Check for
Updates

Optimized Processing of Multiple Aggregate Continuous
Queries

Shenoda Guirguis ', Mohamed A. Sharaf®, Panos K. Chrysanthis ', Alexandros Labrinidis *

! Department of Computer Science, University of Pittsburgh
2School of Information Technology and Electrical Engineering, The University of Queensland
{shenoda, panos, labrinid}@cs.pitt.edu, m.sharaf@uq.edu.au

ABSTRACT

Data Streams Management Systems are designed to support moni-
toring applications which require the processing of hundreds of Ag-
gregate Continuous Queries (ACQs). These ACQs typically have
different time granularities, with possibly different selection pred-
icates and group-by attributes. In order to achieve scalability in
the presence of heavy workloads, in this paper, we introduce the
concept of "Weaveability’ as an indicator of the potential gains of
sharing the processing of ACQs. We then propose Weave Share,
a cost-based optimizer that exploits weaveability to optimize the
shared processing of ACQs. Our experimental analysis shows that
Weave Share outperforms the alternative sharing schemes generat-
ing up to four orders of magnitude better quality plans. Finally, we
describe a practical implementation of the Weave Share optimizer.
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General Terms

Algorithms, Design, Experimentation, Performance
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1. INTRODUCTION

Data Stream Management Systems (DSMSs) were developed to
be at the heart of every monitoring application, from environmen-
tal and network monitoring, to disease outbreak detection, financial
market analysis and studying of cosmic phenomena (e.g., [3,9, 1,
2,21, 22]). DSMSs are designed to efficiently handle unbounded
streams with large volumes of data and large numbers of contin-
uous queries (i.e., exhibit scalability). Thus, optimizing the pro-
cessing of multiple continuous queries is imperative for DSMSs to
reach their full potential.

In all monitoring applications, hundreds of Aggregate Continu-
ous Queries (ACQs) are typically registered [17] to monitor few
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input data streams. For example, a stock market monitoring appli-
cation allows numerous users each to register several monitoring
queries. For instance, traders interested in a certain stock might
register ACQs to monitor the average, or maximum, volume
trade in a certain period of time, e.g., the last 1, 8, or 24 hours.
Meanwhile, decision makers might register monitoring queries for
analysis purposes with coarse time granularity, e.g., the average
volume trade in last week or month. Given the commonality of
ACQs, and the high data arrival rates, optimizing the processing of
ACQs is crucial for scalability.

In general, Multiple Query Optimization (MQO) is well known
to be NP-hard for traditional database systems [19] as well as for
DSMSs [25]. MQO techniques are typically based on heuristics
that aim to share the processing of common sub-expressions. This
raises the challenge of identifying which sub-expressions are ben-
eficial to share, if any [27, 11]. However, the optimization of mul-
tiple ACQs goes beyond the classic identification of common sub-
expressions to exploiting the window semantics and partial aggre-
gation; this is the challenge we are addressing in this paper.

An ACQ is typically defined over a certain window of the input
data stream, to bound its computations. For example, an ACQ that
monitors the average volume trade of a stock index could be defined
over a window of range 24 hours and slide 1 hour: every hour, the
average volume trade in the past 24 hours is reported. Partial ag-
gregation has been proposed to optimize the processing of ACQs
[13, 14, 6] by minimizing the repeated processing of overlapping
windows. Partial aggregation has also been utilized to share the
processing of multiple similar ACQs with different windows, as-
suming it is always beneficial to share the partial aggregation [12].

The assumption that it is always beneficial to share is based on
the premise that data arrival rate is the predominant factor in deter-
mining the sharing decision, where a high rate is always a precursor
for plan sharing. It is also based on the observation that, in most
practical applications, data streams do in fact exhibit a high rate.
This approximation, however, considers only one facet of the prob-
lem (i.e., the characteristics of data streams) while diminishing the
impact of the other facet (i.e., the characteristics of the registered
queries). In this paper we argue that the properties of the installed
ACQs are of equal importance in determining the sharing decision.
In fact, we show that for many practical cases, sharing the par-
tial aggregation phase of query plans could lead to a performance
degradation even when data streams arrive at high rate.

To address this issue, we identify the trade offs in optimizing the
shared processing of multiple ACQs and introduce the concept of
“Weaveability” of ACQs. The Weaveability of a set of ACQs is an
indicator of the potential gains from sharing their processing. The
goal is then to design a multiple ACQs optimization technique that
utilizes weaveability in the sharing decision. Exploiting weaveabil-
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ity, however, involves three major challenges. First, given that the
optimization problem at hand is NP-hard, the technique should ef-
ficiently search the exponential search space, while not sacrificing
the quality of the optimized plans. Second, the technique should
also efficiently handle the addition and deletion of ACQs as time
advances. Finally, it should exploit the weaveability of ACQs with
minimal overhead.

In this paper, we address all the above challenges and propose
Weave Share, a cost-based multiple ACQs optimizer, which ex-
ploits weaveability to optimize the shared processing of ACQs.
Weave Share considers all factors that affect the cost of the shared
query plan. It selectively groups ACQs into multiple execution
trees to minimize the total plan cost. We experimentally evalu-
ate and analyze the performance of Weave Share in terms of qual-
ity of the generated plans using all possible settings of workload
characteristics. Our experimental analysis shows that Weave Share
generates up to orders of magnitude better quality plans compared
to the alternative sharing schemes. In order to handle the addi-
tion and deletion of ACQs, we propose Incremental Weave Share
that efficiently weaves the new ACQs into the execution trees of an
existing plan, as long as the quality of the query plan is not com-
promised, i.e., remains within specified tolerance limits. Finally,
we develop and experimentally evaluate a practical implementation
and several optimizations that dramatically improve the efficiency
of Weave Share in generating high quality plans.

Contributions: In summary, we make the following contributions:

o We introduce the concept of “Weaveability.”

o We propose Weave Share and Incremental Weave Share cost-

based multi ACQs optimizers.

