach, early decisions on whether a trans-
action should proceed or rollback could be made based on
instantaneous evaluations of the proofs. Early detections of
unsafe transactions can save the system from going into
expensive undo operations.

As shown in Figure 4, Punctual proofs of authorizations
do not impose any restrictions on the freshness of the policies
used by the servers to evaluate the proofs during the transac-
tion execution. It is only at commit time when the proofs of
authorizations are re-evaluated that either view consistency or
global consistency are enforced. Hence, and due to the weak
consistency paradigm on which cloud servers operate, a server
might evaluate a proof based on an old version of a policy and
in that case no guarantee that the decision made by that server
is valid or invalid. As a consequence, servers might have false
negative decisions and deny access to queries, and on the other
hand, false positive decisions could also be made. Therefore,
we propose two more restrictive approaches, that if combined
with global consistency can avoid the false positive and false
negative decisions.

C. Incremental Punctual Proofs of Authorization

Before we define the Incremental Punctual proofs of autho-
rization approach, we define a view instance, which is a view
snapshot at a specific time instance.

Definition 7: (View Instance) A view instance V,,T cVvlis
defined as V[T = {fx; | f:v,' = <(]i, Sivpﬁ.(m(%))? f, C) € VT/\t < ti}’
Vei,t; ca(T) <t <t; < w(T). *

Informally, a view instance V/ is the subset of all proofs
of authorizations evaluated by servers involved in transaction
T up till the time instance ;.

Definition 8: (Incremental Punctual Proofs of Authoriza-
tion) Given a transaction T and its corresponding view V7, T is
trusted under the Incremental Punctual proofs of authorization
approach, iff at any time instance t; : @(T) < t; < w(T), ¥ feV?
s eval(fy,, t;)A (¢-consistent(V/') Vyy-consistent(V])) *

Incremental Punctual proofs of authorizations develop a
stronger conception of trusted transactions in such that a

@ : query start time
sk : proof of authorization
S1 0—*—’:1‘—’1‘— i*
) o = Af i*
S3 ® I i*
oT) oT)

time ——8 >

Fig. 6. Continuous proofs of authorization

transaction is not allowed to proceed unless the desired level
of the policy consistency at each server is achieved. In Figure
5, at every time instance where a proof of authorization
is evaluated a vertical line is drawn to indicate that some
consistency level among the servers is required, this could be
either a view consistency or a global consistency.

Without loss of generality in Figure 5, if the first server that
starts executing the transaction has the latest policy version,
in such case it is server sy, all other servers (s,, s3) will be
forced to have a consistent view with the first server before
they can proceed with evaluating their proofs of authorization.
In such a scenario, we have the guarantee that no false positive
or false negative authorization decisions will be made by any
of those servers. On the other hand, if the first server s; does
not have the latest version, the proof of authorization at that
server is risked to be evaluated using an older policy. Note that
in this scenario if any of the later servers has a newer policy
version, the consistency condition will not be satisfied and the
transaction will be forced to rollback, saving the transaction
from doing any further untrusted authorizations.

Finally, we present the least pervasive approach which we
call Continuous proofs of authorizations. In this approach
proofs of authorizations evaluated during the transaction exe-
cution are re-evaluated at each time instance when a new proof
has to be evaluated. That is, the transaction is not allowed to
proceed if at any time instance an inconsistency among the
policies and/or credentials is captured. Following is the formal
definition for this approach.

D. Continuous Proofs of Authorization

Definition 9: (Continuous Proofs of Authorization) A trans-
action T is declared trusted under the Continuous approach,
iff YicnVicjsi @ eval(fs,t;) = true A eval(fs,,t;) = true
A (¢-consistent(V) Viy-consistent(V;)) at any time instance
t:a(T)<t; <w() *

The stronger guarantees that this approach offers arise from
the fact that view and global consistencies are not enough
to guarantee that the proofs of authorizations are valid at all
times. If credentials are prematurely revoked, (as was the case
with Bob’s OpRegion credential that was revoked between the

258

two different queries as shown in Section II), a re-evaluation of
the proofs of authorization would be necessary to capture such
situations. In Continuous proofs of authorizations, at every
time instance when an evaluation of a proof of authorization
is being made, all previous proofs of authorizations are forced
to be re-evaluated before the transaction can proceed. If any of
the evaluations fail at any time instance, the entire transaction
is forced to rollback. Figure 6 illustrates the Continuous proofs
of authorizations.

