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Abstract In this paper, we present an innovative framework for efficiently moni-
toring Wireless Sensor Networks (WSNs). Our framework, coined KSpot, utilizes a
novel top-k query processing algorithm we developed, in conjunction with the con-
cept of in-network views, in order to minimize the cost of query execution. For ease of
exposition, consider a set of sensors acquiring data from their environment at a given
time instance. The generated information can conceptually be thought as a horizon-
tally fragmented base relation R. Furthermore, the results to a user-defined query Q,
registered at some sink point, can conceptually be thought as a view V. Maintaining
consistency between V and R is very expensive in terms of communication and en-
ergy. Thus, KSpot focuses on a subset V/(C V) that unveils only the k highest-ranked
answers at the sink, for some user defined parameter k.

To illustrate the efficiency of our framework, we have implemented a real system
in nesC, which combines the traditional advantages of declarative acquisition frame-
works, like TinyDB, with the ideas presented in this work. Extensive real-world test-
ing and experimentation with traces from UC-Berkeley, the University of Washington
and Intel Research Berkeley, show that KSpot provides an up to 66% of energy sav-
ings compared to TinyDB, minimizes both the size and number of packets transmitted
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over the network (up to 77%), and prolongs the longevity of a WSN deployment to
new scales.

Keywords Top-k query processing - In-network aggregation - Sensor networks

1 Introduction

The improvements in hardware design along with the wide availability of economi-
cally viable embedded sensor systems make it feasible today to interact and under-
stand the physical world at an extremely high fidelity [30, 39, 52]. The applications
of sensor networks range from environmental monitoring (such as atmosphere and
habitant monitoring [46, 52]) to seismic and structural monitoring as well as industry
manufacturing [17, 39]. Recently, Voltree Power [55] has engineered a bio-energy
harvesting technology that allows sensor devices to recharge themselves by collect-
ing the energy that is naturally produced by living trees or other large plants. This
alternative, minimizes the cost of replacing batteries frequently, especially in large-
scale deployments. Such networks have already been deployed by the United States
Department of Agriculture (USDA) at 5 different sites [55].

Although sensor devices in a Voltree Climate Sensor Network can recharge them-
selves to a certain degree, the ratio between energy required/energy collected greatly
depends on the executed monitoring query. Long running high frequency sampling
queries can quickly deplete the energy reserves of the sensor device raising the need
for energy-conscious algorithms that decrease both processing and communication.
The ideas presented in this paper enable efficient and effective monitoring of impor-
tant events using energy-aware algorithms.

In traditional data acquisition techniques [30, 40, 60], the sensor data is transmit-
ted to the sink (also denoted as base station or querying node) immediately after it is
acquired from the physical world. Although in-network aggregation significantly re-
duces the consumption of energy, the oblivious transmission of all query results from
all sensors at every acquisition round is still the most energy demanding factor in
such environments [46, 52, 65, 67]. Supplementary approaches to cope with the en-
ergy challenge during query processing have in the recent years appeared at numerous
venues. These approaches range from efficient join processing algorithms in sensor
networks [14, 26, 33, 51], to the underlying data management layer [1, 12, 21, 65]
and network optimization [2, 6, 15, 42], among others. Yet, these approaches focus
either on a different system model or a different problem formulation, than the work
we present in this paper.

In this paper we model the retrieval of data on the presumption that the user is
only interested in the k highest-ranked answers rather than all of them. A Top-K
query [9, 24, 44, 66] focuses on the subset of most relevant answers for two reasons:
(i) to minimize the cost metric that is associated with the retrieval of all answers; and
(ii) to improve the quality of the answer set such that the user is not overwhelmed with
irrelevant results. This assumption is quite reasonable and has been utilized in numer-
ous other settings (e.g., consider a search engine that returns the 10 highest-ranked
results to minimize the consumption of system resources and in order to improve the
quality of the answer set).
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Our framework, coined KSpot, utilizes a state-of-the-art top-k query processing
algorithm, coined INT, in conjunction with materialized in-network views, in order
to minimize the cost of query executions. A view V in relational databases is a virtual
table that contains the results from an arbitrary query Q which is evaluated every time
V is referred to. In order to avoid the unnecessary re-execution of Q it is beneficial
to store V on secondary storage. This introduces the notion of a materialized view
(referred to as view hereafter). Views have a clear space versus time trade-off: A fully
materialized view V requires more space but also less time in evaluating Q, whereas a
partially materialized view V' requires less space but also more time in evaluating Q.
Materialized views can potentially conserve energy as the application can avoid the
expensive re-evaluation of the in-network Q.

Materialized views have been studied in numerous seminal papers includ-
ing [7, 11, 13, 34]. Although a fully materialized view V maintains the complete
results of a query Q, the distributed nature of a sensor network environment, along
with its distinct characteristics, imposes some fundamental limitations to this model:

1. Firstly, maintaining consistency between V and the underlying and distributed
base relation R (defined by the sensor readings) is very expensive in terms of
energy. Thus, we focus on maintaining a subset V'(C V) that unveils only the k
highest-ranked answers for some user defined k; and

ii. Secondly, V' is recursively defined using the results that are stored at the lower-
levels of the multi-hop routing tree that interconnects the sink with the sensing
devices. Thus, traditional view maintenance techniques are not directly applicable.

To illustrate the efficiency of our framework, we have implemented a real system
in nesC, which combines the traditional advantages of declarative acquisition frame-
works, like TinyDB, with the ideas presented in this work. Extensive real-world test-
ing and experimentation with traces from UC-Berkeley, University of Washington
and Intel Research Berkeley, show that KSpot presents an up to 66% of energy sav-
ings compared to TinyDB, minimizes both the size and number of packets transmitted
onto the network (up to 77%), and prolongs the longevity of a WSN deployment to
new scales.

At the foundation of KSpot lies MINT Views, a novel algorithm to minimize
messaging and thus energy consumption in the execution of continuous monitoring
queries. Like other frameworks, we support single-relation queries with the standard
aggregate functions but our focus is to optimize top-k queries over multi-tuple an-
swers. Such answers are very typical for queries with a GROUP-BY clause and for
non-aggregate queries.

To facilitate our description, consider the scenario in Fig. 1, where we illustrate a
deployment of 9 sensors in a 4-room building. We are interested in answering Query 1
at the sink (rooted above s1). In particular we want to find the average temperature of
each room every one minute.

Query 1
SELECT roomno, AVERAGE (temp)

FROM sensors
GROUP BY roomno
SAMPLE PERIOD 60000
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A 4-room environment monitored by 9 sensors An In-Network View (V)
Fig. 1 The left figure illustrates a sensor network scenario that consists of 9 sensors {sy, ..., s9} deployed

in four rooms {A, B, C, D}. The label next to each sensor denotes the identifier of the node and the lo-
cal temperature reading. The figure on the right presents a recursively defined In-Network View (V) to
Query 1. The label next to each node indicate the local averages for each room

With the TinyDB-based [39, 40] in-network aggregation approach each node for-
wards tuples of the form (room,sum,count) to its parent every single time instance. !
One alternative approach is the notion of an In-Network View (V) (Fig. 1 on the
right). V materializes the result of Q and utilizes these results to speedup the next
execution of Q. The performance of V largely relies on the premise of temporal co-
herence between consecutively acquired sensor readings as local changes will affect
the intermediate views until the sink.

To improve the performance penalty of In-Network Views, we propose to prune
the local views stored at each node and focus on the k highest-ranked answers rather
than all of them. This turns out to be extremely useful because now sensors can
discard view updates that do not refer to k highest-ranked answers. On the other hand,
this also imposes an extremely challenging problem: “a naive local greedy pruning
strategy may easily discard tuples that will be finally among the k highest-ranked
answers”.

To understand this problem, consider again Query 1 but assume that we are only
interested in the top-1 result. Such a query should return room (C, 75F). Assuming
that each node naively eliminates anything below its local top-1 result will lead us to
the erroneous answer (D, 76.5F). In particular, the leaves {ss, s¢, 57, 53, S9} will send
their only tuple to their respective parent. The parents {s2, 53, s4} will then aggregate
the results of their children along with their own result and forward this result to their
own parent (i.e., s1). In particular, so will send (C,75F), s3 the tuple (D, 76.5F)
and s4 the tuple (B, 42F). It is now easy to see that if 5| aggregates the results of its
children {so, 53, 54} along with its own result (B, 40F), then this will yield V" =
{(D,76.5F),(C,75F), (B,41F)}, where room D is the top-1 answer rather than
room C.

Our MINT algorithm utilizes an intelligent upper-bounding algorithm and a local
parameter k to construct a subset of V, denoted as the k-covered bound-set V', to be
materialized. We will show that any tuple outside V' can safely be eliminated during

IFor clarity in Fig. 1, we only depict the average (i.e., sum/count).
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the execution of a query because this tuple cannot be among the k highest-ranked
results.

The key idea of the MINT pruning algorithm is to exploit a set of |y | descriptors
(y ={y1, 2, ...}), in order to bound above the score of tuples that are not known
at a given level of the sensor network. The elements in y are application specific:
these can either be known in advance so they can be defined prior to setting up the
execution of a query, or these can be learned and dynamically adjusted during query
execution (as we will show in Section 4.5). Without loss of generality, in the rest
of our discussion we will utilize the following instances: y; =“Maximum possible
temperature value” and y, =“Number of sensors in each room”. For instance, the
temperature sensor on the TelosB Weather Board [52] might only record values be-
tween —40F to 250F and the barometric pressure module can only measure pressure
in the range 300 mb to 1100 mb.