We develop practical implementation and several optimizations
of the Weave Share optimizer.

We experimentally evaluate our proposed techniques using sim-
ulation.

Road map: We summarize related work in Section 2 and describe
the streams aggregation model in Section 3. We formalize the prob-
lem and introduce Weaveability in Section 4. We present Weave
Share and its online version in Section 5. The evaluation platform
and the quality of weave share plans are discussed in Sections 6
and 7, respectively. We present implementation optimizations in
Section 8 and conclude in Section 9.

2. RELATED WORK

There is a rich literature on multiple query optimization (MQO)
in traditional databases [20, 18, 16, 10, 23] as well as in data
streams [23, 1, 24, 15]. Finding the optimal query plan in tradi-
tional databases is an NP-Hard problem [19]. Hence, cost-based
heuristic approaches have been investigated [18, 8]. This is also the
case in data streams. In the context of multiple ACQs optimization,
two orthogonal approaches were proposed: scheduling and partial
aggregation. In [7], a window-aware scheduling scheme was pro-
posed to synchronize the re-execution times of similar ACQs to
execute common parts only once.

Partial aggregation is the underlying principle for an efficient im-
plementation of the aggregate continuous operator [13, 12]. The
Panes [13] scheme splits the slide into equal sized fragments, to be
processed using the partial aggregation operator. Paired windows
[12] improves Panes by splitting the slide into exactly two frag-
ments, minimizing the processing needed at the final-aggregation
level. We assume the paired window scheme in our model, as dis-
cussed in the next section.
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The work in [25, 26, 17] proposed a shared processing of multi-
ple ACQs with different group-by attributes. The proposed scheme
maintains fine-granularity ACQs called phantoms, or intermediate
aggregations. The computation of these intermediate aggregations
can then be shared among the different ACQs. While in [25, 26] the
proposed techniques were designed for the architecture of Gigas-
cope, a special purpose stream processing engine, they were gen-
eralized in [17]. In principle, the general idea of grouping ACQs
in a hierarchy of intermediate ACQs is conceptually similar to the
selective sharing technique underlying our proposed Weave Share.
However, while the work in [17] focuses on optimizing the pro-
cessing of multiple ACQs that have different group-by attributes,
our work focuses on optimizing multiple ACQs that have different
window specifications. These are two orthogonal problems.

3. STREAMS AGGREGATION

In this background section, we discuss window semantics of
ACQs and partial aggregation, as per the current state of the art.

3.1 ACQ Semantics

An ACQ is defined over a window, which is specified in terms of
two intervals: range (r) and slide (s). For example, an ACQ may
compute the average stock price over the last hour (i.e.,r = 1 hr)
and update it every 30 minutes (i.e., s = 30 min). The range and
slide intervals could be defined either as number of tuples or as a
time interval. Here, we consider the more general time-based defi-
nition for both the range and slide; our contributions are applicable
to the tuple-based definition. Producing a new window requires
processing each tuple within the range. The slide interval defines
how the window boundaries move over the input stream. For in-
stance, when slide is less than range (sliding window), consecutive
windows overlap and a single tuple will belong to more than one
window instance. This is illustrated in the example below.

EXAMPLE 1. Consider a stock monitoring application where
the user is interested in the average trade volume in the past hour,
and would like to be updated every ten minutes. The user then
registers an ACQ with r = 1 hr and s = 10 min. Thus, a window
boundary is reached every 10 min and an aggregation is performed
over the tuples within the last hour. Hence, each input tuple is
aggregated in six consecutive windows (=1 hr/10 min).

In a straightforward implementation of ACQs, input tuples are
buffered and once a window boundary is reached, the aggregate
function is evaluated using the tuples that are within the range
boundaries. Then as the boundaries are shifted, all tuples that fall
outside the new boundaries are expired and discarded.

3.2 Partial Aggregation

Clearly the straight forward implementation of ACQs is ineffi-
cient. Partial-aggregation [13, 12] has been proposed to efficiently
process ACQs. Under partial-aggregation, the final aggregate value
is assembled from a set of partial aggregate values. For example,
under partial aggregation an aggregate COUNT ( x ) is computed us-
ing (1) a COUNT ( ) on each partition and (2) a SUM( * ) over the
partial counts. Clearly, partial aggregation is applicable over all
distributive and algebraic aggregate functions that are widely used
in database systems, such as: MAX, COUNT, SUM, etc.

In general, for a dataset G of disjoint fragments g1, g2, ..., gn,
an aggregate function A over G can be computed from a sub-
aggregate function S over each dataset g; and a final-aggregate
function F over the partial aggregates. Formally,

A(G) = F({S(gi)l1 < < n}).
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Figure 1: Paired Window Technique

Partial aggregation reduces the overall query processing cost by
processing each input tuple only once by the sub-aggregate opera-
tor to produce partial aggregates. As the window slides, only par-
tial aggregates are buffered and processed to generate new results.
Clearly, smaller number of partial aggregates means fewer final ag-
gregate operations. The paired window technique [12] (Figure 1(a))
partitions each slide into at most two fragments g1 and g> (ie., a
pair). Hence, producing a final aggregate requires at most [2 x *]
operations, where % is the number of slides per window and 2 is
the maximum number of fragments per slide.

The bottom part of Figure 1(a) shows the set of input tuples,
while the top part shows different overlapping window instances.
Each slide is paired into exactly two fragments of length: ¢, and
g2, where g1 = 7%s and go = s — g1. Given this partitioning,
the range consists of a sequence of g1, g2, ..., g1 fragments, where
the length of a paired window equals g1 + g2 = s. Note that if
r is a multiple of s, then only one fragment is produced per slide.
Figure 1(b) illustrates the query plan of the ACQ in Figure 1(a).
The end of each fragment g; represents an edge, where the tuples
in g; are assembled into a partial aggregate.