Once again, the decision of which approach to adopt is to
be handed to the policy administrators. As with any trade-off,
there is no free lunch, and the stronger the safety guarantees
given by an approach, the more the system has to pay in terms
of communication and delay overheads. Further discussion of
performance issues will be presented in Section VI-B.

V. IMPLEMENTING SAFE TRANSACTIONS

A safe transaction is a transaction that is both trusted (i.e.,
satisfies the correctness properties of proofs of authorizations)
and database correct (i.e., satisfies the data integrity con-
straints). In this section, we will first describe an algorithm that
provides for trusted transactions. Then, we expand to satisfy
safe transactions. Finally, we show how these algorithms can
be used to implement the various approaches discussed in
Section IV.

A. Two-Phase Validation Algorithm

A common characteristic of our proposed approaches to
achieve trusted transactions is the need for policy consistency
validation at the end of a transaction. That is, in order for a
trusted transaction to commit, its TM needs to determine the
consistency of the definitions among the servers participating
in the transaction. Toward this, we propose a new algorithm
called Two-Phase Validation (2PV).

As the name implies, 2PV operates in two phases: the col-
lection phase and the validation phase. During the collection
phase, the TM first sends a Prepare-to-Validate message to
each participant. In response to this message, each participant
(1) evaluates the proofs for each query of the transaction using
the latest policies it has available and (2) sends a reply back
to the TM containing the truth value (TRUE/FALSE) of those
proofs along with the version number and policy identifier
for each policy used in the proof evaluation. Further, each
participant server keeps track of its reply (i.e., the state of
each query) which include the id of the TM (TM;,;) and the
id of the transaction (T;;) to which the query belongs along
with a set of policy versions used in the query’s authorization
vi» pi)-

Once the TM receives the replies from all of the participants,
it moves on to the validation phase. During this phase, the
TM notes any policy version inconsistencies. If all polices are

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:55:10 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 1: Two-Phase Validation (Coordinator)

1 Send “Prepare-to-Validate” to all participants
2 Wait for all replies (a True/False, and a set of policy
versions for each unique policy)
3 Identify the largest version for all unique policies
4 If all participants utilize the largest version for each
unique policy
If any responded False
ABORT
Otherwise
CONTINUE
Otherwise, for all participants with old versions of policies
Send “Update” with the largest version number of each
policy
Goto 2

5
6
7
8
9
10

11

consistent, then the protocol honors the truth value where any
FALSE causes an ABORT decision and all TRUE causes a
CONTINUE decision. In the case of inconsistent policies, the
TM identifies the latest policy and sends an Update message to
each out-of-date participant with a policy identifier and goes
back to the collection phase. In this case, the participants (1)
update to the new policy from the server, (2) re-evaluate the
proofs and (3) send a new reply to the TM. Algorithm 1 shows
the process for the TM.

In the case of view consistency (Definition 2), there will be
at most two rounds of the collection phase. A participant may
only be asked to re-evaluate a query using a newer policy by
an Update message from the TM after one collection phase.

To provide 2PV under global consistency (Definition 3),
only minor changes are needed. The global consistent version
of the protocol uses something akin to a master server to
find the latest policy version. As such, the TM will retrieve
this from some known master server in Step 2 and use it to
compare against the version numbers of each participant in
Step 3.

This master version may be retrieved only once or each time
Step 3 is invoked. For the former case, the collection phase
may only be executed twice as in the case of view consistency.
In the latter case, if the TM is retrieving the latest version
every round, global consistency may execute the collection
phase many times. This is the case if the policy is updated
during the round. While the number of rounds are theoretically
infinite, in a practical setting, we assume that this will occur
infrequently. The selection of which method depends on the
application and the properties of the privacy polices.

Besides being used at commit time, 2PV can be used during
the execution of the transaction in the case of Continuous
approach. In this case, when a query is to be executed, the TM
will (1) execute 2PV to validate authorizations of all queries
up to this point, and (2) upon CONTINUE being the result of

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:55:10 UTC from |IEEE Xplore. Restrictions apply.

