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ABSTRACT
Complex event detection over data streams has become ubiquitous
through the widespread use of sensors, wireless connectivity and
the wide variety of end-user mobile devices. Typically, such event
detection is carried out by a data stream management server execut-
ing continuous queries, previously submitted by the users. In this
paper, we consider the situation where the end-users submit queries
from hand-held devices and the results of the continuous queries,
which are in the form of individual data streams, are disseminated
to the users over a shared broadcast medium. Specifically, we pro-
pose three power-aware query operator placement algorithms that
determine which part of a continuous query plan is executed at the
data stream management server and which part is executed at the
users’ wireless device. The algorithms’ effectiveness with respect
to energy consumption is evaluated using simulation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing, Dis-
tributed Databases

General Terms
Algorithms, Experimentation, Measurement, Performance.

1. INTRODUCTION
Complex event detection over data streams in monitoring appli-

cations has become ubiquitous through the wide spread use of sen-
sors, wireless connectivity and the wide variety of end-user mobile
devices. Typically, such event detection is carried out by adata
stream management server(DSMS) executingcontinuous queries
(CQ), that have been previously submitted by the users [23, 2]. In
DSMSs, monitoring applications register CQs which continuously
process unbounded data streams, looking for data that represent
events of interest to the end-user, who can be stationary or mobile.
Examples of such applications, of equal interest to stationary and
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mobile users, include monitoring of stock quotes, airline sched-
ule updates, local news, weather readings, and traffic information.
Specifically, we consider applications where wireless connectivity
and timeliness of data delivery is inherent, such as emergency man-
agement in disaster areas. Another example is the query of a trader
(Figure 1) which processes stock price updates, at the floor of a
market exchange. First, it filters out stocks that are not in the NAS-
DAQ index using the select operatorO1. Then, it drops columns
of no interest (such as source information etc.) using the project
operatorO2. Then, it joins the tuples with the user’s portfolio to
append the buying price using the join table operatorO3. Finally, it
calculates the user’s profit in the last 5 minutes, every 30 seconds,
using the aggregate operatorO4.

In our focused applications, the end-users typically submit queries
from hand-held battery-operated devices and receive the results of
CQs over a shared wireless medium. A DSMS could be effort-
lessly integrated with any of the existing wireless broadcast com-
munication infrastructure (such as MBMS [17], ISDB-T [16], Star-
Band and Hughes Network) to support the continuous dissemina-
tion of the results of CQs to the end-users. However, the design of
current data dissemination techniques used in wireless networks,
especiallydata broadcasting, needs re-thinking because the con-
tinuous dissemination of the results clearly stresses the battery ca-
pacity as well as the wireless bandwidth.

Our goal in this work, is to design operator placement algorithms
that work in synergy with the broadcast organization so that to min-
imize the total energy consumption on the hand-held devices. Our
approach is based on the observation that the energy costs for re-
ceiving data are typically much higher than the energy costs for pro-
cessing that data, an observation that has also motivated in-network
processing in wireless sensor networks (e.g., [14, 20]). Hence, it
is often more beneficial to broadcast an intermediate query result
with a relatively smaller size than to broadcast the final result. At
the same time the set of query operators processing the interme-
diate result to produce the final result, is shipped to the user-side.
In the example described above, the first two operatorsO1 (Select)
andO2 (Project) are data reducing, while the last two operatorsO3

(Join Table) andO4 (Aggregation) could potentially be data ex-
panding. Thus,O3 andO4 could be shipped to the wireless user,
and the much smaller intermediate result produced byO2 will be
broadcast. The join operator,O3 can be processed on the client,
since the joining portfolio table is user-specific. However, this op-
erator shipping will incur an extra processing energy cost at the
user device.

Thus, the key challenge in designing an effective operator place-
ment scheme is the balancing of the trade-off between the reduc-
tion in tuning energy and the increase in processing energy so as to
minimize the overall energy consumption at the end-user devices.
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Figure 1: Continuous Query Plan

Towards this end we have developed three operator placement al-
gorithms that use different criteria for selecting the operators to
be placed on the user device. In particular, we proposeMinDat-
aCut which focuses on minimizing the tuning energy;MinPower-
Cut which extends MinDataCut to consider the processing energy
needed for executing operators at the client-side; andBOSewhich
further extends the previous two algorithms to also consider the
broadcast data organization. In the context of this paper, we opti-
mize only for energy without considering any other metrics such as
response time minimizing which was the goal of existing operator
placement schemes in Distributed DSMSs ([3]). Also, we consider
CQs similar to the above example withselect, project, aggregate,
andjoin-tableoperators.

The contributions of this paper are summarized as follows:

1. We present three algorithms for the placement of continu-
ous query operators across the DSMS and mobile clients in a
wireless data broadcasting environment that result in differ-
ing degrees of energy savings.

2. We integrate our proposed algorithms with both sorted and
indexed data broadcast organizations.

3. We provide an extensive experimental evaluation of our pro-
posed algorithms under different settings for sensitivity anal-
ysis. Our results show that BOSe performs best and can
achieve an overall energy reduction of up to 53%.

Roadmap: Section 2 provides the system model. Our three op-
erator placement algorithms are presented in Section 3. Section 4
describes our experimental setup and discusses the experiments and
results. Section 5 surveys related work.