4. WEAVE SHARING OF MULTIPLE ACQs

In this section, we introduce the concept of Weaveability (Sec-
tion 4.3), after first illustrating the trade-off involved in the shared
processing of ACQs. We also discuss the challenges of optimizing
the shared processing of multiple ACQs (Section 4.4).

4.1 Partial Aggregation Sharing Trade-off

The sharing of the partial aggregation among a set of n ACQs
{q1,q2, ..., gn } with slides {s1, s2, ..., sn }, respectively, involves
three steps:

1. Multiple slides are integrated into a new composite slide (C'S)
of length equal to the least common multiplier of the individ-
ual slides (i.e., C'S =lem(si, ..., $n)),

. Each slide s; is then stretched into a new slide s; of length
C'S, where the edges (i.e., end of each fragment) in each slide
s; are then copied and repeated to the length of s/, (=repeated

’
% times), and
i

. The fragments in the composite slide are created by over-
laying each edge from each individual slide s; onto the new
composite slide C'S, unless that edge already exists in C'S
(i.e., common edge).

While sharing the sub-aggregation operator reduces the cost at
the sub-aggregation level, it might increase the processing needed
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at the final-aggregate level. To illustrate that trade-off, consider the
following example.

EXAMPLE 2. Consider two ACQs q, and q, with ranges rq =
12 and r, = 10, and slides s, = 9 and s, = 6 seconds, respec-
tively. Hence,the fragments in q,’s slide are of length g.,1 = 3 and
ga,2 = 6 and for qy, the fragments are g1 = 4 and gy 2 = 2.

If g, and g3 are processed independently, their sub-aggregation
operators will produce 2 fragments every 9 and 6 sec, respectively.
That is, an edge rate (i.e., number of fragments generated per sec)
of £, = 0.22 and E, = 0.33 edges per sec. Thus, the total final-
aggregation operations performed per sec is 0.55.

Meanwhile, if ¢, and g, share their partial aggregation, then s,
and sy, are integrated into composite slide C'Sqp = lem(sa, Sp) =
18 and the union of edges in C'S, , will appear at times (3,4, 6,9,
10, 12, 16, 18). Hence, each of ¢, and ¢, would examine a com-
bined edge rate of E, ;, = 0.44, resulting in more final-aggregation
operations (0.88 per sec). This simple example clearly shows the
presence of a trade-off in the shared processing of multiple ACQs.

We denote those two general methods above as No Share and
Shared. The latter (i.e., Shared) is the core principle underlying
the Shared Time Slices (STC) scheme [12]. Given that clear trade-
off between these two extremes of sharing, our goal is to design
a selective sharing scheme that groups ACQs into 1 < m < n
groups, that is m execution trees, where the ACQs in each group
are shared (as formalized in the next sections).

4.2 Formalization

Given a set of ACQs Q = ¢1, g2, ..., gn Where r; and s; are the
range and slide of each ACQ ¢;, and given a grouping of the ACQs
into m execution trees t1, ta, ..., t,, Where all ACQs of a tree ¢; are
shared, the cost, in terms of total number of aggregate operations
per second, of each tree is computed by:

Ci, =2+ Ei; (D

where ) is the data input rate and for a tree ¢;, F; is the edge rate
(i.e., number of fragments generated per second) and €2; denotes
the total number of final-aggregation operations performed on each
fragment. Hence, for a set of shared ACQs SQ = q1, g2, ..., ¢x in
a tree t;, the total number of final aggregations is computed as:

(@3]

2
I
» |

j=1"7
We refer to €; as the tree overlap factor or overlap factor for short.

Thus the total cost of the query plan is simply the sum of the cost
of the individual trees. Specifically, if the query plan contains m
trees, then the total cost of the query plan is computed as:

Cm-trees =mA + f: EZQZ

i=1

3

Note that the first term of Eq. 3 is the cost at the sub-aggregation
level, whereas the second term is the cost at the final-aggregation
level. The goal of our proposed Weave Share is to group the ACQs
into a set of trees in a way that minimizes Eq. 3. That is, to strike
a balance between the two components of the cost function. In
particular, our objective is to find the most beneficial number of
trees (i.e., m) as well as the best assignment of ACQs to each tree
in order to provide the lowest execution time.

4.3 Weaveability

The affinity of ACQs, i.e., their similarity, is an important factor
that determines whether it is beneficial to share two ACQs or not.



We refer to this affinity as the weaveability of ACQs. Specifically,
given the paired-window processing scheme, two ACQs are said
to be perfectly weaveable if the edges of both ACQs are identical.
That is, when the two ACQs are shared, the edge rate does not in-
crease for either of the ACQs. If the ACQs are not perfectly weave-
able, the more common edges between the ACQs in their composite
slide, the less the increase in edge rate for the ACQs when shared,
hence the more weaveable they are. Thus, we define the degree of
weaveability as follows.

DEFINITION 1. Given two ACQs q, and qp with slides sq and
sy, respectively, the degree of Weaveability of qa and q, (VWVa,b)
is the ratio of the number of common edges M. in the composite
slide CSq., = lem(Sa, sb), to the total number of edges (M p) in
CSap. Specifically,

M.

WVap = M,

C)

Note that the definition of weaveability is recursively applicable to
two groups of shared ACQs, i.e., execution trees.

Sharing weaveable ACQs has the desirable property of minimiz-
ing the increase in final-aggregation cost since those weaved ACQs
would have many common edges, which keeps the increase in edge
rate of the final shared plan to a minimum. For example, for the
two ACQs ¢, and g, (Example 2), with the set of edges of the com-
posite slide (3,4, 6,9, 10, 12, 16, 18), the common edges are (12,
18). Thus, the weaveability WV, , = % = (.25, which is a rel-
atively weak weaveability, and that explains why their shared tree
encounter a high increase in the edge rate.

4.4 Challenges of Grouping Multiple ACQs

Grouping ACQs to multiple trees involves three major challenges.

Namely: 1) designing a technique that effectively prunes the com-
binatorial search space, 2) handling the dynamic addition and dele-
tion of ACQs over time, and 3) efficiently computing the weave-
ability with minimal overhead.