259

Coordinator Participant
Prepare X }P;
\ t a
. i S
Force Write n e
Yes Prepared Record g
Force Write
Decision Record . D P
Decision e h
c a
i s
Force Write i €
Ack Decision Record °
n
Write non-forced
End Record
Fig. 7. The basic two-phase commit protocol

2PV, submit the query to be executed at an appropriate server.

B. Two-Phase Validate Commit Algorithm

Although 2PV provides trusted transactions, it does not
satisfy the definition of a safe transaction as it does not validate
the satisfaction of integrity constraints. Traditionally, integrity
constraints in distributed systems are enforced by the Two-
Phase Commit atomic protocol (2PC), which is a distributed
agreement algorithm with two distinct phases: voting phase
and decision phase [8]. There is a central TM that collects
the decisions of each participant. In the voting phase, the
participants involved in the transaction are polled for their
vote on the commit. A YES vote from every participant is
interpreted by the TM as a global agreement for a commit.
On the other hand, a single NO vote from any participant
induces a global rollback. In the decision phase, the TM
notifies each participant with the voting decision and waits
for an acknowledgment. Figure 7 illustrates the sequence of
events of the basic atomic 2PC protocol.

In its basic format, 2PC cannot be used for satisfying safe
transactions by combining integrity constraint validation and
policy consistency validations because a response of YES
(even if it were to suggest both data and policy consistency)
would not indicate the version of the policy that the participant
used to determine the authorization of the commit. There
exists a situation where a participant says YES, when another
participant has a fresher policy that would have contradicted
the decision of the first participant. However, because of their
similarities, we propose to integrate 2PV and 2PC into a new
protocol called Two-Phase Validation Commit (2PVC), which
is used to ensure the data consistency and policy consistency
of distributed transactions.

Specifically, 2PVC will evaluate the policies and authoriza-
tions within the voting phase. That is, when the TM sends out a
Prepare-to-Commit message for a transaction, the participant

Algorithm 2: Two-Phase Validation Commit

1 Send “Prepare-to-Commit” to all participants
2 Wait for all replies (Yes/No, True/False, and a set of
policy versions for each unique policy)
If any participant replied No for integrity check
ABORT
Identify the largest version for all unique policies
If all participants utilize the largest version for each
unique policy
If any responded False
8 ABORT
Otherwise
COMMIT
Otherwise, for participants with old policies
Send “Update” with the largest version
number of each policy
Wait for all replies
Goto 5

= N7 T Y

10
11
12

13

server has three values to report: (1) the YES or NO reply
for the satisfaction of integrity constraints as in 2PC, (2) the
TRUE or FALSE reply for the satisfaction of the proofs of
authorizations as in 2PV, and (3) the version number of the
policies used to build the proofs (v;, p;) as in 2PV.

The process given in Algorithm 2 is for the TM under
view consistency. It is very similar to that of 2PV with the
exception of handling the YES or NO reply for integrity
constraint validation and having a decision of COMMIT rather
than CONTINUE. The TM enforces the same behavior as
2PV in that it identifies policy inconsistency, sends Update
messages to create consistency, and re-executes the first phase.
The same changes to 2PV can be made here to provide
global consistency. That is, the global 2PVC does not need
to determine the latest version number from the participant
votes. Instead, it simply asks some master server on the system
which knows the latest policy version at Step 5.

C. Discussion

With 2PV and 2PVC, the various proofs of authorization
approaches can be easily implemented. Deferred and Punctual
(Definitions 5 and 6) are roughly the same. The only difference
is that Punctual will return proof evaluations upon executing
each query. Yet, this is done on a single server, and therefore,
does not need 2PVC or 2PV to distribute the decision. To
provide for trusted transactions, both require a commit time
evaluation at all participants using 2PVC.

Incremental Punctual (Definition 8) acts just as in the basic
Punctual case. However, as queries are executed, the TM must
also check consistency within any servers that have evaluated
a proof for a data item previously in the transaction. For view
consistency, the TM merely needs to check the version number
it receives from the server that is executing the query with all

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:55:10 UTC from |IEEE Xplore. Restrictions apply.