This paper builds on our previous work in [3, 63], in which: (i) we have presented
the preliminary design and simulation results of the MINT [63] algorithm; and (ii) we
have demonstrated the preliminary utility of the KSpot framework [3]°. In this paper,
we introduce several new improvements and extensions that are summarized as fol-
lows:

— We introduce an elaborate experimental study and solid experimental evidence that
shows that the INT/MINT algorithms are indeed offering new levels of energy
efficiency in WSN deployments. Our new study is carried out using real instances
in TinyOS measuring energy with PowerTOSSIM, while previous studies were
carried out on a proprietary simulator. Additionally, we compare our algorithms
under different real sensor network traces, querysets and a real micro-benchmark
on the CC2420 radio transceiver [53]. In our experiments we focus on a number
of parameters including energy consumption and pruning magnitude as well as
scalability and network lifetime. To accomplish this we introduce a series of new
experiments that focus on the scalability of k, cardinality of GROUP-BY clause
and network lifetime.

— We describe in detail how the y descriptors can be learned during query execution
and dynamically adjusted using a sliding window sampling prediction mechanism.

— We present a detailed description of the KSpot system architecture including in-
sight information on all its components and internal procedures. In this description,
we list our data structures and explain why such structures are beneficial for top-k
query aggregation.

— We provide an extensive overview of related work and a taxonomy of related algo-
rithms based on three different dimensions: data fragmentation, input scores (ex-
act, approximate) and output ranking (exact, approximate). We also qualitatively
explain the differences and similarities of these techniques compared to the KSpot
framework.

The MINT/INT algorithms, presented at the foundation of this work, make the fol-
lowing overall contributions to the state-of-the-art:

2KSpot is currently publicly available under http://www.cs.ucy.ac.cy/~panic/kspot.
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— We formulate the problem of constructing a hierarchy of recursively defined top-k
views. We solve this problem by introducing MINT Views. We also present a state-
less, non-materialized version of MINT, coined /NT (In-Network Top-k) Views,
that is appropriate for sensing device with limited memory.

— We introduce the notion of a k-covered bound set V' which only maintains the
tuples of V that lead to the k highest ranked answers at the sink. We additionally
provide energy-conscious techniques to incrementally and immediately update V.

It is important to mention that these ideas span well beyond the scope of TinyDB
and related technologies, and that these could easily be implemented in other types
of systems that deal with a similar system model.

The remainder of the paper is organized as follows. Section 2 presents the archi-
tecture of the KSpot framework. Section 3 formalizes our system model and Section 4
presents the underlying algorithms of the KSpot framework. Next, in Section 5 we
present our experimental methodology and in Section 6 the results of our evaluation.
Finally, Section 7 overviews the related research work and Section 8 concludes our

paper.

2 System architecture

KSpot features a two-tier architecture (see Fig. 2), which consists of server-side soft-
ware written in JAVA and sensor-side software written in nesC.

The first tier (server-side), consists of a server, attached to a fixed sensor node
(sink) that is responsible for propagating queries and acquiring results from the sen-

| KSpot SELECT TOP k attribute SELECT TOP k room, attribute

[ ?;;r::;lg Gl'.)" D;sa'::ly FROM sensors FROM sensors
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Fig. 2 Main data structures used in our nesC implementation of the KSpot client

@ Springer



Distrib Parallel Databases (2011) 29: 113-150 119

sor network deployment. Part of this tier is also the KSpot Graphical User Interface
(KSpot GUI), which allows: (i) the declaration of Top-K queries in non-SQL and SQL
mode, (ii) the visual representation of sensor network topology, (iii) the visual rank-
ing of results using the KSpot Bullets; and several other administrative functions.
Top-k queries generated through the KSpot GUI are translated into an extended-
TinyDB query syntax and are then integrated to the KSpot TopK Query API. These
queries are then injected into the network through the sink node. The KSpot Top-K
Query API is also responsible for translating the raw data arriving through the sink
node to the KSpot Display panel.

The second tier (sensor-side), consists of a number of sensor nodes that are posi-
tioned in predefined areas of interest. The sensor devices are loaded with the KSpot
client software running on the TinyOS [12] operating system. The KSpot client cur-
rently extends the TinyDB base implementation by enabling the execution of Top-k
queries in the form of aggregates. More specifically, at each epoch a sensor node
acquires its local sensor reading and then merges all values acquired from its child
nodes. As soon as this phase is completed, the sensor locally prunes a subset of re-
sults using the MINT/INT algorithms described later in Section 4. Finally, a node
recursively transmits the aggregated result to its parent node until the expected result
reaches the sink node.

We have selected TinyOS/TinyDB for the implementation of the KSpot frame-
work for practical reasons as it already provides a kernel of declarative data acquisi-
tion functionalities (i.e., SQL query syntax). However, we could have similarly ap-
plied our ideas on top of other sensor network operating systems like Contiki [22] or
LiteOS [10].

We describe each of the components of the KSpot architecture individually in the
following sections.

The KSpot Graphical User Interface (KSpot GUI), is used for: (i) configuring the
number of sensors/rooms displayed in the scenario, (ii) execute Top-K queries, and
(iii) for displaying the query results in a manner that highlights the ranking properties
of the executed query. In particular, the KSpot GUI consists of three panels (see
Fig. 3):

i. The Configuration Panel (Fig. 3, top-left), which enables the user to load a new
scenario from a configuration file or to create a new scenario that can be stored in
a configuration file. Through this panel the user can specify which nodes belong
to (are clustered) in the same physical region. Additionally, the user can assign
values to the |y| descriptors mentioned in Section 1. If no specific values are
assigned, KSpot assigns the maximum values for each attribute as these were
found in the sensorboard manual. Note, that both the cluster configuration and y
descriptors are translated to KSpot commands which are transmitted to the sensor
nodes prior the execution of a top-k query.

ii. The Query Panel (Fig. 3, bottom-left), which enables the user to specify aggregate

(AVG, MIN and MAX) and non-aggregate SQL-like queries either graphically or

manually. The constructed query is parsed and translated to the KSpot Query API

if the query is a Top-k query or to the TinyDB Query API otherwise.

The Display Panel (Fig. 3, right), which allows a user to load a JPG image rep-

resentation of the scenario map. Subsequently, the user can drag-and-drop the

=gy

iii.
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Fig. 3 KSpot’s Graphical User Interface (GUI) allows users to administer the execution of Top-K Queries
through an intuitive and declarative user interface. The above scenario conducts a Top-3 query over a
14-node sensor network organized in 6 clusters. The Display Panel (on the right) illustrates the three
KSpot-Bullets for the three highest-ranked sensor clusters

sensing devices to the respective positions on the map. Our system allows the user
to choose among a wide range of sensor devices, coming in various shapes and
sizes, in order to accommodate crowded map configurations. Note that the Display
Panel links together nodes of the same cluster using a black line. Additionally, the
panel highlights the K-highest ranked clusters by utilizing a red bullet, coined the
KSpot Bullet, which projects the rank of the given cluster at any given time in-
stance. Subsequently, the KSpot bullets are continuously re-ranked such that the
user is informed about the K highest ranked answers instantaneously.

KSpot Top-K Query API: The KSpot Query API has two functions: (i) to translate
KSpot Top-K queries into TinyDB query messages with the aid of the TinyDB parser,
and (ii) to asynchronously receive the results of a KSpot Top-K query and deliver
these results both to the TinyDB and KSpot GUIs according to which is making the
request. As illustrated in Fig. 2, the Query API supports two new types of queries,
the TopK and TopKRoom queries that have been added to the TinyDB catalog.

KSpot Aggregates: Currently, KSpot supports two different aggregates, TopK and
TopKRoom. Both aggregates are implemented in the TopkM and TopkRoomM mod-
ules, which are wired with the AggOperator configuration component of the TinyDB
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TopkRoomM module - INT/MINT operations (for each epoch)

INT MINT TopkRoomM module operations
operations operations Step 1. init: initializes the state of the aggregate

Step 2. update: is called when a new value is generated

locally at the sensor
initialize initialize Step 3. merge: is called when new results arrive from the
child nodes of the current sensor
¥ ¥ Step 4. hasdata: is called when the results are ready
to be output
sense sense hasData performs the following operations
A. Retrieve the current state
¥ Y B. Sort the current state in DESC order
C. Retrieve the top-k and attribute
merge merge parameters
D. Generate upper bounds
¥ v E. Find the k highest lower bound
F. Eliminate Tuples not in
prune prune k-Covered-Bound set
G. Finalize state
) ) H. Check if generated state is the same as
Compare as the previous one. If yes, do not send
send previous state anything (MINT only).
I. Copy current state to the previous one
¥ (MINT only).
send

Fig. 4 Internal operations of the INT and MINT Views algorithms

client system. The KSpot data structures presented in Fig. 2 will be thoroughly de-
scribed in the Experimental methodology section. An abstract representation of the
internal mechanisms of the INT and MINT algorithms that operate inside the Top-
kRoomM module is illustrated in Fig. 4 (left). Similar to all aggregate operations
supported by the TinyDB framework, both the INT and MINT algorithms follow a
linear procedure to compute the result of each epoch. This procedure includes the
following steps: (i) initialize, where all aggregate state variables are reset, (ii) sense,
where each sensor generates its local measurement, (iii) merge, where each sensor ac-
quires measurements from its child sensors and merges them with its own, (iv) prune,
where the k-Covered-BoundSet is generated by pruning results that will not appear
in the final top-k result, and (v) send, where the sensor transmits its results to its par-
ent. The corresponding nesC functions that implement this procedure are illustrated
in Fig. 4 (right). The pruning procedure of the underlying INT and MINT algorithms
that operate inside the TopkM and TopkRoomM modules are thoroughly described
in Section 4.