Towards the first challenge, grouping ACQs could be seen as
first determining the optimal number of execution trees and then
assigning ACQs to the trees. Thus, we have initially considered
mapping our ACQ sharing problem to the generalized task assign-
ment problem which is known to be NP-Hard [5]: the input is a set
of heterogeneous machines and a set of tasks, where each task has
a certain cost when processed on a certain machine. The output is
an assignment of tasks to machines that minimizes the total cost.

This mapping, however, assumes the knowledge of number of
machines (i.e., trees), which is not the case. Furthermore, even if
we assume the knowledge of the optimal number of trees to use,
the increase in processing cost when adding an ACQ to a tree is
not constant as it depends on which other ACQs have already been
assigned to that tree. This is simply true because the cost function
in Eq. 3 involves the edge rate term, which depends on which ACQs
are shared and the degree of weaveability of those ACQs.

Thus, we can not directly use any of the classical algorithms for
solving the task assignment problem (e.g., Dynamic Programming)
to solve our ACQ sharing problem. This is mainly because an op-
timal solution for a sub-problem is not necessarily a part of the
optimal solution of the whole problem. In other words, there is no
optimal substructure property.

Given the problem complexity discussed above, we have ex-
plored a suite of alternative algorithms towards the efficient shar-
ing of ACQs. In this paper, we present Weave Share, an efficient
heuristic that fully considers all cost factors in generating shared
plans (Section 5).
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. Input: A set of n queries
: Output: Weaved query plan P that consists of m execution trees
begin
P < Create an execution tree for each ACQ
[ < n {current number of trees}
(max-reduction, t1,t2) < (0, —, —) {current tree-pair to merge}
. repeat
fori =0t0l—1do
forj =i+ 1toldo
temp < cost-reduction-if-merging(t;, t;)
if temp > max-reduction then
(max — reduction, t1,t2) < (temp,t;,t;)

R e N

13: end if

14: end for

15:  end for

16:  if max-reduction > O then
17: merge(t1,t2)

18: l+1—-1

19:  endif

20: until No merge is done

21: Return P

22: end

Figure 2: The Weave Share Algorithm

The second challenge is the need for an online version of the
algorithm that handles the addition and deletion of ACQs as time
advances. To handle this challenge, we propose Incremental Weave
Share, the online version of Weave Share that avoids the reconstruc-
tion of the query plan every time an ACQ is added or deleted. Both
Weave Share and its online version are discussed in the following
section (Section 5).

The third challenge (i.e., computing weaveability) stems from
the complexity of counting the number of common edges between
two different trees. This is because when merging two trees, there is
no closed-form formula that determines the common edges. Specif-
ically, this problem maps to small sieve theory problem which is a
hard problem, and whose current solutions mostly deal with ap-
proximations and there is no closed formula to solve it [4]. Yet, the
degree of weaveability directly determines the amount of increase
in total processing cost (if any) when merging. To efficiently con-
sider the weaveability while generating the shared plan, we pro-
pose several optimizations for the process of counting the number
of common edges (Section 8).

5. THE WEAVE SHARE OPTIMIZER
5.1 Weave Share Algorithm

Our proposed Weave Share exploits weaveability to reap the ben-
efits of cost reduction provided by sharing partial aggregation, while
minimizing the increase in cost incurred at the final aggregation.
Basically, Weave Share tries to group ACQs in multiple execution
trees, where each tree contains only ACQs that weave best together.

To achieve our goal, Weave Share takes a global view of the ex-
ecution plan as well as the objective function to minimize (i.e.,
Eq. 3). In particular, it simultaneously considers both of the cost
components (i.e., partial- and final-aggregation) to group ACQs in
multiple trees with minimum execution cost.

Weave Share (pseudo-code in Figure 2) takes as an input a set
of ACQs ¢i1, g2, ---, g» and produces a set of m shared trees where
each tree contains one or more ACQs. Initially, the number of trees
is equal to the number of individual queries, m = n and each ACQ
forms a separate tree, which is equivalent to the case of no sharing.

Weave Share advances towards sharing one step at a time in a
greedy manner, where in each iteration two weaveable trees are
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Figure 3: Example 3 - Iterations of Weave Share.

merged, reducing number of trees by one, until no more merging is
beneficial. In particular, at each iteration, given a set 1" of [ trees:
T = ti,ta,....t1 (I < n), Weave Share estimates the benefits of
merging all possible pairs of trees in 7" and merges the pair of trees
that yields the maximum reduction in total cost.

Given Eq. 1, it is expected that for a pair of trees (¢, and t,)
to qualify for merging, they must satisfy either one or both of the
following properties:

1. High degree of weaveability. The higher the degree of weave-
ability of the merged trees, the less the increase in the com-
bined edge rate F; , and the less the overall merged tree
cost.

. Low total overlap factor (22,4 = Q. + €2,), which is the
total number of final-aggregation operations performed on
each fragment in the new tree. Hence, the less the number
of window instances, the less the number of final-aggregate
operations performed on each edge (i.e., fragment).

The benefit (i.e., cost reduction) from merging ¢, and ¢, is:

A(Cyy) = A+ ExQu + EyQy — Ey yQuy (5)

Note the term A in Eq. 5 above denotes the savings at the sub-
aggregation level. That is, each tuple is processed once instead of
twice. The rest of the terms in the equation represents the savings
in the final aggregation level.

Clearly, any two trees that exhibit the two properties above are
good candidates for merging as they allow us to exploit the sharing
of partial-aggregation while at the same time minimize the increase
in final-aggregation. These are the main optimization criteria for
Weave Share. We demonstrate how Weave Share iterations work
using Example 3 below.

EXAMPLE 3. Consider three queries qa, q» and q. with sliding
window specifications as follows: ranges 16, 10 and 8 and slides 4,
5 and 4, respectively. Additionally, consider an input rate A = 1.2
tuples per second.