260

of the version numbers from previous queries. If the current
version number is newer than one previously seen, it must
abort the transaction. At the end of the transaction, all of the
proofs will have been generated with consistent policies, and
therefore do not have to be re-evaluated. That is, 2PVC does
not do policy validation and acts like 2PC.

For Incremental Punctual under global consistency, how-
ever, propagations of new policies are seen by the transaction
and the TM must communicate with previous servers. Again,
the TM simply needs to poll each server for the latest policy
versions and compare them with the known master version.
The TM will then abort if it finds a server that has a policy
newer than the master. It is still unnecessary, however, for
validations to be evaluated by 2PVC.

Finally, Continuous proofs of authorization (Definition 9)
are the most involved. Unlike the case of Incremental Punctual
in a view consistency, Continuous proofs of authorization
does not abort when it sees a newer policy version. Instead,
it invokes 2PV at the execution of each query which will
update the older policies with the new policy and re-evaluate.
If the 2PV results in a CONTINUE decision, the transaction
executes the next query. Upon ABORT, the transaction aborts.
The same actions occur under global consistency with the
exception that a global version number is used.

Recovery: In distributed environments, being able to handle
failures is critical. The resilience of 2PVC to system and
communication failures can be achieved in the same manner
as 2PC by recording the progress of the protocol in the logs of
the TM and participant (as in Figure 7). In the case of 2PVC,
a participant must forcibly log the set of (v;, p;) tuples along
with its vote and truth value.

Furthermore, the logging behavior of 2PC is agnostic to the
actions taken by the voting phase as it logs strictly before and
after. As such, any log-based optimizations of 2PC also apply
to 2PVC. This includes the common variants Presumed-Abort
(PrA) and Presumed-Commit (PrC) [5].

VI. EvALuATION
A. Complexity

The cost of 2PC is typically measured in terms of log
complexity (i.e., the number of times the protocol forcibly
logs for recovery) and message complexity (i.e., the number
of messages sent). We add another metric, namely the number
of proof evaluations. These metrics are given with respect to
the number of participants involved with the decision, n, the
number of queries, u, and the number of voting rounds, r.

The log complexity of 2PVC is no different than normal
2PC, which has a log complexity of 2n + 1 [5]. This can be
improved by using a compatible optimization as discussed in
the previous section.

TABLE I
THE COMPLEXITIES OF THE VARIOUS PROOF SCHEMES

Deferred Punctual Incremental Continuous
View Global View Global View | Global View Global
messages | 2n+4n | 2n+2nr+r 2n+4n 2n+2nr+r 4n dn+u | u(u+1)+4n | u(w+1)+u+2n+2nr+r
proofs 2u—1 ur u+2u—-1 U+ ur u u Hurh @ +ur

Table I shows the complexity—in terms of the maximum
number of messages and proofs—for each proof of authoriza-
tion scheme for both view and global consistency. Generally,
2PVC requires 2n+2nr messages, where there are 2n messages
for the voting phase (which may be repeated r times) and 2n
messages for the decision phase. With view consistency, the
number of voting rounds r is at most 2 (one extra round when
compared to 2PC). For the case of Deferred and Punctual
under view consistency, only the 2PVC is used. As such,
they both require 2n + 4n messages in the worst case (r is
2). For Incremental and Continuous, however, consistency is
maintained throughout the transaction which fixes r to 1. In
the case of Incremental Punctual, the 2PV C is invoked without
validations for a total of 4n messages. Continuous proofs
of authorization perform 2PV at each query, which requires
communication with potentially one extra server for each
subsequent query executed. As such, the number of messages
for 2PV is given by 2\, i, which is equal to u(u + 1). By
adding the 4n messages of the 2PVC without validations, the
total becomes u(u + 1) + 4n.

