
Distrib Parallel Databases (2011) 29: 87–112
DOI 10.1007/s10619-010-7073-4

In-network data acquisition and replication in mobile
sensor networks

Panayiotis Andreou · Demetrios Zeinalipour-Yazti ·
Panos K. Chrysanthis · George Samaras

Published online: 1 December 2010
© Springer Science+Business Media, LLC 2010

Abstract This paper assumes a set of n mobile sensors that move in the Euclidean
plane as a swarm. Our objectives are to explore a given geographic region by detect-
ing and aggregating spatio-temporal events of interest and to store these events in the
network until the user requests them. Such a setting finds applications in mobile en-
vironments where the user (i.e., the sink) is infrequently within communication range
from the field deployment. Our framework, coined SenseSwarm, dynamically parti-
tions the sensing devices into perimeter and core nodes. Data acquisition is scheduled
at the perimeter, in order to minimize energy consumption, while storage and repli-
cation takes place at the core nodes which are physically and logically shielded to
threats and obstacles. To efficiently identify the nodes laying on the perimeter of the
swarm we devise the Perimeter Algorithm (PA), an efficient distributed algorithm
with a low communication complexity. For storage and fault-tolerance we devise
the Data Replication Algorithm (DRA), a voting-based replication scheme that en-
ables the exact retrieval of values from the network in cases of failures. We also
extend DRA with a spatio-temporal in-network aggregation scheme based on mini-
mum bounding rectangles to form the Hierarchical-DRA (HDRA) algorithm, which
enables the approximate retrieval of events from the network. Our trace-driven exper-

Communicated by Erik Buchmann.

P. Andreou · D. Zeinalipour-Yazti (�) · G. Samaras
Department of Computer Science, University of Cyprus, Nicosia 1678, Cyprus
e-mail: dzeina@cs.ucy.ac.cy

P. Andreou
e-mail: panic@cs.ucy.ac.cy

G. Samaras
e-mail: cssamara@cs.ucy.ac.cy

P.K. Chrysanthis
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 5213-4034, USA
e-mail: panos@cs.pitt.edu

mailto:dzeina@cs.ucy.ac.cy
mailto:panic@cs.ucy.ac.cy
mailto:cssamara@cs.ucy.ac.cy
mailto:panos@cs.pitt.edu

88 Distrib Parallel Databases (2011) 29: 87–112

imentation shows that our framework can offer significant energy reductions while
maintaining high data availability rates. In particular, we found that when failures
across all nodes are less than 60%, our framework can recover over 80% of detected
values exactly.

Keywords Mobile sensor networks · Data management · Fault tolerance

1 Introduction

Stationary sensor networks have been predominantly used in applications ranging
from environmental monitoring [30, 33] to seismic and structural monitoring [7]
as well as industry manufacturing [20]. Recent advances in distributed robotics and
low power embedded systems have enabled a new class of Mobile Sensor Networks
(MSNs) [8, 38] that can be used in land [3, 9, 24], ocean [25] and air [11] exploration
and monitoring, automobile applications [10, 13], habitant monitoring [30] and a
wide range of other scenarios. MSNs have a similar architecture to their stationary
counterparts, thus are governed by the same energy and processing limitations, but
are supplemented with implicit or explicit mechanisms that enable these devices to
move in space (e.g., motor or sea/air current). Additionally, MSN devices might de-
rive their coordinates through absolute (e.g., dedicated Geographic Positioning Sys-
tem hardware) or relative means (e.g., localization techniques [26, 40], which enable
sensing devices to derive their coordinates using the signal strength, time difference
of arrival or angle of arrival). The absence of a stationary network infrastructure in
MSNs makes continuous data acquisition to some sink point a non-intuitive task as
data acquisition needs to be succeeded by in-network storage [1, 28, 31, 39], such that
these events can later be retrieved by the user. Additionally, the operation of MSNs
is severely hampered by the fact that failures are omnipresent, thus fault-tolerance
schemes become of prime importance in such environments.

There are numerous advantages of MSNs over their stationary counterparts. In
particular, MSNs offer: (i) dynamic network coverage, by reaching areas that have
not been adequately sampled; (ii) data routing repair, by replacing failed routing
nodes and by calibrating the operation of the network; (iii) data muling, by collecting
and disseminating data/readings from stationary nodes out of range; (iv) staged data
stream processing, by conducting in-network processing of continuous and ad-hoc
queries; and (v) user access points, by enabling connection to handheld and other
mobile devices that are out of range from the communication infrastructure.

In this paper we present SenseSwarm, a novel framework for the acquisition and
storage of spatio-temporal events in MSNs. In SenseSwarm, nodes have the dual role
of perimeter and core nodes. Data acquisition is scheduled at the perimeter, in order to
minimize energy consumption, while storage and replication takes place at the core
nodes. Such a setting is suited well for applications in which new events are more
prevalent at the periphery of the swarm (e.g., water and contamination detection)
rather than for applications where new events might occur anywhere in the network.

Mobile Sensor Networks are useful in an ever increasing number of applications
and domains. Below, we motivate our discussion by describing two of these appli-

Distrib Parallel Databases (2011) 29: 87–112 89

cations that are founded on the premise of MSNs. In particular, we present applica-
tions using the MBARI ocean observation system [22] and applications using People-
centric Sensing [4].

Example 1—MBARI ocean observation systems: The Monterey Bay Aquarium Re-
search Institute (MBARI) [22] is one of the leading institutes in deep-sea exploration
and under-water research. MBARI currently drives a number of ocean observation
projects like the Monterey Ocean Observing System (MOOS), the Monterey Ac-
celerated Research System (MARS) and the Autonomous Ocean Sampling Network
(AOSN). The aforementioned ocean observation systems provide critical information
for research on climate change, biogeochemical cycles, ecosystem assessment, and
environmental hazards. To accomplish data acquisition, these systems utilize sensor
devices attached on aerial and underwater vehicles that move in space and perform a
coordinated task. Since most oceanographic instruments have no means of connect-
ing with the surface, they have to rely on battery operation and local data storage
while exploring the underwater terrain. This necessitates the use of energy efficient
mobile sensor network infrastructures and especially data replication strategies that
ensure data availability in cases of failures. These are characteristics offered by the
Senseswarm Framework presented in this work.

Example 2—People-Centric Sensing: People-centric sensing [4], aims to support
sensor-enabled applications that engage the general public through the use of their
own personal mobile devices. The recent miniaturization and integration of sensors
into popular consumer mobile devices (e.g., iPhone, HTC Hero) has enabled a myriad
of new sensor based applications for personal, social and public sensing. These appli-
cations can be utilized for increasing the sensing coverage of large public spaces and
collect targeted information about their mobile device owners (e.g., human mobility
patterns). The information can then be uploaded to a centralized database system or
exchanged with neighboring mobile devices. What is really important, is that these
environments allow new levels of data sharing among commodity devices. Specif-
ically, a particular device can request sensor data from any available neighboring
device through the establishment of an adhoc communication network (e.g., through
Bluetooth or Wi-Fi). Assuming that the users of such a system move in a coordi-
nated manner (e.g., a group of cyclists), highlights the distinct characteristics of the
Senseswarm framework presented in this work.

In order to better frame the SenseSwarm framework, let us consider a phenom-
enon, described as an arbitrarily shaped sub-region of the terrain where the MSN
has been deployed (Fig. 1). We assume that this phenomenon and does not expand,
shrink or move rapidly. When the MSN moves closer to the phenomenon (i.e., at
T = 3) it is easy to see that perimeter nodes will be the first ones capturing the event.
In this setting, perimeter nodes continuously sample the events of the phenomenon
and transmit their results to the MSN. The storage of these detected events takes place
at the core nodes since these nodes are expected to feature a longer lifetime (due to
their reduced sensing activity) but are also physically shielded to threats and obsta-
cles that might immobilize the sensors. In order to increase the overall fault-tolerance
of our system, we propose data replication schemes that increase the availability of
data and thus also the accuracy of executed queries. More specifically, the goals of
the SenseSwarm framework are the following:

90 Distrib Parallel Databases (2011) 29: 87–112

Fig. 1 Example Scenario: SenseSwarm detects physical phenomena (e.g., oil spills) by using a swarm of
sensor nodes that are dynamically organized in perimeter and core nodes. Perimeter nodes continuously
sample the events of the phenomenon and transmit their results to the core nodes. Storage and replication
of detected events takes place at the core nodes since these are expected to feature a longer lifetime (due
to their reduced sensing activity) but also because these are physically shielded to threats and obstacles

– Minimize the energy consumption required for defining the perimeter of the net-
work. We accomplish this by introducing the distributed Perimeter Algorithm (PA).