3 System model and definitions

In this section we will formalize our basic terminology upon which we will build the
description of the algorithms that comprise the foundation of the KSpot Framework.

@ Springer



122 Distrib Parallel Databases (2011) 29: 113-150

Table 1 Definition of symbols

Symbol Definition

0] A Query

k Number of requested results

Si Sensor number i (s denotes the sink).

n Number of Sensors {s{, 52, ..., S}

m Number of Attributes at each sensors {ay, ap, ..., an}
Vi Local View (the results to Q) at sensor s; (i <n)

%4 Pruned View at s; (unveils the top-k answers at s;)

We will then outline the motivation behind the phases of these algorithms. The main
symbols and their respective definitions are summarized in Table 1.

Let S denote a set of n sensing devices S = {s1, 52, ..., Sy }. Assume thats; (i <n)
is able to acquire m physical attributes A = {ay, aa, ..., an} from its environment at
every discrete time instance ¢. This generates tuples of the form {t, aj, az, ..., a,} at

each sensor. At any given time instance, the aforementioned scenario yields an n x m
matrix of readings R := (s;j)nxm. This matrix is horizontally fragmented across the
n sensing devices (i.e., row i contains the readings of sensor s; and R = Uien R)).

A user submits a query Q at some centralized querying node (denoted as sp, or
sink node) prior deployment and the system then initiates the execution of Q by
disseminating it to the n sensors. In particular, the sink sends Q to one sensor si.
Subsequently, s; recursively forwards Q to all of its neighbors until all n sensors have
received the given query. Without loss of generality, we adopt the First Heard From
(FHF) mechanism which is utilized in a variety of data acquisition frameworks such
as [40, 60, 63, 67] and where each sensor s; selects as its parent the first node from
which Q was received. This creates an acyclic subset of the communication graph G
(i.e., a spanning tree) which is denoted as T = (S, E’), where E’ C E. Each s; also
maintains a Child Node List (denoted as children(s;)), which is trivially constructed
during the creation of T (i.e., using an acknowledgment from each child to its parent).

In other frameworks, like GANC [48] and Multi-Criteria Routing [38], T can be
constructed based on query semantics, power consumption, remaining energy and
others. In more unstable topologies a node can maintain several parents [16] in order
to achieve fault tolerance but this might impose some limitations on the type of sup-
ported queries. Each sensor s; is additionally supplemented with an Alternate Parents
List, that is constructed locally at each sensor by snooping (i.e., monitoring the ra-
dio channel while other nodes transmit and recording neighboring nodes). This list is
utilized in cases of network failures or low-quality links to the parent node.

4 KSpot framework algorithmics

In this section we describe the underlying algorithms of the KSpot framework. As al-
ready mentioned in the System Architecture section, that KSpot Framework operates
on two new types of aggregate queries, TopK and TopKRoom.
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The TopK query dictates that each sensor node must return at most k results (high-
est or lowest depending on the query) during each epoch (i.e., |V/| < k). The proce-
dure for this is the following: (i) at each epoch, a sensor s; collects the results from
its child sensors, (ii) merges these results with its local results, generating V;; and
finally (iii) selects the k highest-ranked answers, generating in that way V/. As soon
as this process is complete, the sensor s; forwards V! to its own parent node. As the
above procedure is conceptually not very complex, we do not devote any additional
description to the internal mechanisms needed to realize this Top-k aggregate.

On the other hand, the TopKRoom query, which is responsible for GROUP-BY
queries, features a much more complex pruning procedure that we will outline next.
In this type of query, it is not always possible to discard tuples from V; because these
may appear in the final k highest-ranked answers (recall the example that appeared
in Section 1). To overcome this problem, we propose the MINT Views algorithm that
utilizes an upper-bounding mechanism, which ensures that no tuples appearing in the
final result will be omitted from V/ during the pruning phase. Additionally, the MINT
Views algorithm employs a temporal coherence filter that allows the suppression of
results, if these do not change between subsequent epochs.

4.1 Overview of operation

In this section, we overview the three phases of the MINT Views algorithm, which
addresses the TopKRoom-types of queries (i.e., group-by queries). We also present
the INT Views algorithm, MINT’s stateless version, which is appropriate for sensing
devices of limited main memory.

The MINT Views algorithm consists of three phases:

A. The Creation Phase, executed during the first acquisition of readings from the
distributed sensors. This phase results in n distributed views V; (i <n);

B. The Pruning Phase, during which each sensor s; locally prunes V; and generates
V! (S V;). V/ contains only the tuples that might be located among the final top-k
results; and

C. The Update Phase, executed once per epoch, during which s; updates its parent
node with V.

The above conceptual phases are executed in a distributed manner using the tree-
based query routing protocol established by the operating system layer [29] after the
query has been disseminated to the n sensors. In the following sections we thoroughly
describe each phase of the MINT Views algorithm.

4.2 MINT creation phase

The first phase of the algorithm is a recursive execution of Algorithm 1 at all sen-
sors in a given network. Recall that a sensor generates an (m + 1)-tuple of the form
v=1{t,ay,an,...,ay,} at each timestamp ¢. A sensor starts out by performing the
selection o that retains the tuples that satisfy the selection criterion (e.g., tempera-
ture > 60). Note that a sensor can acquire concurrently several readings, all of which
might not be of interest to a particular query. For example, the Xbow Weather board
which was utilized in the Great Duck Island study [52] supplements the motes with
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Algorithm 1 : Construct MINT/INT View

Input: A distributed sensor s; (Vs; € S) that generates m attributes {ay, ay, ..., am}, a query
Q, an empty buffer V; = {}

Output: A set of n distributed views V ={Vy, V, ..., V,}.

1: procedure CONSTRUCT_MINT_VIEW(s;, Q)

2 // Execute Q and store the answer in V; (takes O(1) time).
3 insert(w o (o g (current_reading())), V;);

4 for j =1 to |children(s;)| do

5: ¢ =child(s;, j); // c is the jth child of node s;

6 /' w is a list of tuples returned to query Q.

7 w = Construct_Mint_View(c, Q);

8 for [ =1to |w| do

9 // wy is the [th entry of table w.

10: // Inserts tuple wy into local table V; in O(1) time.
11: insert(wy, V;);
12: end for

13: end for
14: send(V;, parent(s;));
15: end procedure

14 physical parameters. Thus, we only project the attributes related to Q prior to
storing the result in the in-memory buffer V; (line 3). The next step of the algorithm
merges the tuples that arrive from the children of s; into V; (lines 4—13). This yields
an in-network view similar to Fig. 1 (right).

If the various values at each node of the depicted tree do not change across con-
secutive timestamps, then V can efficiently provide the answer to the subsequent
re-execution of Q. On the contrary, whenever we have a deviation, or a change, in a
parameter at s;, this change has to cascade all the way up to the sink. A change at all
sensors has a worst-case message complexity of O (n) for every single timestamp of
the epoch duration, thus we seek to optimize this process through the proposition of
the pruning phase.

4.3 MINT pruning phase

Algorithm 1 constructs a hierarchy of views, where ancestor nodes in the routing
hierarchy maintain a superset view of their descendants. Before we explain the de-
tails of the pruning phase which minimizes messaging between sensors consider the
following query:

Query 2 (Q2)

SELECT TOP k room,avg (temp)
FROM SENSORS

GROUP BY room

SAMPLE PERIOD 60000

which returns the k rooms with the highest average temperature. If s; could locally
define the k-highest answers to Q2 (at sg), then s; could use this information to prune
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room sum count sum room
E K-Covered
*>—0
2 200 4 320 2 ; Bound-Set
5 270 4 390 5 —e ! )
1b
6 500 5 500 6
11 460 4 580 11
12 290 3 530 12
ub
15 130 2 490 15 ——uw!

sum 100 200 400 600 800

Fig. 5 The left table illustrates the V; of a given node during the execution of query Q2. The right figure
illustrates the intuition of the pruning algorithm. In particular, we plot the (Ib,ub) ranges for the various
returned tuples at some arbitrary node. We then generate a k-covered bound set Vi’ using Algorithm 2. We
only propagate a tuple u to the parent of s;, if u € Vl./

its local view V;. However, this is a recursively defined problem that can only be
solved once all tuples percolate up to the sink sg. In order to avoid this, we utilize
a set of descriptors y which are utilized to bound above the attributes in V;y and
subsequently enable a powerful pruning framework.

Consider the example of Fig. 5 (left), where we illustrate the V; for a given sensor.
Prior to the execution of Q2 we established that y; =“Maximum possible temperature
value”’=120 and y, =“Number of sensors in each room”=35. The figure indicates the
sum and count for several room numbers. By observing column 3 (i.e., count), it
becomes evident that the sum for the rooms {2, 5, 11, 12, 15} is a partial value of the
sum returned at the sink (since y» = 5).

On the contrary, the tuple of room 6 is already in its final form (i.e., 500). In
this example the sum of each row is bounded above using the following formula
sum’ = sum + (y, — count) * y; and bounded below using the actual attribute sum.
This creates six lower-bound (1b) and upper-bound (ub) pairs which precisely show
the range of possible values for the sum attribute at the sink.

Having such knowledge locally, it can now help us to prune (/b, ub) pairs which
will not be in the final top-k result. The intuition behind our algorithm is to identify
the k™ highest lower bound (i.e., v,lcb ) and then eliminate all the tuples that have an
upper bound (i.e., v*?) below v,lcb. Figure 5 (right), visually depicts this idea. We
will prove that by applying locally such an operation yields at the end the correct
top-k tuples at the sink. In order to achieve this we define the notion of a k-Covered
Bound-Set as following:

Definition 1 (k-Covered Bound-Set) (V) is the subset of V; that satisfies the follow-
ing condition: If there is some v ¢ Vl./ , then v*¢ < v,l(b, where v,l(b is the kth highest
lower bound.?