Figure 3 shows the sequence of iterations performed by Weave
Share as well as the resulting query plan. Figure 3 shows that ini-
tially, the number of trees is three, with no sharing. This results in
atotal cost of 11.6 based on Eq. 3 as shown in the figure (the calcu-
lations details are omitted for brevity). Next, the algorithm enters
the main loop where it tries to merge the pair of trees that would
reduce the cost the most.
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In the first iteration, there are three possible pair-wise merges
<Gasqb >, <ga,qc>,0r <qp,qc>. Merging the pair < qq, qc >
leads to the maximal reduction in cost, reducing it to 4.3 aggrega-
tions per second according to Eq. 5. Thus, the algorithm merges
them together into tree ¢, . and proceeds to the next iteration.

In the second iteration, the only possibility is to merge ¢, . with
@»- This, however, would lead to an increase in the cost to 4.4 ag-
gregations per second. Since there is no room for improvement,
Weave Share terminates the loop and returns the query plan it con-
structed: t,,. and g, where g, and g. are shared in ¢, . and g is
executed independently. Note that g, and g. weave well together,
in the sense that all the edges of g, exist in edges of ¢. (i.e., com-
mon). This is due to the fact that their slides are equal. This results
in no increase in the edge rate when they are merged and in turn,
minimizes the overall execution cost.

5.2 Incremental Weave Share

In the previous section, we described the basic (offline) Weave
Share algorithm, which constructs a query plan from scratch. In
this section, we consider the online case where newly submitted
ACQs are weaved into the current plan and the case of re-weaving
existing trees after the deletion of some ACQs.

5.2.1 Adding New ACQs

Reconstructing the Weave Share query plan from scratch is one
possible solution to handle the submission of a new set of ACQs
into the system. In that solution, given an already existing set of
ACQs Q in a Weave Share plan P and a set of new ACQs Q’,
Weave Share is invoked to generate a new weave share plan P’
which includes the ACQs Q U @Q’. This solution, however, has
two drawbacks: 1) it incurs a large overhead since the algorithm
is reinvoked to run from scratch whenever new ACQs are added,
and 2) it might often lead to an unnecessary reconstruction since,
in many cases, the new plan P’ can be directly achieved from the
current plan P.

To address the above drawbacks, we develop Incremental Weave
Share which takes a more lazy approach for maintaining the weaved
plan. This involves the following two steps:

1. Immediately incorporating new ACQs into the existing plan.

2. Reconstruct the query plan from scratch only when needed.

In this incremental version of Weave Share, a new tree tyeqw 1S
created for each new ACQ gnew that is added to the system and
Weave Share is invoked to merge tnew With the trees in the current
plan P to generate a new incremental plan P”. Thus, among the
existing trees, tyew Will be merged with the one tree with which it
weaves the best. The newly merged tree might be further merged
with other trees in the plan if this is beneficial. This process con-
tinues until no further improvements are attainable.

The cost of the incremental plan P” might, however, be worse
than the plan P’ which would be generated by the offline Weave
Share. In order to detect the magnitude of that degradation, Incre-
mental Weave Share maintains the performance slope of the plan-
cost curve. This curve is basically a plot of the offline-generated
plan cost vs. the number of ACQs. The points on the curve are
obtained when a plan P’ is generated from scratch.

As new ACQs are submitted to the system, the cost of P is
compared with the extrapolated cost using the performance slope.
If the difference percentage is more than a certain deviation toler-
ance threshold, which is a system parameter, a reconstruction phase
is triggered and performed asynchronously. Specifically, for a de-



viation tolerance of €, a reconstruction is triggered iff:

cost(P'") B
extrapolated cost using performance slope

1>€¢ (6)

As such, the deviation tolerance value acts as a knob to control
the reconstruction behavior. For instance, setting the tolerance to
zero, resembles reconstructing the weaved plan whenever a new
ACQ is added, whereas setting the tolerance to co is equivalent to
the case where no reconstruction is ever performed.

5.2.2 Deleting ACQs

We handle the deletion of existing ACQs similarly to the addi-
tion of new ACQs. Specifically, deleted ACQs are first removed
from their respective tree, then each of those trees is then examined
against all the other trees in the weaved plan for beneficial merging,
i.e., if the merge would result in a reduction in the total cost of the
updated plan. This process is repeated until no more improvements
are attainable. Similarly to adding ACQs, given the performance
slope and a tolerance factor, a reconstruction phase may be trig-
gered depending on the degradation from the extrapolated cost.

5.3 Varying Predicates and Group-by

Weave Share can easily handle the case when different ACQs
have different pre-aggregation filters (i.e., selection operators). For
example, one query might monitor the average-volume of stock-
trades that are higher than $100, while another monitors the same
for trades that are higher than $500. To share the execution of such
ACQs, we adopt the Shared Data Shards (SDS) technique [12].

Further, when different ACQs have different group-by attributes,
Weave Share can utilize the techniques in [17, 26]. Specifically,
each sub-aggregation operator can utilize a hash table based on the
values of the union of all group-by attributes. When a fragment is
due, proper hash table entries are combined together to form the
fragment of each set of queries with identical group by attributes.

6. EXPERIMENTAL PLATFORM

We built a simulation platform in C++ to evaluate the quality
of Weave Share plans. We validated our simulation model by re-
producing same results trends as in [12] and running Exhaustive
Search to find the optimal plan for small cases that we solved by
hand'. Below, we list the different algorithms we compared with
and describe the generated workload characteristics, experiments
parameters (summarized in Table 1) and the performance metrics.

Algorithms: In addition to Weave Share and Incremental Weave
Share, we implemented Random, Shared and No Share (base-line).
We also implemented an obvious simplified version of the Weave
Share algorithm, which we call Insert-then-Weave. Insert-then-
Weave is a greedy heuristic that inserts ACQs, one at a time in an
arbitrary order, to the tree that it weaves best with. After this phase,
a weaving phase of merging the created trees (similar to Incremen-
tal Weave Share) follows.