– Maximize fault tolerance and recoverability in the presence of network failures
according to application preferences. We accomplish this by introducing the DRA
and HDRA algorithms.

This paper builds upon our previous works [2, 37] in which we presented the ini-
tial design of the SenseSwarm framework. In this paper we introduce several new
improvements including a novel hierarchical voting-based fault-tolerance scheme as
well as an in-network aggregation scheme, that in conjunction increases the availabil-
ity of data and thus improves both fault tolerance and query execution. This is shown
through additional experimental evaluation.

In particular, our work makes the following contributions:

– We present the Perimeter Algorithm (PA), which efficiently constructs a perimeter
of a MSN using a two-phase protocol. Our algorithm has a O(n) message com-
plexity, where n is the total number of sensors instead of O(n2), featured by the
centralized algorithm.

– We devise a voting-based replication scheme to preserve the data (i.e., acquired
events) in cases of system failures. In particular, we devise the DRA algorithm that
replicates data using distributed read/write quorums.

– We additionally devise HDRA, a spatio-temporal in-network aggregation scheme
based on minimum bounding rectangles that enables the retrieval of acquired
events in an approximate form.

Distrib Parallel Databases (2011) 29: 87–112 91

– We experimentally validate the efficiency of our propositions using a trace-driven
experimental study that utilizes real sensor readings.

The remainder of the paper is organized as follows: Sect. 2 overviews the related
research work and provides background on our perimeter construction and fault-
tolerance schemes we present. Section 3 formalizes our system model and assump-
tions, Sect. 4 the PA algorithm and Sect. 5 the DRA and HDRA algorithms. Section 6
presents our experimental study and Sect. 7 concludes the paper.

2 Related work and background

This section provides an overview of traditional data acquisition frameworks in order
to highlight the unique characteristics of the SenseSwarm framework. It also provides
background on the two main problems our framework addresses (i.e., the perimeter
construction and the data replication processes).

Traditional data acquisition frameworks for sensor networks (e.g., TinyDB [19],
Cougar [35]), perform a combination of in-network aggregation and filtering in or-
der to reduce the energy consumption while conveying data to the sink. The MINT
View framework [36] performs in-network top-k pruning in order to further reduce
the consumption of energy. In data centric routing, such as directed diffusion [14],
low-latency paths are established between the sink and the sensors. Contrary to our
approach, all the above frameworks have been proposed for stationary sensor net-
works while this work considers the challenges of a mobile sensor network setting.
In data centric storage schemes [1, 28, 31], data with the same attribute (e.g., hu-
midity readings) is stored at the same node in the network offering therefore efficient
location and retrieval. Such an approach is supplementary to the perimeter-based data
acquisition framework we propose in this paper. Supplementary to our framework are
also the MicroHash [39] and TINX [21] local index structures, which provide O(1)

access to data stored on the local flash media of a sensor device. Such structures can
be deployed to speed up the retrieval of data whenever required. Additionally, op-
timization query processing techniques like the works presented in [23, 34] can be
used in conjunction with our framework in order to speed up query execution.

The first problem our framework investigates is that of partitioning the network
into perimeter and core nodes. The perimeter construction problem we consider has
similarities to the convex hull problem in computational geometry, which finds appli-
cations in pattern recognition, image processing and GIS [6]. The convex hull prob-
lem is defined as follows: given a set of points, identify the boundary of the smallest
convex region that encloses all the points either on the boundary or on its interior.
Such a boundary is both non-intersecting (i.e., no edge crosses any other edge) and
convex (i.e., all internal angles are less than π). There are numerous centralized algo-
rithms for computing the convex hull with varying complexities.

Two of the most popular convex hull algorithms are the Jarvis March [6] (or Gift
Wrapping) algorithm and the Graham’s scan algorithm [6]. The main difference be-
tween the convex hull and the perimeter problem we consider in this work, is that the
latter defines non-convex cases (i.e., internal angles are up to 2π). Non-convex cases
are typical for a sensor network context as convex angles might not be feasible due to

92 Distrib Parallel Databases (2011) 29: 87–112

communication radius constraints. Additionally, convex hull algorithms are central-
ized while we develop techniques to compute the boundaries in a distributed fashion
minimizing communication and energy consumption without sacrificing correctness.

Related work in the context of sensor networks appears in [5], where the authors
present localized techniques that enable the sensors to determine whether they be-
long to the boundary of some phenomenon. Yet, the underlying assumption in the
given work is that the edge sensors are not within communication range while we
consider the perimeter to be a continuous chain of nodes. In [27] the authors present
an algorithm that can identify perimeter nodes without any location information but
in the presence of specialized nodes, called bootstrap beacon nodes, which have long
range antennas that enable them to broadcast messages to the entire network. The
sensor nodes can then estimate their distance to these special nodes and decide if
they are perimeter nodes. In SenseSwarm we do not assume that these specialized
long-range bootstrap beacons are available. On the contrary, our assumption is that
all sensor nodes have the same capabilities. However, the work in [27] is supple-
mentary to SenseSwarm because if bootstrap beacons were available we could have
utilized them to calculate the perimeter faster. In SenseSwarm, once perimeter nodes
have been identified, the core nodes need not to know their coordinates (actual or
virtual) since they forward their results to their parents. This routing scheme is differ-
ent from [17, 27] where virtual coordinates are necessary for maintaining the correct
routing tables used for forwarding packets. In [17] nodes make forwarding decisions
in a greedy manner by only using information about the immediate neighbors of the
node. In SenseSwarm we do not perform routing decisions but instead we focus on
sensing, aggregating and storing. In [32], the authors devise an algorithm that com-
bines current and historic measurements to trace a contour of a given value in the field
(e.g., an oil spill). The presented ideas (e.g., that of quickly arriving at the contour)
are supplementary to ideas presented in this paper.

The second problem our framework investigates is that of data replication to im-
prove fault-tolerance. At a high level, our proposed schemes consist of maintaining
a set of identical copies of each datum at several nodes in the network. For ease
of exposition, let us consider the example network of Fig. 2, which will be utilized
throughout this paper. On the left part of Fig. 2 we illustrate a segment of a MSN at a
specific time τ . Assume that a copy of the datum d1 (i.e., data published by node s1),
has been replicated to nodes s4, s5, s6, s12. Now let node s1 permanently fail along
with its one hop neighbors (i.e., s4 and s5) at time instance τ + 1. Since d1 has been
replicated beyond these nodes then it will be feasible to recover d1 if necessary.

Our proposed solution is based on a voting-based data replication scheme. Voting
algorithms [16, 18] have been among the most popular techniques to offer fault-
tolerant properties in distributed systems. A vote denotes the preference of some node
to replicate a specific piece of information to another node. Voting schemes consist
of first selecting a set of nodes where a specific datum will be replicated (i.e., the
write quorum) and another set of nodes where a query will be conducted at, to search
for that specific datum (i.e., the read quorum). One of the major challenges is to
effectively choose the correct quorums so that the replication process will produce
consistent results in an efficient manner. SenseSwarm’s data replication algorithm
utilizes the basic ideas of voting in conjunction with the unique characteristics of
MSN systems.

Distrib Parallel Databases (2011) 29: 87–112 93

Fig. 2 Replication and Aggregation in SenseSwarm: In-network aggregates are constructed during repli-
cation by using Minimum Bounding Rectangles (MBRs)

3 System model and assumptions

In this section we will formalize our basic terminology and assumptions. The main
symbols and their respective definitions are summarized in Table 1.

Let � × � denote a two-dimensional grid of points in the Euclidean plane that
discretizes a given geographic area. Also assume a Cartesian coordinate system to
describe the position of each point in the grid with coordinates (x, y). In order to
be able to introduce movement patterns to the sensor network we uniformly distrib-

ute the n sensing devices in an area n
1
2 × n

1
2 approximately in the middle of �2.