In terms of proofs, the general 2PVC will evaluate u queries
each round for ur overall proof evaluations. For the case
of a view consistency, 2PVC will evaluate the first round
by validating all u queries. For the second round, at least
one query will not have to be re-evaluated as it is the one
providing the latest policy. Therefore, at most 2u—1 proofs are
required. Since Deferred uses only the 2PVC, it requires those
2u — 1 proofs. Because Punctual also evaluates proofs during
the transaction, it adds an extra u proofs totally u + 2u — 1.
Incremental Punctual, as mentioned previously, maintains the
policy consistency as the transaction executes and, as such,
does not require 2PVC with validations. In this case, it simply
evaluates the u proofs during the transaction execution. Since
Continuous proofs of authorization perform 2PV at each query,
it will require an extra proof for each subsequent query
executed. Similar to the number of messages, the number of
proofs during the transaction execution are given by), i
which is equal to @ proofs. It does not require 2PVC with
validations at commit time since running 2PV at the final query
does the equivalent work.

In the case of global consistency, r is not bounded. The De-
ferred and Punctual schemes now require the general 2n + 2nr
messages plus r messages to receive the latest policy version
per round. The proofs for both must account for extra rounds
during 2PVC giving ur and u + ur proofs, respectively. Both

261

Incremental Punctual for global and view consistencies have
the same complexity. The global version has one difference
as it retrieves the global version number every query for an
extra u messages on top of the 4n for 2PC giving a total of
4n + u. The number of proof evaluations is the same since
2PVC with validations are not required. Finally, Continuous
uses the general 2PV C along with u messages to get the master
version number for the u invocations of 2PV and r messages to
get the master version number for 2PVC. The total messages
become u(u+ 1)+ u+2n+2nr+r. Since the 2PVC validations
must now be performed, an extra ur proofs are added in the

. P u(u+1)
global consistency giving a total of =5— + ur.

B. Trade-Off Discussion

Clearly the various approaches towards consistency en-
forcement described in this paper offer differing guarantees
regarding the level of consistency that they provide and their
cost of enforcement. We now briefly describe the choice of
algorithm used in response to two factors: transaction length
and time between policy updates.

Transaction length < update interval. If, on the average,
the length of a transaction does not exceed the expected
interval between policy updates, it is best to rely upon either
Deferred or Punctual proofs. If the transaction duration is
relatively short, Deferred proofs are preferred, as the time
required to rollback a failed transaction will be very short
and recovery can happen on-the-fly. For longer transactions,
Punctual proofs can be used to detect inconsistencies early,
update, and then finish the transaction using the updated
policy.

Transaction length > update interval. If, on the other
hand, policy updates are expected to happen during the course
of a transaction, Incremental or Continuous proofs should be
used. During the execution of long transactions, the use of
Continuous proofs is best since this will prevent potentially
long rollbacks from occurring. By contrast, Incremental proofs
are sensible for use in relatively short transactions, as they
do not require additional policy synchronizations that would
prolong an otherwise short transaction.

VII. RELATED WORK

Cloud Environment: Many database solutions have been
written for use within the cloud environment. For their own
purposes and for their cloud infrastructure, EC2, Amazon uses
their own database solution called Dynamo, which is built on

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:55:10 UTC from |IEEE Xplore. Restrictions apply.

top of their S3 storage layer and is motivated by a desire
to provide high availability among thousands of servers [9].
Google built Bigtable, which is widely used for their own
services such as Google Earth, Google Finance, and their web
indexes [10]. Facebook implemented Cassandra, which is now
maintained by Apache, which implements a simple key-value
store model with eventual consistency [11].

The fact that these new database projects were implemented
even though mature database solutions were already available
suggests that the cloud environment requires a level of special-
ization not before seen. Apparently, the difference lies with the
focus on elasticity, also known as horizontal scalability. With
this in mind, these solutions make a trade-off between data
consistency and availability that scales as servers are added to
the system. It becomes obvious that such a consistency model
adds a new dimension to the complexity of the design of large
scale applications [12].

Distributed Transactions: Providing transactions in the cloud
is not a new revelation. It is assumed that strict transactions are
still necessary for many applications in the cloud. The work
of CloudTPS shows a solution that will provide full ACID
properties with a scalable transaction manager designed for a
NoSQL environment [13]. However, This work is primarily
concerned with providing consistency and isolation upon data
without regard to considerations of authorization policies.
There has also been work on providing some guarantees
about the relationship between data and policies [14]. This
work proactively ensures that data stored at a particular site
conforms to the policy stored at that site. If data does not
conform, it is lost. If it does conform, it is stored. If the
policy is updated, it will scan the data items and throw out
any that would be denied. It is obvious that this will lead to
an eventually consistent state where data and policy conform,
but this work only concerns itself with local consistency of a
single node, not within a transaction spanning multiple nodes.