Finally, we also adapted Local Search (LS), which is is a sub-
optimal state space search algorithm. LS starts from an arbitrary
initial state, i.e., grouping of ACQs. We used both Random and
No Share to generate the initial states. In each iteration, LS moves
towards the optimal solution by moving a single ACQ from one tree

'Other experiments with Exhaustive Search showed that Weave
Share generates mostly optimal plans; for input rates/number of
ACQs of 200/5, 300/10 and 400/15, Weave Share generated the op-
timal plan. In only one case, Weave Share generated the optimal
number of trees but 3% more costly, due to different grouping of
ACQs (Shared plan was 32% more costly in this case).
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Table 1: Simulation Parameters

[ Parameter | Values |
Slide Length (s) [1 — 100000] using Zipf distribution
Slide Skewness [0.0 — 3.3] (skewed to large-slide)
Max. Overlap Factor (2y,42) | [50 - 2000]
Overlap Factor [1-Qmazl
Number of ACQs [50 —2000]

Input Arrival Rate [0.5 — 1,000,000] tuples/sec.

to another. In our experiments, we bound the number of iterations
of LS, for each workload instance, to two, five or ten times the
the number of iterations that Weave Share needed for that instance.
Among these different options, LS-NS-10x (which starts from No
Share initial state and uses ten times iteration’s bound) was the best
and we report its results.

ACQs: We generated ACQs with different specifications. The slide
length (s) was drawn from a Zipf distribution over a discrete range.
The discrete range depicts the real-world case of pre-specified (i.e.,
template) window specifications. The skewness of the Zipf distri-
bution reflects the popularity of certain slide lengths. The range
(r) for each ACQ is relative to its slide. That is, r; = w; X s;,
where w; is the overlap factor. The overlap factor is uniformly dis-
tributed between 1.0 and 2,4, Which is a simulation parameter.
In each experiment, we also changed the the number of ACQs and
the input rate. The input rate values are chosen to cover a wide vari-
ety of different monitoring applications, ranging from phenomena
monitoring (few tuples, or less per second) to high speed network
monitoring (1M tuples/sec).

Dataset: We chose to use synthetic workload, which allows us
to control the system parameters, in order to conduct detailed sen-
sitivity analysis and gain better insight into the behavior of Weave
Share by setting the parameters to cover all possible real scenarios.

Performance Metrics: We measured the quality of plans in terms
of the cost of the plans as the number of aggregate operations per
second (which also indicates the throughput). We chose this met-
ric because it provides an accurate and fair measure of the perfor-
mance, regardless of the platform used to conduct the experiments.

7. QUALITY OF WEAVE SHARE PLANS

7.1 Weave Share Performance

In this section we present our evaluation results, comparing Weave
Share to other alternatives under different workload parameters.

7.1.1 Number of ACQs (Fig. 4 to7)

Figures 4 and 5 show the cost of the Weave Share plan as the
number of ACQs increases from 50 to 1000, for low (50 tuples/sec)
and medium (300 tuple/sec) input rates, respectively. In both plots,
the maximum overlap factor (2mq2) is set to 50, and the slide
skewness is 0.6. Weave Share always outperforms the best of all
other algorithms. For instance, for 1000 ACQs, Weave Share out-
performs Insert-then-Weave and Shared by three and four orders of
magnitude, at low and medium input rates, respectively.

Note that No Share and Random generate the most expensive
plans in both cases. LS did not find better plans than those gener-
ated by Weave Share, while incurring a very high overhead. Specif-
ically, LS-NS 10x took thousand times the time needed by Weave
Share. The reason is that an iteration of LS moves a single ACQ
from a tree to another, while an iteration of Weave Share merges
two trees, i.e., moves a group of ACQs at once. Thus, Weave Share
reaches a reasonable sub-optimal solution much faster than LS.
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Figure 5: Impact of number of ACQs on cost for different poli-
cies under medium input rate (300 tuples/sec)

While LS and Insert-then-Weave perform better than Shared at
low input rate (50 tuples/sec), Shared outperforms both at medium
input rate (300 tuples/sec). For high input rate (10K tuples/sec),
omitted for brevity, the relative performance of different algorithms
was similar to the medium input rate case.

In Figure 6, we study the performance of Weave Share compared
to Shared, for the low, medium and high input rates. Specifically,
we plot the normalized cost of Weave Share plan to the cost of
Shared, for the three input rates. The figure shows that as the num-
ber of ACQs increases, the gain provided by Weave Share increases.
It also shows that even for high input rate (10K tuples/sec), as the
number of ACQs increases, Weave Share outperforms Shared. For
instance, at 1000 ACQs, for input rate of 10K tuples/sec, Weave
Share reduces the cost by 62%.

The improvement of Weave Share over the best of other algo-
rithms increases with the number of ACQs because the more ACQs,
the more chances for Weave Share to selectively share ACQs that
weave well together. Thus, limiting the increment in edge rate (£)
and overlap factor (£2) per merged tree, while still benefiting from
sharing the partial aggregation. Finally, we notice in Figure 6 that
for high input rate of 10K tuples/second and few number of ACQs,
Weave Share performs identical to Shared, i.e., generates one tree.
For such settings, the overhead at the partial aggregation level dom-
inates that at the final-aggregation level.

Finally, Figure 7 shows the number of execution trees that were
generated by Weave Share for the same settings as in Figure 6. As
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Figure 7: Number of Execution Trees for different number of
ACQs under low, medium and high input rates

expected, the number of trees increases as the number of ACQs in-
creases, while it decreases as the input rate increases. It also shows
that for high input rate of 10K tuples/sec, Weave Share still gener-
ates more than one tree for more than 100 ACQs. This confirms
our observation that the properties of the installed ACQs are as im-
portant as the input rate in determining the sharing decision.