Each si (i ≤ n) can derive its coordinates (sx
i , s

y
i) through some absolute or relative

mechanism. Additionally, each si can be aware of its neighboring nodes, denoted as
NH(si), using a local 1-hop broadcast. The sensing devices are coarsely synchro-
nized through some operating system mechanism (e.g., similarly to TinyOS [12]) or
through the GPS and can communicate with other sensors in a uniform radius r , i.e.,

1 ≤ r � n
1
2 .

The user can specify one or more m-dimensional Boolean queries of the type
Q = {q1 � q2 � · · · � qm}, where qi (i ≤ m) corresponds to some predicate such as
q1 = “Temperature > 100” and � denotes some binary Boolean operator. These
queries correspond to the user-defined local events of interest and are registered at
each si either prior the deployment or during execution. The discussion of more com-
plex query types is outside the scope of this paper.

A SenseSwarm network is initiated by conceptually dividing S into perimeter
nodes Sp and core nodes Sc using the algorithms as presented in [37]. This op-
eration is periodic and will be repeated after σ time instances (see Fig. 3). Each
perimeter sensor si (i ≤ n) then acquires m physical parameters A = {a1, a2, . . . , am}
from its environment during every epoch e, which defines the interval after which

94 Distrib Parallel Databases (2011) 29: 87–112

Table 1 Definition of Symbols
Symbol Definition

n Number of Sensors S = {s1, s2, . . . , sn}
m Number of attributes at each si {a1, a2, . . . , am}
(sx

i
, s

y
i
) x and y coordinates of each si

r The communication radius of each si

NH(si) 1-hop (in commun. range) neighbors of si

V (si , sj) A Vector defined as (sx
j
−sx

i
, s

y
j
−s

y
i

)

LeftN(si) The predecessor of si on the perimeter

RightN(si) The successor of si on the perimeter

Sp,Sc The set of Perimeter nodes, Core nodes

Q An m-dimensional Query

e Epoch Duration (i.e., data acquisition interval)

σ,σ ′ Perimeter Reconstruction, Replication interval

di The datum of node si

v
j
i

, vi The vote (preference) of si to replicate di

to node sj , All votes from si

Fig. 3 Outline of the SenseSwarm framework operation

data acquisition re-occurs. The value for e is either dynamically adjusted according
to the dynamics of the swarm or prespecified. In a sea oil-spill detection scenario,
e can be configured to several hours as surface drifters usually float very slowly on
the sea surface. The above procedure generates spatio-temporal tuples of the form
{t, x, y, a1, a2, . . . , am} locally at each sensor. The generated tuples of interest (with
respect to Q) are stored in some local vector, referred to as di (i.e., datum of node si).

In order to increase the availability of di structures, we adopt a data replication
scheme based on votes that will be presented in Sect. 5. A vote v

j
i denotes the pref-

erence of sensor si (i.e., the publisher of some datum di), to replicate di to node sj
(i �= j) at a given time instance. Additionally, we define vi as the set of all votes by
node si on the given time instance. In our approach, we assume that every σ ′ time
instances every sensor si ∈ Sp proceeds with the replication of its local datum di to
the votes of si .

Distrib Parallel Databases (2011) 29: 87–112 95

4 Perimeter construction phase

This section describes algorithms for the construction of a perimeter in a MSN. We
first describe a centralized solution and then our Perimeter Algorithm.

4.1 Centralized perimeter algorithm (CPA)

First note that the construction and dissemination of a perimeter can be performed
in a centralized manner, i.e., a sink collects the coordinates of all nodes in S, using
an ad-hoc spanning tree, and then identifies the perimeter nodes (Sp) using some
straightforward geometric calculations. Finally, the sink disseminates the ordered set
Sp to all nodes in S using a spanning tree. Clearly, the first and last phase of the
CPA algorithm require the transfer of many (x, y)-pairs between nodes. Specifically,
although both phases require O(n) messages the first phase requires the transfer of
O(n2) (x, y)-pairs (i.e., assume that the nodes are connected in a bus topology which
yields

∑n
1(i) = n(n+1)

2 (x, y) pairs), while the last phase requires the transfer of
O(p ∗ n) (x, y)-pairs (i.e., each edge transfers the complete perimeter of size p).

4.2 Perimeter algorithm (PA)

We shall next describe our distributed algorithm which minimizes the transfer of
(x, y)-pairs, thus minimizing energy consumption. To simplify the description and
w.l.o.g., assume that we have no coincidents (i.e., two points with the same (x, y)
coordinates) and that no three points are collinear (i.e., lie on the same line). Al-
though these assumptions make the discussion easier our implementation elaborately
supports them.

Algorithm 1 presents the steps of the distributed PA process that is executed by
each sensor every σ time instances. In line 4, procedure Find_ Min_Coordinares(S)

identifies the sensor with the minimum y-coordinate and returns its id to the variable
smin. If more than one sensors have the y-coordinate equal to s

y

min, then the above
procedure returns the one with the minimum value in its x-coordinate. The above
procedure is achieved by constructing an aggregation tree rooted at the given sink
using TAG [20]. In particular, each si identifies among its children and itself the
minimum s

y

min value and then recursively forwards the triple (smin, s
x
min, s

y

min) to si ’s
parent. This step, has similarly to CPA, a message complexity of O(n) but the overall
number of (x, y)-pairs transmitted to the sink is only O(n) rather than O(n2) (i.e.,
exactly one pair per edge). This improvement is due to the in-network aggregation
that takes place in our approach.

Concurrently with the above operation in line 4, each si updates its neighbor list
NH(si) as such an updated list will be necessary in the subsequent steps. Note that this
update does not introduce any extra cost, as si simply adds to NH(si) the neighbors
that have participated in the calculation of smin.

In line 5, we disseminate smin to all the nodes in the network S from the sink. This
has a message complexity of O(n) and the overall number of (x, y)-pairs transmitted
is O(n), compared to O(p ∗ n) required by CPA. The next task is to identify the
nodes on the perimeter. Before proceeding, let us provide the following definitions:

96 Distrib Parallel Databases (2011) 29: 87–112

Algorithm 1: Perimeter Algorithm (PA)
Input: Sensor si (1 ≤ i ≤ n), the set of sensors S

Output: An update of the set Sp

1: procedure PERIMETER_ALGORITHM(si, S)
2: minAngle = 360◦; // Variable initialization
3: // Identify smin (node with the minimum y-coordinate in S).
4: smin = Find_Min_Coordinates(S);
5: Disseminate(smin, S); // ∀si ∈ S

6: if (si = smin) then
7: LeftN(si) = smin;
8: else
9: LeftN(si) = wait(); // Get token from LeftN(si).

10: end if
11: // Find neighbor with min. polar angle from si
12: for j = 1 to |NH(si)| do
13: if (�(LeftN(si), si , sj) ≤ minAngle) then
14: minAngle = �(LeftN(si), si , sj));
15: RightN(si) = sj
16: end if
17: end for
18: Sp = Sp ∪ RightN(si); // Add RightN(si) to perimeter.
19: Send(si , RightN(si)); // Send token to RightN(si)
20: end procedure

Definition 1 (Left Neighbor of si (LeftN(si))) The predecessor of si on the
perimeter. The termination condition of this recursive definition is as follows:
LeftN(smin) = smin, where s

y

min ≤ s
y
j (∀sj ∈ S,1 ≤ j ≤ n).

Definition 2 (Right Neighbor of si (RightN(si))) The successor of si on the perimeter
such that LeftN(si) �= RightN(si), if |NH(si)| > 1.

Continuing with the description of our algorithm in lines 8–10 each si , other than
smin, identifies its left neighbor. This is achieved by waiting for a token (i.e., the
identifier of LeftN(si)) from LeftN(si). When the token arrives, the node will execute
the remaining steps of the algorithm (lines 12–19). In particular, in lines 12–17, si
identifies the neighbors with the minimum polar angle from its x-axis. The x-axis of
node si is defined in our context to be collinear with the vector V (LeftN(si), si). This
ensures the correctness of the algorithm although we omit a formal proof due to space
limitations. In line 15 we utilize the notation �(a, b, c) to denote the angle between
three arbitrary points a, b, c in the plane. Our objective in the given block (line 13–
18), is to identify the neighbor with the minimum polar angle (which is then coined
RightN(si)), counterclockwise starting from π . Finally in line 19, si transmits a token
to RightN(si) notifying it that it is the next node on the perimeter. The procedure
between lines 12–20 continues sequentially along the network perimeter until any si
receives the token for a second time from its left neighbor or a timeout period expires.