3Due to contraposition, the condition could also be expressed using the implication if vib > vll{h , then
veV/.
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Algorithm 2 : Prune MINT/INT View

Input: A distributed sensor s; (Vs; € §), a buffer V; that contains the local view, a set of
descriptors y = {y1, 2, - . .}, a query result parameter k.

Output: A locally pruned view Vl.’ , such that Vé can be utilized to answer a top-k query Q.

1: procedure PRUNE_MINT_VIEW(V;)
2 for j =1 to |V;| do // Identity the pruning threshold v]lcb.
3 v =Vi[j1/ vjz(vﬁ.b,v?b) pair.
4 kHighest(véb,kBuﬁ)

5: bucketinsert(v;b ,sortedUBs)
6 end for

7 vi? = min(kBuff):

8 for j =1 to |sortedUBs| do

9 v'/‘.b =sortedUBs[ j]

10: If (V%" < u) then break; end if
11: add_to_candidates(v Iz Vi’ );

12: end for

13: end procedure

Algorithm 2 illustrates the pruning of V; at some arbitrary node s; and the con-
struction of the candidate set V. This algorithm applies to both the MINT View and
the INT View algorithms. The first step of the algorithm (lines 2—6) identifies the
pruning threshold v,l(b . This threshold allows the algorithm to prune-away tuples that
will not be in the result.

Although V; physically resides in main memory, we want to minimize the running
time of our algorithms in order to accommodate the scarce energy budget. In partic-
ular, we utilize similarly to the well known selection algorithm, a k-element buffer
kBuff in order to locate v,l(b in linear time (i.e., O (k) per tuple). This procedure takes
place inside the kHighest function which inserts vﬂ.b into kBuff, if the former is larger
than the minimum item in kBuff.

The next step of the algorithm is to locate the tuples that have an upper bound
v“? below the threshold v,l{b . By visually examining Fig. 5, it is easy to see that an
efficient way to do so is to create an ordered list of upper bounds and then perform a
linear scan in descending order until a tuple v?b (<v,l(b ) is located. Any upper bound

below or equal to v*? can be safely eliminated.

The ordered list can be constructed in parallel with the location of the pruning
threshold v,lcb. In particular, while scanning for v,l(b , we insert each upper bound v;.‘h
into a new table sortedUBs (line 5). This takes only O(1) per tuple as we utilize an
idea similar to bucketsort. However, if memory is limited then this optimization can
be avoided without any consequence on the correctness of our approach.

In lines 8—12, we finally perform a linear scan of the sortedUBs table in descending
order and stop when we find a tuple v?h that is below v,l(b. The correctness of our

algorithm is established by Theorem 1.

Theorem 1 The k-Covered Bound-Set V! correctly identifies the k-highest ranked
answers to Q.
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Algorithm 3 : Update MINT View

Input: A buffer 7” that contains the V; of the previous time instance, the v]l(b of T', a tuple
update x from some child.
Output: A locally pruned view Vi/ , such that V6 can be utilized to answer a top-k query Q.

1: procedure UPDATE_MINT_VIEW(T’, vll(”, X)

2 Vl./ =T/

3 if (v,l{b < x'b) then

4 add_to_candidates(x, Vi’ );

5: if (x/> < v{’) then

6: send(x, parent(s;)); // Single tuple x update
7 else // x'b > v]l(b

8 Prune_MINT_View( Vl/ ); // Using Algorithm 2
9: send(V/, pareni(s;)); // Complete V! update
10: end if

11: end if
12: T = Vl./;

13: end procedure

Proof (by contradiction): Let v denote an arbitrary tuple which is not included in the
k-Covered Bound-Set V/. We have to show that v will have a smaller value than any
of the k highest-ranked tuples w (i.e., v < w). Assume that v > w. It always holds
that v*? > v which consequently yields v** > w (by using the assumption). However
if v*2 > w, then v would have been included in Vi/ , by Definition 1, a contradiction. [

4.4 MINT update phase

In the previous step, we transformed V; into a pruned subset V/. We shall now de-
scribe how to incrementally and recursively update V. Let 7' denote the V/ taken
at the last execution of Q. The below description only applies to the MINT View
algorithm, for which 7" is available. The update phase of the INT View algorithm is
simply a re-execution of Algorithm 1 which re-constructs V; from the beginning.

Since our objective is to identify the correct results at the sink, we utilize an imme-
diate view maintenance mechanism: “As soon as a new tuple is generated at s;, this
update is reflected in V;”. In order to minimize communication, s; only re-transmits
V/ to its parent, if V/ has changed (temporal coherence filter as in TINA). Addition-
ally, in order to minimize energy consumption even further, we seek to minimize
processing consumption as well. Therefore, our objective is to construct V; by avoid-
ing the re-executing of Algorithm 2.

Algorithm 3 presents the MINT Update Algorithm and Fig. 6 illustrates the re-
spective steps of the algorithm. In particular, line 3 of Algorithm 3 shows that any
tuple update x with an upper bound (denoted as x“?) less than the v,lf’ can be ignored
(also see respective Example 1 of Fig. 6). In the opposite case, we add the tuple x to
the set of candidates V; (line 4 of Algorithm 3 and Example 2 of Fig. 6).

Now the remaining question is whether v,lf’ has changed by this addition of x. If
xtt < v,lcb is true then v,[{b has not changed. Consequently, s; only propagates the up-
date x towards its parent rather than a complete view update. In the implementation
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Update (t) Action (t+1)
b
Example 1: X< x < v,i,b ——o Vi ignore
Example 22 x” < v,l(h < x" — i o tuple update
Example 3: v <x" < x" —o V, update

100 200 300 400 500 600 700 sum

Fig. 6 The figure illustrates how different tuples will be handled during the update phase

we buffer these updates until all children send their updates to their parents. If on
the contrary v,l(b < x'® then v,[(b might have changed. As a result s; has to reconstruct
V! using Algorithm 2 and transmit the complete V/ to its parent (also see respective
Example 3 of Fig. 6). This re-construction procedure is necessary to guarantee the
correctness of our algorithm. Note that the reconstruction only happens for |V/| el-
ements rather than all the elements (i.e., |V;|), had we executed Algorithm 2 for the
first time.

4.5 Dynamically tuning the y descriptors

The gamma descriptors are used for bounding above the maximum possible value of
tuples in the INT and MINT Views algorithms. In our examples so far, y; denoted
the “Maximum possible temperature value” and y» denoted the “Number of sensors
in each room”. While the static (fixed) configuration of these descriptors is general
enough to fit different application scenarios (e.g., using humidity, light, sound, etc.),
this could lead to a sub-optimal pruning power of our framework when these are over-
estimates. While our experimental evaluation in Section 6 shows that this will not be
very typical, in this section we discuss for completeness how these descriptors can be
adjusted dynamically with runtime knowledge.

Tuning y; (Maximum Possible Sensed Value): Assume that we need to determine
the maximum value for a sensed parameter (e.g., temperature) over the past. Using
the running maximum (i.e., highest value seen so far), is certainly not efficient as
some outlier, or some abnormal past recording, will set the running maximum to a
high value. Subsequently, this will limit the pruning power of the KSpot framework.
However, since the majority of sensor readings (e.g., temperature, humidity, light,
voltage, etc.) usually follow the Gaussian distribution, the maximum possible value
for an attribute can be predicted using a sliding window sampling mechanism. Given
the limited memory and processing capabilities of sensor devices, the size of the
sliding window must be relatively small, for memory and processing reasons, but
also large enough to accurately predict the next maximum value.

In our setting, we have implemented the sliding window sampling mechanism us-
ing a circular buffer (CB) of size 40 bytes (10 x 4 bytes). CB records the requested
sensor measurement (val) for the previous 10 epochs. In the case where the CB struc-
ture is full, the oldest value is omitted. We can configure the y; descriptor using the
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Fig. 7 Dynamic adaptation of Adjusting y; (Average for all n sensors)
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following formula: y; = MAX"o (val; € CB) + 2 x oY (val; € CB), where o is the
standard deviation.

Figure 7 shows how y; is dynamically adapted through 1000 timestamps using
the Intel49 dataset presented in Section 5. We observe that y; is tightly bounding
the real recorded value, i.e., it is approximately ~4% higher than the recorded value.
Additionally, Fig. 8 shows that this prediction is correct in 95% of the cases and that
the incorrect situation is usually corrected in the immediately next epoch. The above
discussion shows that one can easily achieve higher pruning power with acceptable
levels of accuracy.

Tuning y» (Number of Sensors Per Room): Now assume that we need to dynam-
ically determine the y» descriptor, which refers to the number of sensors per room.
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A room in our description is a “conceptual region that needs to be monitored using
several sensors such that a group-by aggregate per region—e.g., average—can be
determined.” In case the sensor board features a GPS (e.g., Crossbow’s MTS420),
then the conceptual partitioning can easily be conducted at the sink, by the human
operator, after acquiring over the air the coordinates of the participating nodes. If on
the other hand absolute positioning techniques are not available, then sensor devices
can derive their coordinates through relative means.