7.1.2 Input Rate (Fig. 8)

In this experiment we study the sensitivity of Weave Share to
the input rate. We report the normalized cost of Weave Share to
that of Shared (here and in all the experiments hereafter) because
Shared was the best alternative (in each experiment). We plot the
normalized cost for different values of number of ACQs in Figure 8.
The results in this plot are for a workload with €2,,,4, of 50 and slide
skewness of 0.6.

Similar to the previous experiment, as the input rate increases,
the performance of Weave Share approaches that of Shared. For
instance, for 250 ACQs, the gain of Weave Share starts at 80% at
input rate of 50 tuples/sec, and reaches 24% and 6% at input rates
of 2K and 3K tuples/sec, respectively. For high input rate (10K
tuples/sec), Weave Share still generates plans that are 12% and 24%
less costly for 1000 and 2000 ACQs, respectively.

Weave Share also outperforms Random, Insert-then-Weave, No
Share and Local Search by up to orders of magnitude. For instance,
at input rate of 10K tuples/sec, Weave Share generates a plan that
is more than 100 times less costly than the best of other plans.
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7.1.3  Maximum Overlap Factor (Fig. 9)

In this experiment, we vary the maximum overlap factor (2q2)
for different input rate values. Specifically, we set the input rate to
100, 1K, 10K, 100K and 1M tuples/sec. For all cases, the slide
skewness was 0.6, and the number of ACQs was 2000. Recall
that the overlap factor is the ratio between an ACQ’s range and its
slide. Hence, increasing the {2,,,4, increases the number of final-
aggregations, but has no effect on partial-aggregation.

In Figure 9 we plot the normalized cost of Weave Share to Shared.

As expected, as {2mqq increases from 50 to 2000, the gain provided
by Weave Share increases. For example, consider the case of 100K
tuples/sec. For small values of 2,4, (less than 200), Weave Share
generates a single shared tree. For higher values of 2,42 (200 to
2000), Weave Share outperforms Shared by 19% to 74%. Recall
that the overlap factor is multiplied by the edge rate in Eq.1, which
is the cost of final-aggregation. Since Weave Share generates plans
that consist of more than one tree, it keeps the maximum value of
E;§; as small as possible. This is what enables Weave Share to
outperform Shared for higher values of 2,44 .

7.4 Slide Skewness (Fig. 10)

In this experiment, we examine the slide distribution skewness
parameter. By increasing the skewness, the query workload will
contain more large-slide queries as generated by the Zipf distri-
bution. Figure 10 shows the normalized cost of Weave Share to
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Figure 11: Incremental Weave Share: Deviation vs Overhead
for different tolerance factor (¢).

Shared for different number of ACQs, at input arrival rate of 100
tuple/second and maximum overlap factor of 10.

For all number of ACQs, we see that as the skewness increases,
the relative gain provided by Weave Share increases. This continues
until a global maximum gain is reached, where it starts to diminish
until Weave Share performs similar to Shared. The reason is that
initially, as the skewness increases the more large-slide ACQs we
have, and hence the higher the penalty of sharing them with small-
slide ACQs. Weave Share avoids this by selectively sharing ACQs
that weave well together.

As the distribution becomes very skewed, most of the ACQs are
large-slide ones, whereas small-slide ACQs gradually disappear.
This means that grouping all in a single tree is the right choice.
In this case, Weave Share captures this phenomenon and does share
all ACQs. Figure 10 also shows that the more ACQs are in the
system, the larger the maximum gain of Weave Share is.

7.2 Incremental performance

In this section, we study the performance of the Incremental
Weave Share algorithm. For Incremental Weave Share, the toler-
ance factor is used to determine when to issue a reconstruction
phase. A reconstruction phase is issued if the ratio of the current ex-
ecution plan cost to the extrapolated cost using performance slope
(given the learned plan-cost curve) exceeds the tolerance factor.

Figure 11 shows the overhead as number of comparisons ver-
sus the average relative error between the plan generated by Incre-
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mental Weave Share and the plan generated by the offline Weave
Share, for different tolerance factor values (the points’ labels). For
instance, the point labeled as Infinity shows the incremental
performance when no reconstruction is issued at all (tolerance =
o0). As expected, the figure shows that as the tolerance factor in-
creases, the relative error increases while the overhead decreases.
It also shows that the relative error is always less than or equal to
the tolerance factor. From the above results, we conclude that a
tolerance factor of 20% or 30% achieves a good balance between
performance and overhead.

8. OPTIMIZING THE OPTIMIZER

Given a set of n ACQs, the time complexity of Weave Share al-
gorithm is asymptotically O(n®). The algorithm starts with . trees
and in each iteration it reduces the number of trees by one. Thus,
in worst case, the algorithm needs n iterations. In each iteration 4,
(n — 4)* comparisons are needed to find the pair of trees that yield
the maximum benefit. Thus, the total time complexity is O(n?®).

Computing the benefit of merging two trees (say ¢, and t,), re-
quires calculating the new edge rate ;. , (Eq. 5). Given that there
is no closed-form formula that determines the common edges as
as discussed in Section 4.4, this is clearly an expensive operation
which requires counting the set of common edges between the two
trees, t, and ¢,.

Conceptually, to calculate the new edge rate resulting from merg-
ing ¢, and ¢, into tree ¢, we need to extend the steps needed for
merging two ACQs (described in Section 4.1) as follows:

1. Set the composite slide C'S,.,, to be the least common mul-
tiple of the individual slides of all ACQs in ¢, and ¢,.

2. The edge count M, of the ACQs in ¢, within the new com-
posite slide C'S , is computed as: M, ' =M, CCS g,‘.’/ , where

the last term is the number of times C'S,, has been réplicated.
Similarly, the edge count M; of the ACQs in ¢, is computed.

. The composite edge count M, is computed as: M., =
M, + M, — M,.