Distrib Parallel Databases (2011) 29: 87–112 97

Fig. 4 Execution of PA: The construction starts at smin and proceeds counterclockwise starting from π

At the end, every node receiving the token knows that it belongs to Sp while the rest
nodes continue to belong to Sc.

The identification of smin takes O(n) messages and the token dissemination takes
O(p) messages, where p is the number of the nodes on the perimeter. Thus the
overall message complexity is O(p + n). In the future we plan to devise techniques
to incrementally compute the perimeter.

Example Figure 4 illustrates the perimeter construction for eight nodes {s1, . . . , s8}.
Assume that we have executed steps 2–5 of Algorithm 1 and that we continue with
the execution of the perimeter construction at node smin (i.e., s1). smin measures
the polar angle of all the nodes in NH(smin) to its x-axis and subsequently derives
RightN(smin) = 2 (s3 is not within communication range from s1). Next, smin sends
a token to s2 informing it that it is the next node on the perimeter. Upon reception
of the token, s2 sets its x-axis collinear with V (s1, s2). The same idea applies to all
nodes on the perimeter until s8 transmits the token to s1.

5 Acquisition and data replication phase

In this section we describe the second phase of the SenseSwarm Framework during
which the perimeter nodes Sp start acquiring information from their environment and
then replicate this information to their neighboring nodes.

Recall that the acquisition step proceeds every e time instances during which each
si generates spatio-temporal tuples of the form {t, x, y, a1, a2, . . . , am}. The gener-
ated tuples of interest (i.e., the tuples that satisfy the predicates of Q) are recorded in
the local di (datum) structure of each si . Next, di structures are replicated to neigh-
boring nodes according to the algorithms we propose in this section. In particular, we
propose a data replication scheme based on votes and a replication scheme based on
spatial approximations.

98 Distrib Parallel Databases (2011) 29: 87–112

The first presented algorithm, DRA, replicates the di structures to w neighboring
nodes (for any w ≥ 1). If it is necessary to recover di then it is required to read di

structures from at least r = v − w + 1 votes of si , where v is the total number of
votes of si . For instance when w = 2 and v = 4 then r = 4 − 2 + 1 = 3 (i.e., 3 reads)
are adequate to recover any replicated di in its exact form. When w = 1 and v = 4
then r = 4 − 1 + 1 = 4 reads are necessary to recover any replicated di . The second
presented algorithm, HDRA, extends the basic DRA idea by additionally constructing
the Minimum Bounding Rectangles (MBRs) of tuples in di (see Fig. 2 right). The
system then replicates the MBR(di) vector, rather than di , to its parent node in a
virtual spanning tree. That significantly increases the availability of dis in cases of
failures. Additionally, the HDRA approach will return an approximate answer, rather
than an exact answer, in cases the algorithm can not proceed otherwise. The details
of the above two algorithms follow next.

5.1 Data replication algorithm (DRA)

The objective of the DRA algorithm is to construct a data replication configuration
that will present to each si an energy efficient plan on how to replicate its local
di structures. A data replication configuration is an energy efficient (read,write)-
combination that dictates how many read and writes operations are necessary per di ,
such that a di structure can be preserved in cases of failures. It is important to notice
that if energy conservation was not important then we could have opted for a scheme
that replicates each di to the entire network.

Algorithm 2 presents the details of the DRA algorithm. For ease of exposition, we
will again utilize Fig. 2 (left) to demonstrate the operation of DRA. Let us focus on
the perimeter sensor s1 (although a similar discussion applies to the other perimeter
nodes as well). The DRA algorithm starts in the first step by discovering an adequate
number of votes (candidate neighbors) for each perimeter sensor si (lines 2–6). This
is done by probing the 1-hop core node neighbors of s1, (NH(s1)), which are s4 and
s5 (line 3). If the number of neighboring nodes, |NH(s1)| is lower than a user-defined
threshold v min (for our discussion let v min = 4) then s1 expands its neighbors by in-
corporating more multi-hop nodes (line 5). That results in the increase of the NH(s1)

set (i.e., s6 and s12 are added to NH(s1)). Besides the identifier of each neighbor,
s1 also stores the hop count for each of them (i.e., (s4,1), (s5,1), (s6,2), (s12,2)) so
that it can later decide which set of neighbors will produce the most energy-efficient
replication strategy. Since the number of candidates in NH(s1) is 4, thus the v min
requirement has been satisfied, s1 utilizes all of these 4 nodes including itself (i.e.,
vi = 5). Next, s1 proceeds with selecting a subset of vi for data replication. This is
done by utilizing a voting process that operates as follows (we denote |vi | as v for
brevity).

In Step 2 we define two integers, r (number of read operations) and w (number of
write/replicate operations) with the following properties:

r + w > v, v ≥ r ≥ 1, v ≥ w > v/2

We then create the RW -set of eligible (r,w)-combinations (line 8). In our exam-
ple, since w needs to be in the range 5 ≥ w > 2.5 then w ∈ {3,4,5}. Furthermore,

Distrib Parallel Databases (2011) 29: 87–112 99

Algorithm 2: Data Replication Algorithm (DRA)
Input: A sensor si ∈ Sp , a threshold parameter v min, representing the minimum
number of votes a sensor must register.
Output: The data replication configuration (r,w) of si .

1: procedure DRA(si ∈ Sp)
2: � Step 1: Find neighbors of si ∈ Sc

3: NH(si) ← Find hop-1 neighbors of si that belong to Sc

4: if (|NH(si)| < v min) then
5: NH(si) ← recursively expand neighbors
6: end if
7: � Step 2: Define possible read write (r,w)-combinations
8: RW = {(r,w): v ≥ w > v/2, v ≥ r ≥ 1, r + w > v}, where v = |NH(si)|
9: � Step 3: Eliminate redundant (r,w)-combinations

10: RW ′ = {(r,w): (r,w)∈ RW, r + w = v + 1}
11: � Step 4: Rank the (r,w) in RW ′ according to f

12: (rx,wx)← maxi≤|RW ′| f (ri,wi)

13: � Step 5: Replicate the information to neighbors
14: vi = select(NH(si),wx) // select a set of wx neighbors
15: notifys∈vi

(s, di) // replicate di to these wx neighbors
16: end procedure

since r + w > v then r > v − w the following (r,w)-combinations are valid combi-
nations: RW = {(1,5), (2,5), (3,5), (4,5), (5,5), (2,4), (3,4), (4,4), (5,4), (3,3),

(4,3), (5,3)}.
In Step 3 of the voting process, we aim to eliminate redundant (r,w)-combinations

in the RW set. To understand the intuition behind this elimination consider the (1,5)-
combination. Since w = 5 (i.e., all sensors hold a replica of datum d1) then it is
redundant to read more replicas than one (i.e., (2,5), (3,5), . . . , (5,5) are redundant).
Although all of these combinations can recover di in cases of failures, they do not
have the same energy requirements and should thus be excluded from the RW set.
For instance the (2,5)-combination requires 1 read more than the (1,5)-combination
and should thus be eliminated. The elimination of redundant combinations yields
RW ′ = {(1,5), (2,4), (3,3)}.

The objective of Step 4 is to further prune the RW ′ set in order to derive the
(r,w)-combination that requires the least possible energy, but this operation is not
straightforward. On one hand, by having more w operations involved in the replica-
tion process increases the overall fault-tolerance. On the other hand, more w opera-
tions would also incur additional messaging and consequently require more energy.
The negative effect of more w operations is particularly more apparent in cases where
nodes have a hop distance from si that is larger than 1 (i.e., are not 1-hop neighbors).