In particular, several localization technologies have been discussed in the litera-
ture including methods based on Infrared, Bluetooth, RFID, UWB, ultrasound and
WLAN [28]. The underlying positioning algorithms may utilize different types of
measurements, such as Angle of Arrival (AOA), Time of Arrival (TOA), Time Differ-
ence of Arrival (TDOA) and Received Signal Strength (RSS). These techniques could
have been utilized for localizing nodes and for dynamically tuning the y» descriptor,
but a more extensive exploration of these techniques remains outside the scope of this

paper.
4.6 Discussion

MINT vs. INT: The differences of the two algorithms are summarized as following:
(1) MINT exploits a temporal coherence in order to suppress view updates that do not
change between consecutive time instances, while INT has to re-send these updates,
because it is stateless. (ii) In MINT, we only have to update V;/ using Algorithm 3 (in
(] Vi’ |) time), while in INT we have to construct it every time from the beginning,
in O(|V;|) time, using Algorithm 2. (iii) INT has the advantage of not requiring any
extra storage thus is more appropriate for sensors for which the storage is at premium.

Deferred View Updates: In order to minimize communication even more in the
MINT/INT Views, we could have opted for a deferred view maintenance mechanism,
rather than a immediate one. A deferred mechanism could propagate changes periodi-
cally, after a certain number updates or even randomly. In all cases this would produce
probabilistic answers at the sink, as the sink would not have at its disposal the most
up-to-date view. Although deferred view maintenance mechanisms are extremely in-
teresting in the context of sensor networks, as these allow us to trade accuracy versus
energy consumption, in this paper we only focus on exact answers.

In-Memory Buffering: The materialized views and temporary results of all algo-
rithms, can either reside in an SRAM-based buffer or a Flash-based buffer. For in-
stance, a typical MICA mote with a 2 KB SRAM might need to exploit the 512 KB
on-chip flash memory, while Intel’s i-mote might easily store these results in the
64 KB SRAM. There is a growing trend for more available local storage in sensor
devices [65] and therefore local buffering of results is not a threat to our model.

Supported Query Types: We support single-relation queries with the standard ag-
gregate functions (i.e., SUM, MIN, MAX and AVERAGE). In contrast with other
frameworks, we optimize queries with multi-tuple answers. Such answers could be
generated by a GROUP-BY clause, or by a non-aggregate query. Note that for single-
tuple answers, such as those generated by an aggregate query without a GROUP-BY
clause, there is no notion of a top-k result.
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5 Experimental evaluation methodology

In this section we describe our experimental methodology which involves a set of
trace-driven simulations with real datasets from the Department of Atmospheric Sci-
ences at the University of Washington, Intel Research Berkeley and UC-Berkeley and
a real micro-benchmark on the CC2420 radio chip [53], utilized on MICAz, TelosB
and IMote2 sensing devices. Our testbed is a publicly available real system that has
been demonstrated at [3].

The experimental evaluation described in this section focuses on five parame-
ters: (i) the Energy Consumption Cost, for the INT and MINT Views algorithms
proposed in this paper compared to two other popular query processing algorithms
namely, TAG and TINA, (ii) the Pruning Magnitude, of the k-Covered Bound-Set
Vl.i of the INT and MINT Views algorithms, (iii) the Scalability with respect to &,
were we evaluate the efficiency of the MINT Views algorithm with different values of
the k parameter, (iv) the Cardinality of the GROUP-BY clause, were we evaluate
the effect of different cardinalities on the energy consumption of the MINT Views
algorithm, and (v) the Network Lifetime, of all algorithms presented in this paper.

5.1 Experimental testbed

In order to fairly compare the INT and MINT Views algorithms we have imple-
mented, or ported, all algorithms discussed in this paper under the KSpot Frame-
work. It is important to mention that the TAG algorithm is already implemented as
part of the TinyDB framework (that lies at the kernel of KSpot) and has been used as
a baseline for comparison. The rest algorithms, TINA, INT and MINT Views, were
implemented from scratch in nesC [27], the programming language of TinyOS [29].

TinyOS is an open-source operating system designed for wireless embedded sen-
sor nodes. It was initially developed at UC-Berkeley and has been deployed suc-
cessfully on a wide range of sensor devices (e.g., Mica, Telos, IMote2 mote, etc.).
TinyOS uses a component-based architecture that enables programmers to wire to-
gether the minimum required components in on-demand basis. This minimizes the fi-
nal code size and energy consumption as sensor nodes have extremely limited power
and memory. nesC [27] is the programming language of TinyOS and it realizes its
structuring concepts as well as its execution model.

We utilize the TOSSIM [37] environment to conduct realistic trace-driven simula-
tions of our code with a variety of input datasets described next. TOSSIM [37] pro-
vides a scalable, high fidelity simulation environment of TinyOS sensor networks. It
simulates the TinyOS network stack, allowing experimentation with low-level pro-
tocols in addition to top-level application systems. In order to conduct fine-grained
power modeling in TOSSIM, we use PowerTOSSIM [49], a popular power model-
ing extension of TOSSIM. PowerTOSSIM has been shown [49, 65], to be more than
90% accurate. In particular, the authors in [49] measure the energy for executing the
demonstration examples bundled with TinyOS both using PowerTOSSIM and on real
sensors (measured with a multi-meter). The authors show that this yielded an average
error of only 4.7%. Similar observations also apply for more complex applications
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Fig. 9 Sample execution Step 1: Create lossy radio model
scenario for the MINT Views java net.tinyos.sim.LossyBuilder-d 7 2
algorithm on the GDI dataset -s 20 —o 7x2_20.nss

Step 2: Run experiment with TOSSIM and
collect power statistics
DBG=power ./build/pc/main.exe -b=10 -seed=10 -t=1000
-r=lossy -rf= 7x2-20.nss -p 14 > mintGDI.trace

Step 3: Get energy results from power
statistics
./postprocess.py --detail --sb=1 -em
telos_energy model.txt mintGDI.trace
>mintTotalEnergy.txt

Fig. 10 Trace from the

PowerTOSSIM log file 38: POWER: Mote 38 ADC ON at 2741220
38: POWER: Mote 38 ADC ON at 2741220
38: POWER: Mote 38 ADC ON at 2741220
38: POWER: Mote 38 RADIO_STATE ON at 2741220
8: POWER: Mote 8 RADIO_STATE TX at 2791414
38: POWER: Mote 38 RADIO_STATE RX at 2842220

8: POWER: Mote 8 RADIO_STATE RX at 2850614
8: POWER: Mote 8 RADIO_STATE RX at 2851464
8: POWER: Mote 8 RADIO_STATE RX at 2852264
8: POWER: Mote 8 RADIO_STATE RX at 2853064
8: POWER: Mote 8 RADIO_STATE RX at 2853864
8: POWER: Mote 8 RADIO_STATE RX at 2853864
38: POWER: Mote 38 RADIO_STATE TX at 2862733
38: POWER: Mote 38 RADIO_STATE TX at 2863533

like TinyDB and Surge that were shown to have an error of 9.5% on average. Con-
sequently, we expect that the accuracy will remain at the same high levels with our
integrated TelosB power model.

Figure 9 illustrates an example of the process that we utilized in order to collect
power statistics for our experiments. In the first step, we create a lossy model for the
topology and store it in an . nss file. We then execute the experiment for a fixed time
period (e.g., 1000 s (—¢ = 1000)) and collect power statistics in the . trace file. An
example of the PowerTOSSIM trace file is depicted in Fig. 10. Finally, we process
the power statistics file in order to generate the energy results for each sensor.

Our simulation experiments were performed on a Lenovo Thinkpad T61p PC with
an Intel Core 2 Duo CPU running at 2.4 GHz and 2.0 GB of RAM. In order for us
to collect realistic results for a large period of time, we collect statistics for 1000
epochs in each experiment. To increase the fidelity of our measurements we repeated
each experiment 5 times and present the average energy consumption for each type of
plot. The above process, resulted in quite long simulation runs for each type of plot as
the simulation time required for completing an experiment and generating the power
trace file, ranged from 2.5 to 8.5 hours. Furthermore, the generated power trace file
size ranged from 20-250 MB, depending on the dataset. This led to an additional time
overhead of 30-100 minutes for processing each power trace file, in order to collect
the energy results. Our simulation statistics are depicted in Fig. 11.
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Average Simulation Time - of all experiments Average Trace File Size - for each algorithm per simulation Average Processing Time - for each trace file

900 - GDI14

10+ AtmoMon32
Intel49

GDI1
AtmoMon32
Intel4t

®
=]
[s)

MINT

o o N
[N
[SESRS]

File Size (MB)
S
o
o

Time (Hours)
(]

nN W

o o

o o

Time (Hours)

I=3
o

B
3 GDI14 AtmoMon32 INTEL49
Dataset Dataset Dataset

Fig. 11 Simulation Statistics: Average Simulation Time required for each experiment (Left); Average
File Size required for storing the power statistics for each algorithm (Middle). Average Processing Time
for each power trace file (Right)

5.2 Datasets

We utilize the following three real datasets in our trace-driven experiments in order
simulate different network sizes:

i. Great Duck Island (GDI14): This is a real dataset from the habitat monitoring
project deployed in 2002 on the Great Duck Island which is 15 km off the coast
of Maine [52], USA. We utilize readings from the 14 sensors that had the largest
amount of local readings. The GDI dataset includes readings such as: light, tem-
perature, thermopile, thermistor, humidity and voltage.

ii. Washington State Climate (AtmoMon32): This is a real dataset of atmospheric
data collected at 32 sensors in the Washington and Oregon states, by the Depart-
ment of Atmospheric Sciences at the University of Washington [23]. More specif-
ically, each of the 32 sensors maintains the average temperature and wind-speed
on an hourly basis for 208 days between June 2003 and June 2004 (i.e., 4990 time
moments).

iii. Intel Research Berkeley (Intel49): This is a real dataset that is collected from 58
sensors deployed at the premises of the Intel Research in Berkeley [31] between
February 28th and April 5th, 2004. The sensors utilized in the deployment were
equipped with weather boards and collected time-stamped topology information
along with humidity, temperature, light and voltage values once every 31 seconds
(i.e., the epoch). The dataset includes 2.3 million readings collected from these
sensors. We use readings from the 49 sensors that had the largest amount of local
readings since some of them had many missing values.