Distributed Authorization: Distributed proofs of authoriza-
tion have been studied as well, although not in this dynamic
cloud environment. The work by Lee, et al, shows that
when policy is static, a distributed proof can be determined
that satisfies several different types of consistency [4]. These
consistency guarantees are very similar to our definitions of
safe transactions. It follows that if the policy is the same on
all nodes, that is strictly consistent, during a transaction, then
a distributed proof can be found. It is our motivation to ensure
that policies are consistent within a transaction.

VIII. CoNCLUSIONS

In this paper, we identified prospective consistency prob-
lems that can arise as transactional database systems are
deployed on cloud servers and use policy-based authorization

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:55:10 UTC from |IEEE Xplore. Restrictions apply.

262

systems to protect sensitive resources. We defined the notions
of trusted and safe transactions, and introduced different
levels of policy consistency constraints. We presented dif-
ferent proofs of authorizations approaches to achieve trusted
transactions, and showed that each approach offers different
“trust” guarantees during the course of executing transactions.
We proposed Two-Phase Validation Commit (2PVC) protocol,
an enhanced version of the widely used Two-Phase Commit
(2PC) protocol, to implement our approaches and ensure safe
transactions. Finally, we evaluated each approach in terms of
the performance and applicability.

As an extension to this work and part of our ongoing work,
we are investigating the different trade-offs of the proposed
approaches by simulating their execution over a cloud in-
frastructure. Given a better understanding of the execution
times of each approach in both short/long transactions and
frequent/infrequent policy updates, we can provide quantitative
measures to better guide the decision process.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation under awards CCF-0916015, CNS—-0964295,
CNS-1017229 and I1S-1050301.

REFERENCES

[1] M. Armbrust er al., “Above the clouds: A berkeley view of cloud
computing,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, Feb. 2009.

S. Das, D. Agrawal, and A. El Abbadi, “Elastras: an elastic transactional
data store in the cloud,” in USENIX HotCloud, 2009.

D. J. Abadi, “Data management in the cloud: Limitations and opportu-
nities,” IEEE Data Engineering Bulletin, 32(1), Mar. 2009.

A. J. Lee and M. Winslett, “Safety and consistency in policy-based
authorization systems,” in ACM CCS, 2006.

P. K. Chrysanthis et al., “Recovery and performance of atomic commit
processing in distributed database systems,” in Recovery Mechanisms in
Database Systems. Prentice Hall PTR, 1998.

G. Samaras, K. Britton, A. Citron, and C. Mohan, “Two-phase commit
optimizations and tradeoffs in the commercial environment,” in [EEE
ICDE, 1993.

M. Myers et al., “X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP,” RFC 2560 (Proposed Standard),
IETF, 1999.

W. Yu, Y. Wang, and C. Pu, “A dynamic two-phase commit protocol for
self-adapting services,” in IEEE SCC, 2004.

G. DeCandia et al., “Dynamo: amazons highly available key-value
store,” in ACM SOSP, 2007.

F. Chang et al., “Bigtable: A distributed storage system for structured
data,” in USENIX OSDI, 2006.

A. Lakshman and P. Malik, “Cassandra- a decentralized structured
storage system,” in ACM SIGOPS, Apr. 2010.

W. Vogels, “Eventually consistent,” in Commun ACM, vol. 52, Jan. 2009.
Z. Wei, G. Pierre, and C.-H. Chi, “Scalable transactions for web
applications in the cloud,” in Euro-Par, Aug. 2009.

T. Wobber, T. L. Rodeheffer, and D. B. Terry, “Policy-based access
control for weakly consistent replication,” in ACM EuroSys, 2010.

[2]
[3]
[4]

[5]

[6]

[7]

[8]
[9]
(10]
(11]

[12]
[13]

(14]