Consequently, in this fourth step fourth step of the DRA algorithm, we rank the
remaining RW ′ = {(1,5), (2,4), (3,3)} combinations using a ranking function f(r,w)

and choose the one with the highest score. Our ranking function tries to balance the
fault tolerance and replication overhead (i.e., message complexity). This is accom-
plished by examining the effect of both parameters in each combination and then opt

100 Distrib Parallel Databases (2011) 29: 87–112

for the one that maximizes both. However, this ranking function can be easily adapted
to the requirements of the MSN application developer. For example, in an MSN with
extremely limited energy reserves, an application may choose to sacrifice high levels
of fault tolerance in order to minimize the communication overhead.

The local ranking process presented in this paper proceeds as follows:

– Calculate the number of broadcast messages (nbm(r,w)) that would be required for
the replication process of the remaining (r,w)-combinations ∈ RW ′ using the hop-
count information gathered during lines 2-6 of DRA. Normalize nbm(r,w) to [0..1]
using the following function:

nbm′
(r,w) = min(nbm∀(r,w))/nbm(r,w).

– Calculate the replication spreading factor (rsf (r,w)) by normalizing the w of each
combination to [0..1] using formula w/max(∀w ∈ RW ′).

– Calculate the rank of each (r,w)-combination by summing the number of broad-
cast messages and replication spreading factor parameters: f(r,w) =
nbm′

(r,w) + rsf (r,w).
1

The results of the ranking on our example are summarized in Table 2. The presented
results indicate that the (1,5)-combination has the highest rank in the f function and
consequently that plan is utilized for the replication of si ’s datum.

In the final fifth step of DRA, si proceeds with the replication of di to the identified
neighboring nodes. In particular, in line 14 si selects wx neighbors from its NH(si)

list and stores these results in the vi set. Each si then proceeds with the replication
of di to the identified wx nodes in line 15. This completes the operation of the DRA
algorithm.

A question that now arises is how to retrieve (i.e., read) the di structures from
the network during the execution of a query. Fortunately, this is a straightforward
procedure as the querying node can proceed by querying rx neighbors, which are
defined in the same manner the wx neighbors were constructed, and be sure that a
copy of di has been recovered.

Theorem 1 The DRA algorithm guarantees that a datum di can be recovered if the
number of reads (rx) from the votes of si is at least v − wx + 1 (v ≥ wx), where v

denotes the number of all votes and wx the number of writes during the replication
of di .

Table 2 Ranking the
(r,w)-combinations of RW′
during the fourth step of DRA

(r,w) nbm(r,w) nbm′
(r,w)

rsf (r,w) f(r,w)

(1,5) 4 1.0 1.0 2.0

(2,4) 5 0.8 0.8 1.6

(3,3) 4 0.6 1.0 1.6

1nbm′
(r,w)

and rsf (r,w) are the two most prominent parameters for selecting the best (r,w)-combination.
However, one could also consider parameters like capacity required to store the data and recovery perfor-
mance.

Distrib Parallel Databases (2011) 29: 87–112 101

Proof Let us select first two sets, R and W , such that |R| = rx and |W | = wx

(R,W ⊂ vi) as dictated by DRA. Since wx > v/2 then di has been replicated to more
than half of the nodes assigned a vote by node i. Now, considering that rx + wx > v,
we must have R ∩ W �= ∅. Hence any read operation is guaranteed to read the value
of at least one copy which has been updated by the latest write. �

5.2 Hierarchical data replication algorithm (HDRA)

In this section we describe an extension of the original DRA algorithm which at-
tempts to replicate di structures at an even coarser representation throughout the
network such that this information survives in cases of high failure rates and dis-
connections.

At a high level, the HDRA algorithm proceeds as follows: When the DRA al-
gorithm completes its operation, some arbitrary node ssink (e.g., the one with the
minimum (x, y) coordinates), identifies itself as the sink node. ssink then recursively
disseminates a request to its 1-hop neighbors, using a typical tree-based query dis-
semination mechanism [12], asking them to conduct an aggregation of their local
datum results (i.e., both their own di result and those data that have been replicated
to si). The aggregated result is forwarded to ssink through the parents of each node
si , as those parents are identified during the tree construction process. The above pro-
cedure continues recursively until all n sensors have received the aggregation request
and forwarded their answers to ssink .

When the above procedure terminates, nodes farther away from a node si will
contain a coarser representation of the information stored locally on si . That has two
advantages: (i) Even if si is completely eliminated from the system then the user will
still be able to recover a coarser representation of di from the j -hop neighbors of si
(where j ≥ 1); (ii) The network can speedup query execution as certain queries can
be answered at no extra cost. For instance a query that aims to answer the question:
“Has the swarm detected any water,” can be answered even if the system preserves
only a very coarse representation of the generated di structures.

Before proceeding with the details of the HDRA algorithm let us define the notion
of an MBR which is utilized during the in-network aggregation process.

Definition 3 (Minimum bounding rectangle) A rectangle that encloses all points in
a given area V . The Cartesian coordinates of the bounding box MBR(V) are defined
by the following quadruple:

(min{sx
i },min{sy

j },max{sx
k },max{sy

l }), [i, j, k, l ≤ n]

The MBR is an approximation for a set of detected events in the area V and might
encapsulate |V | events using only five real numbers, i.e., (ts, MBR(V)), as opposed
to (|V | ∗ 2 + 1) real numbers. That makes MBRs highly compact structures, enabling
huge energy savings during their replication. This is particularly true when 5 � |V |.
Finally, note that an MBR can easily incorporate aggregate answers (aggr) with the
bounding box as (t, x1, y1, x2, y2, aggr).

The specifics of the HDRA algorithm are shown in Algorithm 3. In line 3, node si
waits in standby mode until it receives an Aggregate_Request from its parent, which

102 Distrib Parallel Databases (2011) 29: 87–112

Algorithm 3: Hierarchical Data Replication Algorithm (HDRA)
Input: A set of sensors S = {s1, s2, . . . sn}, a randomly selected sink ssink

Output: A set of n distributed MBRs organized in a Querying Routing Tree.

1: procedure HDRA(S, si)
2: MBRi = NULL;
3: receive(Aggregate_Request,parent(si));
4: broadcast(Aggregate_Request);
5: for j = 1 to |children(si)| do
6: receive(MBRj , child(sj));
7: MBRi = merge(MBRi ,MBRj);
8: end for
9: send(MBRi ,parent(si));

10: end procedure

is a message that initiates the construction of the in-network aggregation tree. In line
4, it immediately broadcasts Aggregate_Request to its own neighborhood. Each node
then waits for the MBRs of its children nodes. Without loss of generality, we adopt
the child anchor mechanism used in [35], where a sensor sj confirms to exactly one
of its parent si that it wants to be its child. This provides si with a list of children
so that si can know when all the answers from its children have arrived. Whenever
an MBR is received from some child sj (line 6), this MBRj is merged with the local
MBRi (line 7) and when all children have answered then MBRi is forwarded to the
parent node of si (line 9).

Example Figure 2 illustrates the MBRs developed locally at each of the eight sensors.
We observe that s1 through s3 know precisely where their events happened, thus the
MBRs a, b and c are actually point coordinates. On the contrary, s4 has an approxi-
mation of s1’s and s2’s answer (this is denoted as MBR f). The intuition is that even
if both s1 and s2 fail, then the user will still be able to recover an approximation of
where the event has occurred (i.e., through s4 or some other node). On the same fig-
ure, we also notice that s12 has an MBR which encapsulates all the events that have
occurred. When a user performs a query, we collect the MBRs from all the nodes
for the user-specified interval and intersect these boxes. This allows us to derive the
coordinates of the points at which events have occurred.

Discussion Although the MBR aggregation ideas are only conducted in space, a sim-
ilar logic could also be applied in order to conduct spatio-temporal aggregation (i.e.,
using (x, y, ts)). In particular, we could extend the definition of MBRs to Minimum
Bounding Cuboids (MBC) (i.e., rectangular boxes). A MBC contains the coordinates
of an event in space and time. Note that the MBC structure is not fundamentally dif-
ferent than the MBR structure, as it is represented again using two coordinates (i.e.,
3D coordinates) but the discussion of this extension is outside the scope of this paper.