5.3 Sensing device

We use the energy model of Crossbow’s TelosB [17, 45] research sensor device to
validate our ideas (see Fig. 12). TelosB is a ultra-low power wireless sensor equipped
with a 8 MHz MSP430 core, 1 MB of external flash storage, and a 250 Kbps Chipcon
(now Texas Instruments) CC2420 RF Transceiver that consumes 23 mA in receive
mode (Rx), 19.5 mA in transmit mode (Tx), 7.8 mA in active mode (MCU active)
with the radio off and 5.1 pA in sleep mode. Our performance measure is Energy, in
Joules, that is required at each discrete time instance to resolve the query.

@ Springer



134 Distrib Parallel Databases (2011) 29: 113-150

Fig. 12 Crossbow’s TelosB
Mote (TPR2420). Our
micro-benchmark and
trace-driven experiments utilize
the energy model of the TelosB
sensor device and the CC2420
radio transceiver

As TelosB is not part of the PowerTOSSIM module, we had to extend Power-
TOSSIM by incorporating a new energy model for TelosB. In particular, the process
of configuring different hardware platforms in PowerTOSSIM, boils down to the cus-
tomization of the configuration file that enumerates the power consumption of the
individual operations (e.g., RADIO_RX, RADIO_OFF, CPU_ACTIVE, etc.).

5.4 Multi-hop topologies

In order to create a multi-hop network topology, we have utilized the LossyBuilder
component of TOSSIM. LossyBuilder allows the creation of “lossy” radio models for
the topologies utilized in all datasets. These lossy models position sensors at various
distances from the sink node and generate a Gaussian packet loss probability distrib-
ution for each distance. TOSSIM then generates packet loss rates for each sensor pair
by sampling these distributions and translating them into independent bit error rates.
An example of the LossyBuilder output is depicted on Fig. 13 where we list some of
the bit error for sensor mote (with id = 0) on a topology of 10 nodes. For example,
line 3 (0 2 0.5) of Fig. 13 states that mote O listens to mote 2 with a bit error rate of
50%. This process allows the creation of multi-hop network topologies required for
all of our experiments.

5.5 Communication protocol

Our communication protocol is based on the ubiquitous for sensor networks IEEE
standard 802.15.4 (the basis for the ZigBee [68] specification used by most sensor
devices including the TelosB sensor device). ZigBee uses the CSMA/CA collision
avoidance scheme where a node employs a random exponential back-off algorithm
that backs-off for a random interval of 0.25-0.5 s before retransmission.

The TinyDB message frames are structured as follows [37]: Each message is as-
sociated with a 7 Bytes TinyDB application layer header that includes: (i) the source
identifier (2B), the query source identifier (2B), the sequence number (2B) and the
hop count (1B). In the remaining payload (29B) we allocate our KSpot structures
according to the query being executed:

i. For the TopkData data structure: we allocate 1 bit for identifying if the current
state is the same as the previous state, 3 bits for identifying the number of tuples
in the current state and 2B for the attribute value.
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Fig. 13 Trace from the

<mote id> <mote id> <error rate>
LossyBuilder output

000.0

0 1 8.99E-4
020.5

0 30.5

0 4 8.99E-4
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ii. For the TopkRoomData data structure: which is used for Top-k GROUP-BY
queries, we allocate a number of variables for storing results for each room. In
order to maximize the number of rooms that can be supported by this query
we utilized a packed data structure that consists of the following information:
(1) sameAsPrevious (1 bit): is a bit flag that indicates whether the current result
is the same as the previous result and thus should not be transmitted, (ii) vals (3
bits): the number of values in the topk result. Note that the number of values is
identical to the number of rooms that have reported their values. The maximum
number of values (i.e., maximum number of rooms is 7), (iii) count (22 bits): This
attribute records the number of results for each room using a 3-bit counter for
each room (maximum number of rooms =7 x 3-bits = 21), (iv) room (22 bits):
This attribute records the room id of each room, and (v) sum (16 bits x maximum
number of rooms): stores the cumulative total of the sensor’s result for each room.
Since the maximum number of bytes available in the TinyDB message payload is
25 bytes, our packed data structure supports a maximum of 7 rooms.

Both of our data structures are illustrated in Fig. 2.
5.6 Query syntax
We utilize the following query syntax:

SELECT TOPK attribute [,aggregate]

FROM sensors

[WHERE filter]

[GROUP BY attribute]

[ORDERBY [attribute|aggregate] [ASC|DESC]]
[SAMPLE PERIOD time (ms)]

The attribute statement mentioned in the query syntax refers to all measurements
that can be acquired from the sensorboard as well as variables stored locally at each
sensor node. In the KSpot framework, when a TOP k attribute query is executed
over the network we only return the £ highest results for that attribute, if no ORDER
BY clause is used. However we could have easily returned the k lowest results in
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a similar way. The aggregate statement mentioned in the query class form refers to
all aggregates supported by the TinyDB framework. Roughly, these aggregates can
be distinguished in: (i) distributive aggregates, where records can be aggregated in-
network without compromising correctness (e.g., Max, Min, Sum, Count),and
(ii) holistic aggregates, where in-network aggregation might compromise the result
correctness (e.g., Median), thus all tuples have to be transmitted to the sink before
the query can be executed. If a GROUP-BY query is posted to the network, results
are grouped by the attribute statement and aggregates are calculated for each group
individually. In our experiments we utilize the following query:

SELECT TOP K room, AVG(temp)
FROM sensors

GROUP BY room

ORDER BY AVG (temp) [DESC]
SAMPLE PERIOD 4096

where k is configured as the 5% of the complete answer set. We also use the same
epoch duration for all our experiments which specifies the amount of time that sensors
have to wait before re-computing the continuous query. More specifically we set the
epoch duration to be equal to 4096 ms.

6 Experimental evaluation results

In order to assess the efficiency of the algorithms presented in this paper we have
conducted six experimental series. In the first experimental series we have compared
the energy consumption of the INT and MINT Views algorithms to the TAG and
TINA algorithms, showing that the former algorithms present significant energy sav-
ings compared to their competitors. In the second experimental series, we study the
pruning magnitude of the INT and MINT Views algorithms. In the third experimental
series, where we investigate the scalability of the parameter k, we manually test the
efficiency of the MINT Views algorithm with different values for k. In the fourth ex-
perimental series we investigate the effect of the GROUP-BY cardinality. Note that in
all datasets, we randomly and uniformly divide the sensors into areas (rooms). In this
experiment, we distribute the sensors in different room configurations and study the
energy consumption of all algorithms. In the fifth experimental series, we evaluate
the efficiency of the overall KSpot framework focusing on energy consumption and
system lifetime. Finally, in the sixth series, we have conducted one micro-benchmark
on the CC2420 radio transceiver in order to quantify its reception inefficiencies in a
real setting.

Table 2 summarizes the configuration parameters for all experiments mentioned
in the subsequent sections.

6.1 Experimental series 1: energy consumption

In the first experimental series, we evaluate the energy consumption of INT and
MINT Views algorithms compared to the popular TAG and TINA acquisition frame-
works. We execute query Q on the three datasets and measure the energy consump-
tion for each dataset separately.
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Table 2 Configuration parameters for all experimental series

Section Objective Dataset k Rooms (R)

6.1 Energy Consumption GDI14, AtmoMon32, 5% 4-7
Intel49

6.2 Pruning Magnitude AtmoMon32 5% 7

6.3 Scalability of k GDI14 5%-100% 4

6.4 GROUP-BY cardinality GDI14 5% 1-7

6.5 Network Lifetime GDI14 5% 4

In Fig. 14 (top-left), we illustrate the energy consumption of the four algorithms
(MINT, INT, TINA and TAG) using the GDI14 dataset. Let us mention the prelim-
inary observation that the energy scale among consecutive time instances fluctuates
greatly. This happens due to the arbitrariness of when and under which condition
top-k pruning and temporal coherence filtering takes place. In order to correct this
situation in the subsequent graphs, we apply a spline interpolation smoothing be-
tween consecutive data points. We shall next also mention the real observations we
determine from the given execution.

In Fig. 14 (top-right), we plot the results using the GDI14 dataset. Since we uti-
lize TAG as the baseline of comparison, it always has a value of 100%. The TAG
line accounts for approximately 57 £ 2.52 J average energy for all 14 nodes of the
network. Recall that in TAG, a sensor always transmits all aggregated tuples to the
sink. Although TINA still returns all answers to the sink, it takes the average energy
consumption down to 48 &= 1.57 J. This validates that exploiting temporal coherence
can be beneficial in most cases. The INT Views approach on the other hand, performs
in-network pruning of the results which reduces the energy consumption to 34 +1J
(i.e., ®41% less than TAG).

Finally, the MINT Views algorithm exploits temporal coherence in addition to
top-k pruning and only consumes an average of 19 & 0.56 J which is equivalent to a
66% energy reduction from TAG, 49% energy reduction from TINA and 25% from
INT. The reason why the TINA and MINT Views follow a similar pattern is because
in both curves, the energy reduction is dominated by the savings that are due to the
temporal coherence between consecutive time points.