In order to compute the last step, we need to know the number
of common edges in the composite slide (M.) between t, and t,.
This could be done by checking each edge in each ACQ in ¢, to
see if it is the same to any edge of any ACQ in ¢,. Each one of
those checks requires two comparisons. Specifically, to check if
edge e of some ACQ in ¢, is the same to some edge of ACQ g; in
t., we check if e is divisible by s;, or if e — g;,1 is divisible by s;,
as illustrated in the following example.

EXAMPLE 4. Consider a tree with one query q. that has slide
Se = 5 and fragments gz 1 = 2 and g2 = 3. Further consider
a query qy which has slide s, = 3 and fragments g, 1 = 0 and
gy,2 = 3. If gz and q, are to be merged, the common slide length
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Figure 13: Edges Bitmap and Probing Process

is C'Sy,y = 15, the edge counts of stretched q.. and g, are M., = 6
and Mé = b, respectively. Hence, M y is 5 plus 6 minus the
number of common edges (M), which is computed by checking
each and every edge of q, against those of q..

The first edge in qy is e = 3, which is not divisible by the slide of
Sy = dnorise—g,1 = 3—2 = 1divisible by s, = 5. Hence, it is
not a common edge and M,  is kept at 11 edges. The current edge
e is then advanced to next edge e = 6, and the two comparisons are
performed and so on until e = 12, where e — g1 = 12 —2 =10
is divisible by s, = 5, i.e., it is a common edge and the count is
decremented. Similarly, at e = C, , = 15, e is divisible by s, and
the count is decremented once again.

This naive approach encounters a high overhead given that count-
ing the edges process is repeated many times in the main loop of
the algorithm, where, in each iteration, an edge count is needed for
each pair of trees. We propose three optimizations that can dramat-
ically minimize this overhead as discussed next.

8.1 Optimization I: Cost Lookup

The first optimization is to memoize the benefit (i.e., cost re-
duction) gained by merging two trees in a two dimensional array
called Cost Lookup table. Thus, in the main loop of the algorithm,
only the first iteration will compute the cost saving for each pair of
trees. Next iterations will use the lookup table for all pairs, except
those that involve the new merged tree from the previous iteration.
Thus, the number of computations in each iteration ¢ is reduced
from (n —4)? to (n — i) computations. This minimizes the number
of pairs for which an edge count needs to be performed.

Figure 12 shows a possible instance of the Cost Lookup table. To
check if merging two trees ¢; and t; is beneficial or not, we lookup
the entry C'ost_Lookupli][j], which is 101.2 in this instance. This
means that merging ¢; with ¢; would reduce the cost by 101.2 op-
erations per second. Negative values mean that the merge would
actually increase the cost. t;ustmerged 1S the merged tree in a pre-
vious iteration and that is why all its entries are nullified in order to
be recomputed.

8.2 Optimization II: Edges Bitmap

The second optimization is to use a bitmap vector that acts as a
hash table to represent the edges. The top part of Figure 13 shows
the bitmap vector for an ACQ ¢, with s, = 5 and edges at locations
2 and 5 (i.e., fragments g,,2 = 2 and g,,1 = 3). Given the Edges
Bitmap structure, finding the common edges between two trees re-
quires to simply traverse the edges of one of the Edges Bitmap to
probe the other, i.e., check if they exist in the other bitmap. This
requires a number of probes equal to the number of edges in one of
the trees, regardless of the number of ACQs in the other tree. Effec-
tively, this optimization pre-computes and materializes the results
of finding the common edges described in Example 4.

The Edges Bitmap is maintained as follows. When the tree has
one query at most two edges are hashed into the bitmap. When
adding a query to a tree, 1) new bitmap is created with length equal
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to the new composite slide, 2) the old bitmap is replicated in this
new bitmap and the previous count of edges is updated accordingly,
and 3) the edges of the new query are hashed into the new bitmap,
incrementing the edge counter only if no collision occurs.

8.3 Optimization III: Probing Reorder

Clearly, given the Edges Bitmap structure, the overall complex-
ity of the algorithm will be affected by the choice of which bitmap
to probe when counting common edges. Similar to join optimiza-
tion, which uses the relation with fewer blocks to probe the other,
we propose to use the tree with fewer edges (i.e., smaller edge
rate) to probe the other. (this is illustrated in the lower part of Fig-
ure 13, where we used g, which has 5 edges to probe g, which has
6 edges). Specifically, the bitmap of the probed tree is replicated
to the new composite slide, while the bitmap of the probing tree
is used to generate an array of edges in the new composite slide.
Edges in the array are then hashed into the bitmap of the probed
tree, and if collision occurs, then the checked edge is common.

8.4 Impact of Optimizations

The impact of the above optimizations can be seen in Figure 14,
where we report our run of Weave Share and its optimized versions
for an experiment with 250 ACQs, input rate of 100 tuple/second,
a slide skewness of 0.7 and a maximum overlap factor 10; we ob-
tained similar results for different workload settings. The figure
shows the overhead of the naive Weave Share, where no optimiza-
tion is used, compared to the three optimization variants. In the
first variant, only cost lookup is used. In the second variant, both
cost lookup and edge bitmap are used and finally, in the third vari-
ant all three optimizations are used. Figure 14 (notice the log scale
for the Y-axis) shows that each proposed optimization technique
roughly adds one order of magnitude improvement over the naive
implementation. Overall, with all three optimizations, Weave Share
executes three orders of magnitude more efficiently.

9. CONCLUSIONS

In this paper, we introduced the concept of Weaveability of ag-
gregate continuous queries (ACQs) that captures their potential for
shared processing. We proposed Weave Share, a new cost-based
multiple ACQs optimizer that selectively groups ACQs into mul-
tiple execution trees considering all cost factors, to minimize to-
tal cost. We also proposed Incremental Weave Share that supports
dynamic query optimization when ACQs are added or deleted on
demand. We experimentally evaluated and performed sensitivity
analysis on the quality of the query plans generated by the Weave
Share. The results show that Weave Share outperforms all alterna-
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tive schemes. Finally, we developed practical implementation of
Weave Share and experimentally illustrated their gains.
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