Distrib Parallel Databases (2011) 29: 87–112 103

6 Experimental evaluation

In this section we present the experimental evaluation of the SenseSwarm framework.
Using a trace-driven methodology, we measured the time and energy behavior of our
proposed algorithms as well as the robustness of our SenseSwarm framework in the
presence of failures.

6.1 Experimental methodology

We adopt a trace-driven experimental methodology in which a real dataset from n

sensors is fed into our trace-driven simulator. Our methodology is as follows:

Swarm Simulation: In order to introduce motion to our sensor network we have de-
rived synthetic spatial coordinates for the n sensors using the Craig Reynold’s algo-
rithm [29], which is widely used in the computer graphics community. Using this
algorithm we generated 100 individual scenes and during each scene a sensor obtains
100 readings (i.e., σ = σ ′ = 100). Our simulator has the ability to visual representa-
tions of the swarm simulation as illustrated in Fig. 5. Additionally, in order to simu-
late failures we make the assumption that there is a X% independent probability that
a node fails at any given timestamp.

Dataset: We utilize a real dataset from Intel Berkeley Research [15]. This dataset
contains data that is collected from 58 sensors deployed at the premises of the Intel

Fig. 5 Sample simulator output for individual scenes at timestamps 0, 20, 80 and 100. Perimeter nodes
are connected using dashed lines

104 Distrib Parallel Databases (2011) 29: 87–112

Table 3 Configuration
parameters for all experimental
series

Section Objective n Failures Scenes

6.2 Energy Cost 54, 150, 300, 500 20% 1000

6.3 Time Overhead 54 0% 1000

6.4 Coverage 54 10–50% 1000

6.5 Acquisition Cost 54 20% 1000

6.6 Fault Tolerance 54 20–90% 100

6.7 Scalability 54, 150, 300, 500 50% 100

Research in Berkeley between February 28th and April 5th, 2004. The motes utilized
in the deployment were equipped with weather boards and collected time-stamped
topology information along with humidity, temperature, light and voltage values once
every 31 seconds. The dataset includes 2.3 million readings collected from these
sensors. We use 10,000 readings from the 54 sensors that had the largest amount
of local readings since some of them had many missing values.

Sensing Device: We use the energy model of Crossbow’s research sensor device
TelosB [7] to validate our ideas. TelosB is a ultra-low power wireless sensor equipped
with a 8 MHz MSP430 core, 1 MB of external flash storage, and a 250 Kbps Chip-
con (now Texas Instruments) CC2420 RF Transceiver that consumes 23 mA in re-
ceive mode (Rx), 19.5 mA in transmit mode (Tx), 7.8 mA in active mode (MCU
active) with the radio off and 5.1 µA in sleep mode. Our performance measure is
Energy, in Joules, that is required at each discrete time instance to resolve the query.
The energy formula is as following: Energy(Joules) = Volts × Amperes × Seconds.
For instance the energy to transmit 30 bytes at 1.8 V is: 1.8 V × 23 × 10−3 A ×
30 × 8 bits/250 kbps = 39 µJ.

Perimeter Performance Metrics: In order to evaluate the coverage efficiency of the
perimeter algorithm (PA) under failures, we introduce the Coverage ratio metric,
which is defined as the ratio of the area generated by perimeter nodes under failures
over the area generated by perimeter nodes under no failures.

Replication Performance Metrics: In order to evaluate the accuracy performance of
our two replication algorithms, we introduce two metrics (i) absolute fault-tolerance
accuracy, and (ii) approximate fault-tolerance accuracy. Absolute fault-tolerance ac-
curacy is the percentage of discovered events over the total number of events re-
quested by a query and will be utilized for the evaluation of the DRA algorithm
which attempts to uncover exact answers to queries. Approximate fault-tolerance ac-
curacy measures the proximity penalty that occurs when the MSN returns an MBR
that encloses an event instead of the actual coordinates of a specific event. We will
provide a more thorough description of this performance metric in Sect. 6.6. Note
that in either experiment each node only propagates correct results to the sink.
Table 3 summarizes the configuration parameters for all experiments mentioned in
the subsequent sections.

6.2 Perimeter phase evaluation: energy cost

In the first experimental series, we investigate the efficiency of our distributed PA al-
gorithm compared to the centralized CPA algorithm. Figure 6 presents the aggregate

Distrib Parallel Databases (2011) 29: 87–112 105

Fig. 6 Evaluating the energy
consumption of the Perimeter
Algorithm

cost (i.e., for the whole network and for all 10,000 timestamps) of the two algorithms
for 4 different network sizes 54, 150, 300 and 500. These networks were derived
from the initial dataset of 54 nodes using replication of the sensor readings to dif-
ferent initial coordinates. We observe that the PA algorithm consumes in all cases
between 85–89% less energy than the CPA algorithm. This is attributed to the fact
that during the computation of smin, the PA algorithm intelligently percolates only
one (x, y)-pair to the sink rather than all of them. Additionally, we observe that the
performance gap between the two algorithms grows substantially with the size of
the network. Specifically, for n = 54 the total energy difference between the two al-
gorithms was 163 Joules while for n = 500 the total energy difference was 2,208
Joules.

6.3 Perimeter phase evaluation: time overhead

In the second experimental series, we measure the time overhead for each phase of
the PA algorithm. We chose to present the time in simulated CPU ticks, as opposed to
milliseconds, because the conversion would sometimes lead us to very small (close
to zero) quantities. We record the time ticks at the start and end of each phase and
show the duration for all 1000 timestamps.

In Fig. 7, we observe that the time overhead for the first phase of the PA algorithm
(i.e., initialization and discovery of the node with min y-coordinate) is quite low. This
happens as the discovery and dissemination process for identifying the smin node
requires minimal processing at each node (i.e., in the discovery process each node
transmits its coordinates and in the dissemination process each node only processes
messages if it is smin). On the other hand, the second phase of the PA algorithm
is somehow more expensive. This is attributed to the fact that each node si has to
discover its neighboring nodes and then process their coordinates in order to identify
the next perimeter node (i.e., RightN(si)). The time overhead for the second phase
is also augmented by the number of perimeter nodes (i.e., the larger the number of
perimeter nodes, the larger the overall time overhead).

106 Distrib Parallel Databases (2011) 29: 87–112

Fig. 7 Evaluating the time
overhead of each phase of the
PA algorithm

6.4 Perimeter phase evaluation: coverage under failures

In the third experimental series, we investigate the area coverage generated by the PA
algorithm under different failure settings, ranging from 0% (no failures) to 50% (high
failure rate). We ran each experiment 10 times and record the average coverage ratio,
defined as the ratio of the area generated by perimeter nodes under failures over the
area generated under no failures, for each respective execution. The results of these
experiments are depicted in Figs. 8 and 9.

Figure 8 illustrates the coverage ratio for each of the failure scenarios. In order to
display the results of the experiment more efficiently, we have applied a spline inter-
polation smoothing between consecutive timestamps. We observe that even with 50%
failures the average coverage ratio for all experiments is above 70%. In Fig. 9 we in-
vestigate the distribution of results in all experiments using a box plot. We observe
that for experiments with failures ≤30% the majority of the coverage ratio results fall
in the 3rd quartile (i.e., the perimeter coverage area generated by the PA algorithm
is very close to the area generated under normal execution). This is more evident in
experiments with 10% and 20% failures where the maximum value for each exper-
iment is identical to the highest value of the 3rd quartile. Finally, we observe that
in all experiments there are scenarios (5% of the cases) where the coverage ratio is
20–25% below the average (illustrated by the bottom whisker lines). Investigating the
individual scenes, we found out that this occurs when 3 or more perimeter nodes fail.
However, in the majority of cases (95%) the PA algorithm maintains a competitive
coverage ratio under node failures.

6.5 Acquisition cost evaluation

In the fourth experimental series, we measure the cost of operating a SenseSwarm
network in which nodes suspend their sensing activity. As a baseline of comparison
we utilize the Uniform framework, one in which all 54 sensing devices sense at any
given moment. Figure 10 shows that the cost of the SenseSwarm framework is almost
75% less than the energy cost of the Uniform framework. We also observe that every
σ timestamps, a reconstruction of the perimeter is triggered in PA. This yields a

Distrib Parallel Databases (2011) 29: 87–112 107

Fig. 8 Evaluating the coverage
ratio of the Perimeter Algorithm

Fig. 9 Analysis of coverage
ratio under different failure
scenarios

non-uniform cost equivalent to 23 mJ. Although this cost is quite high, the average
cost is still well below the overall cost of the Uniform framework. Particularly, the
SenseSwarm network still consumes on average 1.7 ± 2.2 mJ while the Uniform
framework consumes 6.7 ± 0.3 mJ.