In this figure, we also observe surges (deviations) for the TINA, INT and MINT
Views algorithms in all experiments. In the case of the TINA algorithm, the surges
attribute to the fact that, at some time instances, the sensors exploit the temporal
coherence and do not report their results to their parents. This decreases the overall
energy consumption of the network. In the case of the INT algorithm, the surges
correlate with the fact that, at some time instances, the amount of results pruned from
V; is decreased or increased because of the deviation of values in the dataset. This is
an indication that the top-k answer has changed at the particular timestamp and that
this has brought some increase in energy consumption, until the updates propagate
to the sink. On the other hand, the surges of the MINT Views algorithm correlate to
both of the aforementioned attributes as MINT exploits both temporal coherence and
top-k pruning.
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Fig. 14 Energy Consumption for the TAG, TINA, INT View and MINT View algorithms using the TelosB
sensor energy model

By repeating the same experiment on the AtmoMon32 dataset, we observe in
Fig. 14 (bottom-left), that MINT continuous to maintain a competitive advantage
over TAG and TINA. In particular, we observe that MINT consumes 50% less energy
than TAG (i.e. 115 &4 J versus 234 &+ 2 J). The same conclusion applies for the INT
Views algorithm although we observe that the performance difference compared to
TINA has decreased. This happens because in the AtmoMon32 dataset, the tempera-
ture values do not change frequently and this allows the temporal coherence filter to
significantly reduce the number of tuples transmitted over the network. However, the
top-k pruning filter of the INT algorithm still manages to considerably decrease the
size of packets that are transmitted through the network thus maintaining an advan-
tage over TINA.

In the final dataset, Intel49 (Fig. 14 (bottom-right)) we observe that all algorithms
behave in a similar manner to the previous experiments. The difference is that the
energy performance of all algorithms has increased compared to TAG. One reason
that this happens, is the fact that like the AtmoMon32 dataset the temperature values
of the Intel49 do not change frequently, which is exploited by the temporal coherence
filter of the TINA and MINT Views algorithms. On the other-hand, the INT Views
algorithm which does not employ a temporal coherence filter, outperforms signifi-
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Table 3 Average Energy

Consumption for all sensors in Algor. Dataset
experimental series 1: GDI14 AtmoMon32 Intel49
Evaluation of the TAG, TINA,
INT and MINT Views TAG 5742527 234427 5234227
algorithms under different TINA 4841577 183467 2894157
atasets
INT 34+£1.01J 170£717] 187 +£081J
MINT 19+£0.561] 115+47 1394+061J

Fig. 15 'Prunlng Magnitude of Pruning Magnitude (Average for all n sensors)
MINT Views on the (Algorithm(s)=MINT Dataset=AtmoMon32, n=32, network=250Kbps)
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cantly the TAG and TINA algorithms. This means that the pruning mechanism of INT
Views, significantly decreases the packet sizes thus minimizing energy consumption
associated with transmission.

The results for all experiments are summarized in Table 3.

6.2 Experimental series 2: pruning magnitude

We next study the pruning magnitude of the k-Covered Bound-Set V; using the At-
moMon32 dataset. In Fig. 15 we plot with a white box the average number of tuples
at each level of the topology (for all 1000 time instances). We also plot with a dashed
box the aggregate number of tuples eliminated by Algorithm 2.

We observe that the closer we move towards the sink, the pruning power of our
framework increases exponentially. This is attributed to the fact that the cardinality
of V; can increase in the worst case exponentially as well (i.e., each sensor reports a
different room number). In particular, we observe that the pruning at level five to one
ranges from 0% (where only leaf nodes exist), to 39% in level two and 77% in level
one. It is important to highlight the fact that such a pruning presents a reduction of
more than 20,000 tuples at level one alone.

A final remark is that these results apply to both MINT and INT, as these two
algorithms only differ in how V/ is maintained and not on the final content of the
in-network view.
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Fig. 16 Scalability with respect Scalability with respect to k (Average for all n sensors)
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6.3 Experimental series 3: scalability with respect to k

In the third experimental series, we evaluate the efficiency of the MINT algorithm
with respect to the parameter k. More specifically, we increase the parameter k while
maintaining the same network topology. We expect that by increasing the k parame-
ter, packet sizes will also increase as less packets will be pruned from V;. We utilize
the GDI14 dataset for this experiment and measure the average energy consumption
for all sensor nodes. However, we mention that similar observations also do hold for
the rest datasets.

Figure 16 shows the result of our experiment. For the lowest value of k (k =25%
of the answer set) the overall energy consumption is 66% less than TAG (19 0.5 J).
We observe that as the value of the k parameter increases, the performance gain is
decreased. Particularly, for k = 50% and k = 75% the energy performance ratio com-
pared to TAG reaches 36.5% (36 £ 1.6 J) and 23,4% (44 £ 1.5 J) respectively. This
is expected as the number of results transmitted from each sensor node is correlated
with the k parameter (i.e., higher values of k decrease the number of tuples eliminated
from V;). When the k parameter reaches 100% (i.e., all sensor nodes transmit all of
their results), then the MINT Views algorithm behaves identically to the TINA algo-
rithm. More specifically, since no pruning occurs on the sensors, the MINT Views
algorithm only exploits temporal coherence exactly like the TINA algorithm. How-
ever, like TINA, MINT still maintains a competitive advantage of 18% (47 & 1.59 J)
decreased energy consumption over TAG (57 +2.52 J).

6.4 Experimental series 4: cardinality of the GROUP-BY clause
In the fourth experimental series, we evaluate the efficiency of the MINT Views al-
gorithm with respect to the cardinality of the GROUP-BY clause (i.e., the number

of rooms that participate in the given query). More specifically, we manually set the
number of rooms (R) to 2, 4 and 7 in the GDI14 dataset and uniformly distribute
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Fig. 17 Cardinality of the Cardinality of GROUP-BY (Average for all n sensors)
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the sensors in each room respectively. We measure the average energy consumption
for all 14 sensor nodes. There are two important parameters that affect the cardinal-
ity attribute. Firstly, when R increases, so is the packet size, as the TopKRoom data
structure allocates space to store R results. On the other hand, since a smaller num-
ber of sensors is distributed in each room, lower-level nodes can quickly calculate the
exact result of a room thus the pruning magnitude is increased. Secondly, when R
decreases the packet size also decreases for the same aforementioned reason. How-
ever, in this case the pruning magnitude rapidly decreases as only higher-level sensor
nodes have a complete picture of the exact result for a room.

Figure 17 shows the first result of our experiment. We observe that the best energy
performance occurs when the number of rooms R is equal to 4 (i.e., 21 +0.7 J). In the
case of fewer rooms (i.e., R = 2) we observe that the energy consumption is slightly
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increased although in this case the data payload of MINT becomes almost half the
size. The reason for this increase, is the fact that the MINT pruning phase almost
never prunes the V/ structure on sensor nodes that have a hop count greater than 1
(i.e., the results have to reach nodes very close to the sink in order for a node to be
able to eliminate tuples). On the other case, where R = 7, we observe a significant
increase in energy consumption. This is because the data payload is now configured
to store 7 tuples at each sensor which requires almost double overall transmission
energy. However, in this case the pruning mechanism of MINT eliminates tuples at
lower levels of the network topology and that is why the standard deviation of this
experiment increases (i.e., 36 == 1,68 J).

Figure 18 presents the results of all algorithms on the GDI14 dataset with different
cardinalities. We have found that MINT always maintains an advantage against its
competitors in all scenarios. In the case where R =7, we observe that TINA presents
better performance than INT. This is attributed to the fact that TINA suppresses many
results from being transmitted to the network, due to its temporal coherence filter. On
the other hand, MINT which employs both top-k pruning and the temporal coherence
filter outperforms all algorithms.

6.5 Experimental series 5: network lifetime

In the fifth experimental series we evaluate an extremely important parameter of sen-
sor networks deployments, i.e., Network Lifetime. We define network lifetime as the
average amount of energy in the network. In particular, let the following summation
denote the amount of energy that is available at time instance ¢ in a network of n
Sensors:

n
Energy(t) = Z available_energy(s;, t)/n

i=1
where available_energy(s;, t) denotes the energy that is available at sensor s; (i <n)
at time instance ¢t. We define the network lifetime, similarly to [54], as the time
instance ¢" at which Energy(¢’) = 0. Note that this applies only to the case where
sensors operate using batteries. Double batteries (AA) used in many current sen-
sor designs (including the TelosB sensor) operate at 3 V voltage and supply a
current of 2,500 mAh (milliAmper per hour). Assuming similarly to [52], that
only 2,200 mAh is available, we can calculate that 2xAA batteries offer 23,760 J
(2,200 mAh x 60 min x 60 s x 3 V). We start with this initial energy and subtract
at each epoch and for each sensor the energy required for processing the top-k query.
We terminate this iteration when the termination condition is satisfied.

Figure 19 illustrates the average energy status of the sensor network, at each epoch,
during the execution of a query using the GDI14 dataset. We notice that the available
energy of sensors under TAG is consumed far faster than the MINT Views algorithm,
leading to a lifetime of just 5,793 epochs (i.e., 193 minutes). TINA ranks third by
offering 6,949 epochs (i.e., 231 minutes) and INT second with 9,768 epochs (i.e.,
325 minutes). Finally, MINT consumes its available energy budget far later at epoch
43,824 (i.e., 565 minutes), and this is translated into a #292% increase of the network
lifetime.
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Fig. 19 Network lifetime for Network Lifetime (Average energy consumption for all n sensors)
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6.6 Experimental series 6: CC2420 receiver microbenchmark

During the execution of a continuous query on a multi-hop topology scenario, each
sensor device will periodically (i.e., at each epoch) receive the results from its child
sensors and transmit its results to its parent as previously described in Section 3. This
process can be performed in two ways: (i) each sensor device can operate with its
transceiver in continuous STXON/SRXON operation, or (ii) each sensor may choose
to turn off its transceiver as soon as it obtains the results of its child sensors and power
it on again at the beginning of the next epoch. We argue that the latter case imposes
an additional overhead with regards to energy consumption on the sensor device and
should be avoided.