6.6 Replication phase evaluation: fault tolerance

In the fifth experimental series, we evaluate the fault-tolerance accuracy of our two
replication algorithms using the metrics described in Sect. 6.1.

In the first experiment we measure the absolute fault-tolerance accuracy of the
Data Replication Algorithm (DRA). To accomplish this, we compare DRA against a
version that does not employ any replication strategy, coined No-Replication Algo-
rithm (NRA). We execute both algorithms on each of the individual scenes generated
by our swarm simulator. During each one of the 100 individual scenes, we randomly
select a sensor node to be the sink. As soon as the sink is selected, it registers 10 ran-
dom queries each of which requesting events detected by different sets of perimeter

108 Distrib Parallel Databases (2011) 29: 87–112

Fig. 10 Evaluating the energy
cost of acquiring data at the
perimeter of the swarm
(SenseSwarm) versus the cost of
acquiring information
throughout the complete swarm
(Uniform)

Fig. 11 Evaluating the absolute
fault-tolerance accuracy (that
measures the percentage of data
that can be recovered) for the
DRA and NRA algorithms

sensors. In order to measure the accuracy of each of the algorithms, we measure the
average ratio of detected events over the total number of events requested by the 10
queries.

Figure 11 illustrates the absolute fault-tolerance accuracy of the two algorithms
over an increasing failure rate. We observe that in all cases DRA maintains a compet-
itive advantage of ≈19–48% over NRA. This is due to the voting-based replication
strategy utilized by DRA. Note that we have configured DRA with v min = 3 (i.e., 3
votes). Since, in DRA, detected events are replicated to 3 neighboring nodes, even if
a node fails, its detected events are easily obtained by its votes thus ensuring a higher
level of accuracy. We also observe that with a 60% failure rate the accuracy of both
algorithms starts to decrease rapidly. This is expected at such high failure rates as
large segments of the query routing tree become inaccessible by the sink.

We have finally measured the number of extra communication messages that DRA
requires during replication. We discovered that on average, DRA requires approxi-
mately 90 ± 32 extra messages (i.e., has a message complexity of O(n)).

In the second experiment, we measure the approximate fault-tolerance accuracy of
the HDRA algorithm over an increasing failure rate. Similar to the first experiment,

Distrib Parallel Databases (2011) 29: 87–112 109

Fig. 12 Evaluating the
approximate fault-tolerance
accuracy (that penalizes
recovered answers with large
MBRs) for the HDRA and NRA
algorithms

we register 10 random queries at each individual scene requesting events captured
at the perimeter nodes. This experiment differentiates from the previous one in the
sense that sensor nodes participating in the query are able to return a MBR in the
cases where the event requested by the query is not discovered in the sensors local
storage. Note that an MBR is only returned if its rectangle/area encloses the event
requested by the query. In the worst case example, the network will return the MBR
stored at the sink (i.e., the area that encloses all events). Consequently, in order to
measure the approximate fault-tolerance accuracy �, we use the following formula:

� = 1 − EQ

Esink

where EQ is the area defined by the MBR returned by some query Q, and Esink is
the area defined by the MBR stored at the sink. Simply put, the above formula favors
results that are more precise (i.e., EQ is small).

Figure 12 illustrates the approximate fault-tolerance accuracy of the HDRA al-
gorithm over an increasing failure rate. We observe that HDRA is able to capture
requested events with very high approximate fault-tolerance accuracy, even at failure
rates as high as 80%. This is due to the fact that in HDRA, detected events are not
only replicated to near-by core nodes but are also hierarchically stored to many more
nodes in the form of MBRs. As a result, a query requesting these events will most
likely receive either the exact events or a close MBR approximation to them. Finally,
note that in the extreme case where all perimeter notes detect new events, the mes-
sage complexity of HDRA is O(n) (i.e., nodes will recursively transmit their data
and MBRs to their parent nodes until all results arrive at the sink node).

6.7 Replication phase evaluation: scalability

In the final experimental series, we evaluate the scalability of our DRA and HDRA
algorithms. We measure the Absolute (DRA) and Approximate (HDRA) fault toler-
ance accuracy using 4 networks with different number of nodes. We utilize a 50%

110 Distrib Parallel Databases (2011) 29: 87–112

Fig. 13 Evaluating the
scalability of the DRA and
HDRA algorithms

failure rate in all experiments in order to test our algorithms accuracy in a high risk
scenario. Figure 13 illustrates the results of this experiment.

We observe that both the DRA and HDRA algorithms maintain a high degree
of accuracy in all experiments. Additionally, we observe that as the network size
increases, both of the algorithms present increased accuracy. The reason behind this
is that since the number of sensors increases the results are distributed farther into
the network. This rapidly decreases the probability of losing results which can only
occur if a number of neighboring nodes fail simultaneously.

7 Conclusions and future work

This paper presents a novel perimeter-based data acquisition framework for mo-
bile sensor networks, coined SenseSwarm. SenseSwarm dynamically partitions the
sensing devices into perimeter and core nodes. Data acquisition is scheduled at the
perimeter, with the invocation of the PA algorithm, while storage and replication takes
place at the core nodes, with the invocation of the DRA and HDRA algorithms. Our
trace-driven experimentation with realistic data shows that our framework offers sig-
nificant energy reductions while maintaining high data availability rates. In particular,
we found that even with 60% system failures we can recover the 80% of generated
events exactly. In the future we plan to study other geometric shapes besides MBRs,
different sink selection strategies for in-network replication and also techniques to
incrementally maintain the perimeter rather than reconstructing it in every iteration.
We additionally plan to develop a real people-centric application founded on the ideas
presented in this work.

Acknowledgements We would like to thank Polys Kourousides for the insightful discussions regarding
the perimeter construction algorithm. This work was supported in part by the University of Cyprus under
a Startup Grant of the second author, the Open University of Cyprus under project SenseView, the US
National Science Foundation under the project AQSIOS (#IIS-0534531), the European Union under the
projects IPAC (#224395) and CONET (#224053), and the project FireWatch (#0609-BIE/09), sponsored
by the Cyprus Research Promotion foundation.

Distrib Parallel Databases (2011) 29: 87–112 111

References

1. Aly, M., Pruhs, K., Chrysanthis, P.K.: KDDCS: a load-balanced in-network data-centric storage
scheme for sensor networks. In: Proceedings of the 15th ACM International Conference on Informa-
tion and Knowledge Management (CIKM), Arlington, Virginia, USA, November 6–11, pp. 317–326
(2006)

2. Andreou, P., Zeinalipour-Yazti, D., Andreou, M., Chrysanthis, P.K., Samaras, G.: Perimeter-based
data replication and aggregation in mobile sensor networks. In: Proceedings of the 10th International
Conference on Mobile Data Management: Systems, Services and Middleware (MDM), Taipei, Tai-
wan, May 18–20, pp. 244–251 (2009)

3. Bergbreiter, S., Pister, K.S.J.: CotsBots: an off-the-shelf platform for distributed robotics. In: Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
NV, October 28–30, pp. 27–31 (2003)

4. Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A., Lu, H., Zheng, X., Mu-
solesi, M., Fodor, K., Ahn, G.S.: The rise of people-centric sensing. IEEE Internet Comput. 12(4),
12–21 (2008)

5. Chintalapudi, K., Govindan, R.: Localized edge detection in sensor fields. Ad Hoc Netw. 1(1), 273–
291 (2003)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT
Press/McGraw-Hill, Cambridge/New York (2001)

7. Crossbow Technology Inc.: http://www.xbow.com/
8. Chrysanthis, P.K., Labrinidis, A.: In: NSF Workshop on Data Management for Mobile Sensor Net-

works Report, Pittsburgh, USA, January 16–17 (2007)
9. Dantu, K., Rahimi, M.H., Shah, H., Babel, S., Dhariwal, A., Sukhatme, G.S.: Robomote: enabling

mobility in sensor networks. In: Proceedings of the 4th International Symposium on Information
Processing in Sensor Networks (IPSN-SPOTS), Los Angeles, California, April 25–27, p. 55 (2005)

10. Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H.: The pothole patrol: using a
mobile sensor network for road surface monitoring. In: Proceeding of the 6th International Conference
on Mobile Systems, Applications, and Services (MobiSys), Breckenridge, CO, USA, June 17–20, pp.
29–39 (2008)

11. Hasan, A., Pisano, W., Panichsakul, S., Gray, P., Huang, J.-H., Han, R., Lawrence, D., Mohseni,
K.: SensorFlock: an airborne wireless sensor network of micro-air vehicles. In: Proceedings of the
5th International Conference on Embedded Networked Sensor Systems (SenSys), Sydney, Australia,
November 6–9, pp. 117–129 (2007)

12. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for
networked sensors. ACM SIGPLAN Not. 34(5), 93–104 (2000)

13. Hull, B., Bychkovsky, V., Chen, K., Goraczko, M., Miu, A., Shih, E., Zhang, Y., Balakrishnan, H.,
Madden, S.: CarTel: a distributed mobile sensor computing system. In: Proceedings of the 4th Inter-
national Conference on Embedded Networked Sensor Systems (SenSys), Boulder, Colorado, USA,
October 31–November 3, pp. 125–138 (2006)

14. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust communi-
cation paradigm for sensor networks. In: Proceedings of the 6th Annual International Conference
on Mobile Computing and Networking (MobiCom), Boston, Massachusetts, USA, August 6–11, pp.
56–67 (2000)

15. Intel Lab Data: http://db.csail.mit.edu/labdata/labdata.html
16. Jalodia, S., Mutchler, D.: Dynamic voting algorithms for maintaining the consistency of a replicated

database. ACM Trans. Database Syst. (TODS) 15, 230–280 (1990)
17. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In: Proceed-

ings of the 6th Annual International Conference on Mobile Computing and Networking (MobiCom),
Boston, Massachusetts, USA, August 6–11, pp. 243–254 (2000)

18. Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Elsevier, Amsterdam (2007). ISBN: 978-0-12-
088525-1

19. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query
processor for sensor networks. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), San Diego, California, USA, June 9–12, pp. 491–502 (2003)

20. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a tiny aggregation service for ad-hoc
sensor networks. In: Proceedings of the 5th Symposium on Operating systems Design and Implemen-
tation (OSDI), vol. 36, Issue SI, pp. 131–146 (2002)

http://www.xbow.com/
http://db.csail.mit.edu/labdata/labdata.html

112 Distrib Parallel Databases (2011) 29: 87–112

21. Mani, A., Rajashekhar, M., Levis, P.: TINX: a tiny index design for flash memory on wireless sensor
devices. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems
(Sensys), Boulder, Colorado, USA, October 31–November 3, pp. 425–426 (2006)

22. Monterey Bay Aquarium Research Institute (MBARI): http://www.mbari.org/rd/
23. Nascimento, M.A., Alencar, R.A.E., Brayner, A.: Optimizing query processing in cache-aware wire-

less sensor networks. In: Lecture Notes in Computer Science, vol. 6187, pp. 60–77 (2010)
24. Navarro-Serment, L.E., Grabowski, R., Paredis, C.J.J., Khosla, P.K.: Millibots: the development of

a framework and algorithms for a distributed heterogeneous robot team. IEEE Robot. Autom. Mag.
9(4), December, 2002

25. Nittel, S., Trigoni, N., Ferentinos, K., Neville, F., Nural, A., Pettigrew, N.: A drift-tolerant model for
data management in ocean sensor networks. In: Proceedings of the 6th ACM International Workshop
on Data Engineering for Wireless and Mobile Access (MobiDE), Beijing, China, June 10, pp. 49–58
(2007)

26. Purohit, A., Zhang, P.: SensorFly: a controlled-mobile aerial sensor network. In: Proceedings of the
7th ACM Conference on Embedded Networked Sensor Systems (SenSys), Berkeley, California, pp.
327–328 (2009)

27. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without loca-
tion information. In: Proceedings of the 9th Annual International Conference on Mobile Computing
and Networking (MobiCom), San Diego, CA, USA, September 14–19, pp. 96–108 (2003)

28. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., Yu, F.: Data centric storage in
sensornets with GHT, a geographic hash table. Mob. Netw. Appl. (MONET) 8(4), 427–442 (2003)

29. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. In: Proceedings of the
14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 25–34
(1987)

30. Sadler, C., Zhang, P., Martonosi, M., Lyon, S.: Hardware design experiences in ZebraNet. In: Pro-
ceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys),
Baltimore, MD, USA, November 3–5, pp. 227–238 (2004)

31. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., Estrin, D.: Data-centric storage in sensornets.
ACM SIGCOMM Comput. Commun. Rev. 33(1), 137–142 (2003)

32. Srinivasan, S., Ramamritham, K., Kulkarni, P.: ACE in hole: adaptive contour estimation using collab-
orating mobile sensors. In: Proceedings of the 7th International Conference on Information Processing
in Sensor Networks (IPSN), St. Louis, Missouri, USA, April 22–24, pp. 147–158 (2008)

33. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large scale
habitat monitoring application. In: Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys), Baltimore, MD, USA, November 3–5, pp. 214–226 (2004)

34. Wu, S.-H., Chuang, K.-T., Chen, C.-M., Chen, M.-S.: DIKNN: an itinerary-based KNN query process-
ing algorithm for mobile sensor networks. In: Proceedings of the IEEE 23rd International Conference
on Data Engineering (ICDE), Istanbul, Turkey, April 15–20, pp. 456–465 (2007)

35. Yao, Y., Gehrke, J.E.: The cougar approach to in-network query processing in sensor networks. SIG-
MOD Rec. 32(3), 9–18 (2002)

36. Zeinalipour-Yazti, D., Andreou, P., Chrysanthis, P., Samaras, G.: MINT views: materialized in-
network top-k views in sensor networks. In: Proceedings of the 8th International Conference on Mo-
bile Data Management, Mannheim, Germany, May 7–11, pp. 182–189 (2007)

37. Zeinalipour-Yazti, D., Andreou, P., Chrysanthis, P.K., Samaras, G.: SenseSwarm: a perimeter-based
data acquisition framework for mobile sensor networks. In: Proceedings of the 4th Workshop on Data
Management for Sensor Networks: In Conjunction with 33rd International Conference on Very Large
Data Bases (DMSN), Vienna, Austria, September 24, pp. 13–18 (2007)

38. Zeinalipour-Yazti, D., Chrysanthis, P.K.: Mobile sensor network data management. In: Ozsu, M.
Tamer, Liu, Ling (eds.) Encyclopedia of Database Systems, ISBN: 978-0-387-49616-0 (2009)

39. Zeinalipour-Yazti, D., Lin, S., Kalogeraki, V., Gunopulos, D., Najjar, W.: MicroHash: an efficient
index structure for flash-based sensor devices. In: Proceedings of the 4th Conference on USENIX
Conference on File and Storage Technologies (FAST), San Francisco, CA, USA, December 13–16,
p. 3 (2005)

40. Zhang, P., Martonosi, M.: LOCALE: collaborative localization estimation for sparse mobile sensor
networks. In: Proceedings of the 7th International Conference on Information Processing in Sensor
Networks (IPSN), St. Louis, Missouri, USA, April 22–24, pp. 195–206 (2008)

http://www.mbari.org/rd/

	In-network data acquisition and replication in mobile sensor networks
	Abstract
	Introduction
	Related work and background
	System model and assumptions
	Perimeter construction phase
	Centralized perimeter algorithm (CPA)
	Perimeter algorithm (PA)

	Acquisition and data replication phase
	Data replication algorithm (DRA)
	Hierarchical data replication algorithm (HDRA)

	Experimental evaluation
	Experimental methodology
	Perimeter phase evaluation: energy cost
	Perimeter phase evaluation: time overhead
	Perimeter phase evaluation: coverage under failures
	Acquisition cost evaluation
	Replication phase evaluation: fault tolerance
	Replication phase evaluation: scalability

	Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