In order to verify our argument, we have conducted one micro-benchmark on the
CC2420 radio chip [53] (both attached to the TelosB [17] sensor and in TOSSIM [37])
and justify why data reception inefficiencies have to be optimized in current data
acquisition systems. Specifically, we show why a sensor node should not change the
state of its transceiver continuously as this increases the overall energy consumption
on the sensor node.

In our experiment we transfer 1000 16-byte packets from a TelosB sensing device
A to another TelosB sensing device B and measure the energy consumption of sensor
A when this transfer is conducted in 1, 10, 100 and 1000 rounds respectively. In
particular, we configure sensor B with an always-on transceiver and sensor A with a
transceiver that changes its state from on (STXON/SRXON) to of £ (SRFOFF), 1 to
1000 times respectively. In order to measure the energy consumed by sensor A for
the above function we utilized a multi-meter, to measure the circuit current, and we
also measured the wall clock time until the given operations completed successfully.

Figure 20 shows the result of the first micro-benchmark. We observe that by chang-
ing the transceiver status 1000 times consumes 195 pJ while conducting the same
operation one time requires only 128 pJ. Although in both cases we transfer precisely
the same amount of data, in the former case we spent 65% more energy. This increase
occurs even though the CC2420 transceiver has very quick start-up times compared
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Fig. 20 Micro-benchmark Evaluation of the receiver module (CC2420)
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to other transceivers. Notice that during the startup of the RF module, a voltage reg-
ulator and crystal oscillator have to be started as well as become stable [53]. Thus, it
is quite inefficient to change the transceiver state (from on to off and vice-versa) in a
frequent manner.

Due to inherent limitations of TinyDB, all algorithms presented in the previous
experimental sections were set to continuous transceiver on operation. Consequently,
all experiments featured an increased energy consumption, but in reality this energy
cost could have been reduced significantly had we optimized this parameter with
techniques like [2, 64].

7 Related work

In this section we will overview related research efforts that relate to the foundations
of the KSpot Architecture, i.e., (i) View management and (ii) Top-K query process-

ing.

View management has been an area of great contributions over the last decades
[7, 11, 13, 34]. Materialized Views, in particular, have been extremely important in
OLAP and Data Warehousing, where users are required to get quick answers to their
aggregate queries over extremely large datasets. Most of the proposed solutions as-
sume powerful and complex centralized or distributed DBMSes. Materialized views
have also been extremely important in mobile databases because they provided the
means to support disconnected operations [56, 57]. Similarly to mobile databases,
we focus on wireless (sensor) devices with limited energy, CPU and memory re-
sources. Additionally, our work is fundamentally different from Temporal View Man-
agement [41, 61], as our queries are not historic.

The notion of views in the context of sensor networks, has appeared in three recent
works. The first one proposes a new abstraction, coined Model-based Views which
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provides users with a unified view of data that hides away the irregularities of sensor
data [20]. These views are implemented outside the sensor network. Thus, their scope
and objective is supplementary to our approach, in which we utilize in-network views
to optimize the acquisition of data from sensing devices. The second work [59] is
similar to our approach but it uses in-network views to support ad-hoc queries in a
data-centric environment as opposed to continuous and top-k queries in our approach.
Finally, in [35] the authors present two cluster-based techniques for materializing
aggregated results in a sensor network. The proposed MINV framework replicates
aggregated results on some or all sensor nodes inside a cluster and then uses these
results as materialized in-network views in order to speed-up the execution of spatial
aggregation queries. The proposed cluster-based techniques in [35] can be used in
conjunction with the INT and MINT Views algorithms of the KSpot framework in
order to further speed-up query execution as well as to improve the overall fault
tolerance of the system since with MINV, local sensor results are available to other
sensor nodes.

The problem of materialized views that are generated by top-k queries in a cen-
tralized DBMS scenario was recently addressed in [18]. In particular, the authors
study the problem of answering a top-k query from a set of N materialized top-k
answers. These answers refer to different top-k queries which are neither distributed
nor organized in a hierarchy, as this is the case in our setting. Finally in [36], the
authors propose to exploit fully materialized views in sensor networks in order to
speedup the execution of multiple queries. However these views are complete, rather
than top-k, therefore their setting is closer to the TINA framework rather than the
solutions proposed in this paper.

Top-k query processing has been studied in a variety of contexts including mid-
dleware systems [24, 25], web accessible databases [8, 43], stream processors [5],
peer-to-peer systems [4] and other distributed systems [9, 66, 67]. It has been shown
in numerous studies [8, 9, 24, 67], that top-k query processing is meaningful only
if the predicate k refers to a small subset of the complete answer set (usually up-to
5%). For larger values of k, the query optimizer can choose to retrieve the complete
answer set. For instance the query “Find the k = 5 rooms with the highest average
temperature,” returns a subset of the complete answer set in order to minimize a cost
metric that is associated with the retrieval of the complete answer set. This cost is
usually measured in terms of disk accesses or network transmissions, depending on
where the data physically resides.

Distributed Top-k query processing algorithms can be classified according to the
approach in which the data are fragmented over the network, that is vertically or
horizontally. In vertically fragmented datasets, each sub-relation contains a subset of
columns (attributes) of the original relation R. An example of a query that can be
executed on a vertically partitioned dataset is “Find the timestamp on which we had
the highest temperature across all sensors”. Various algorithms [9, 24, 62, 66] have
been proposed for top-k query processing with the Threshold Algorithm (TA)[24] be-
ing the most predominant. In [9] the authors develop a three phase protocol (TPUT)
which decreases the number of remote accesses in large networks. The TPAT algo-
rithm [62] extends the TPUT algorithm by exploiting data distributions among nodes
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to improve pruning. In [66], the authors propose the Threshold Join Algorithm which
operates on a multi-hop network (in contrast with TA,TPUT and TPAT) and further
reduces communication by exploiting in-network aggregation.

While the aforementioned algorithms provide exact results for top-k queries there
is a number of works [5, 44, 66] that provide approximate answers. In [66], the au-
thors propose the UB-K and UBLB-K algorithms that return upper/lower bounds
instead of exact answers. In [5] the authors use a centralized coordinator node which
distributes filters to each source node so as to ensure that local top-k result correlate
with the global top-k answer. In [44], the authors propose the KLEE algorithm which
extends the TPUT algorithm by providing approximate answers. The idea is to pro-
vide an adaptive framework which allows trading-off efficiency against result quality
and bandwidth saving against the number of communication messages. A sampling-
based approach to optimize Top-k queries in sensor networks is also the core topic
in [50].

In horizontally fragmented datasets, each sub-relation contains a subset of tuples
(rows) of the original relation R. An example of a query that can be executed on a
vertically partitioned dataset is “Find the two rooms with the highest average temper-
ature”.

A method for continually providing approximate answers in a hierarchical sensor
network scenario by exploiting temporal coherency was addressed in TINA [47, 48].
The basic idea behind TINA is to send a reading from a sensor only if the reading
differs from the last recorded reading by more than a stated tolerance €. The problem
of continually providing approximate top-k answers in a client-server setting was
studied in [5]. The problem is tackled by installing arithmetic constraints at each node
which define the current Top-k scores at any point. This work was later extended to a
hierarchical sensor network environment in [19].

In [58] the authors propose a range caching algorithm for continuous top-k
processing. This approach utilizes k + 1 individual filters that are selectively adapted
rather than a hierarchical in-network pruning mechanism. In [4, 32], the problem of
identifying the Top-k objects from relations which are horizontally fragmented over
peers in a P2P environment is studied. The proposed solution depends on each peer
having knowledge of the total score of each object that it manipulates. This is not
possible for vertically partitioned relations, as this requires access to all relations in
their entirety, which constitutes their approach inapplicable in our context.

Finally, most of the above horizontal approaches assume a star (or single-hop)
communication topology, in which all nodes are directly accessible by the querying
entity. On the other hand, our work has focused on the challenges of a hierarchical (or
multi-hop) topology. In all cases the results are approximate and continuous over a
single attribute, thus operate over individual attributes (columns), while our approach
is exact and operates horizontally covering all tuple attributes.

8 Conclusions and future work

In this paper, we present an innovative framework for efficiently monitoring WSNss,
to achieve both efficiency and query result quality. Our framework, coined KSpot,
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utilizes a novel top-k query processing algorithm we developed, in conjunction with
the concept of in-network views, in order to minimize the cost of query execution.
In particular, we formulate the problem of constructing a hierarchy of recursively de-
fined top-k views. We then describe the MINT Views algorithm that identifies the K
highest-ranked answers efficiently. We also present a stateless, non-materialized ver-
sion of MINT, coined INT (In-Network Top-k) Views that is appropriate for sensing
device with limited memory.

To illustrate the efficiency of our framework, we have implemented a real sys-
tem in nesC, which combines the traditional advantages of declarative acquisition
frameworks, like TinyDB, with the ideas presented in this work. Extensive real-world
testing and experimentation with traces from UC-Berkeley, University of Washing-
ton and Intel Research Berkeley, show that KSpot presents an up to 66% of energy
savings compared to TinyDB, minimizes both the size and number of packets trans-
mitted onto the network (up to 77%), prolonging in that way the longevity and health
of a WSN deployment.

In the future we plan to incorporate an automated transceiver operation module
that will automatically tune the waking window of each sensor device using applica-
tion layer semantics [2, 64]. Additionally, we plan to investigate the applicability of
these ideas over Mobile Sensor Networks and Networks of Smartphone Devices.
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