2. SYSTEM MODEL
In our model, a DSMS allows wireless users to register CQs. In

addition to the standard modules of CQ admission manager, query
optimizer, CQ scheduler, memory manager and load shedder, the
DSMS implements a wireless disseminator which broadcasts the
results of CQ to the wireless users.

2.1 Data Stream Processing
A CQ evaluation plan generated by the query optimizer can be

conceptualized as a data flow tree [2, 9], where the nodes are oper-
ators that process tuples and edges represent the flow of tuples from
one operator to another (Figure 1). An edge from operatorOx to
operatorOy means that the output ofOx is an input toOy . Hence,
upstream(Oy) = Ox anddownstream(Ox) = Oy . Each oper-
ator is associated with aqueuewhere input tuples are buffered until
they are processed.

A single-stream queryQk has a singleleafoperatorOk
leaf and a

singleroot operatorOk
root. For example, in Figure 1,O1 is the leaf,

whereasO4 is the root. Further, in a query planQk, anoperator
segmentGk

x,y is the sequence of operators that starts atOk
x and

ends atOk
y . If the last operator onGk

x,y is the root operator, then

Figure 2: Operator model

we simply denote that operator segment asGk
x. Figure 1 shows an

operator segmentGk
2 =<O2, O3, O4 >.

In a query, each operatorOk
x (or simply Ox) could be one of

four types: select (σ), project (π), aggregate (e.g.
P

), or join-table
(1T ). Each operator is associated with three parameters:

1. Processing cost (cx): is the number of cycles needed to pro-
cess an input tuple.

2. Selectivity or Productivity (sx): is the ratio of output tuples
produced byOx after processing one input tuple. Thus,sx

is less than or equal to 1 for a filter operator and it could be
greater than 1 for a join operator.

3. Projectivity (px): is the ratio between the size of a tuple
produced byOx (i.e., output size) to its size before being
processed (i.e., input size). Thus,px is less than or equal to 1
for a project operator and it may be greater than 1 for a join
operator.

For an operatorOx, with upstream(Ox) = Ox−1, we define
the following characterizing parameters (Figure 2):

• Number of Output Tuples (tnx): is the number of tuples
produced at the output ofOx after processing thetnx−1 tu-
ples in its input queue.

tnx = tnx−1 × sx

• Size of Output Tuples (tsx): is the size of each tuple pro-
duced at the output ofOx after processing a tuple in its input
queue.

tsx = tsx−1 × px

• Size of Output Data (dsx): is the size of the data block
produced at the output queue ofOx after processing a block
of data from its input queue.

dsx = tnx × tsx

Notice that ifOx is the root operator in queryQk (i.e., Ox =
Ok

root), thendsx is the total size of the data block produced byQk.

2.2 Wireless Broadcast
In wireless networks, broadcasting is the natural method to prop-

agate information and guarantee scalability for bulk data transfer.
Specifically, data can be efficiently disseminated by any combina-
tion of the following two schemes:broadcast pushandbroadcast
pull [5, 24].

In this work, we adopt broadcast push since it naturally complies
with the DSMS access model where a client installs a CQ once and
the server repeatedly broadcasts the new results as they become
available. Hence, any number of clients can monitor the broad-
cast channel and retrieve data as it arrives, at a constant bandwidth
speed:BW.
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In our model, thewireless disseminatorinitiates a new broadcast
cycle as soon as the previous one ends and consists of the results
produced by the CQs during the previous broadcast cycle. We
denote the broadcast result of queryQk asDk and its size in bytes
as| Dk |. If the final result of a query is broadcast, i.e., the result
produced at the query root operator, then| Dk |= dsk

root. Oth-
erwise, if the output of an internal operatorOk

x is broadcast, then
|Dk |= dsk

x.
The resultDk of each queryQk appears on the broadcast chan-

nel as a contiguous sequence of data packets preceded by a de-
scriptor packet that contains an identifier ofQk and the time offset
to the next broadcast cycle. Accordingly, each client shouldtune
to each broadcast cycle for results corresponding to its registered
CQs. During tuning, the client’s network interface card (NIC) is
in active modeconsuming relatively large amounts of energy com-
pared when the client’s NIC is switched to anidle mode. Hence,
the amount of energy consumed by a wireless client depends on the
data organization [4, 13, 12].

In this paper, we adopt two basic data organization schemes. The
first one usessorted broadcastwhere the broadcast server sorts the
query results according to data size. In particular, each query result
Dk is assigned a priority equal to1

|Dk|
and thebroadcast is orga-

nized in descending order of priority. Hence, results with smaller
size (or equivalently, shorter transmission time) will appear first
on the broadcast. This clearly maintains a broadcast that follows
the shortest job firstscheduling policy which has been shown to
minimize total response time in on-demand data broadcast [1]. Ac-
cordingly, for a clientNi that registered queryQk, its tuning time
TT (Ni) is computed as:

TT (Ni) =
|Dk | +

P

i
|Di |

BW
, where∀i :|Di |<|Dk |

The second data organization scheme uses anindexed broadcast
where the broadcast server attaches an index at the beginning of
each broadcast cycle (i.e., a (1,1) index [13]). The index contains an
entry for each queryQk on the broadcast in the form< Qk, tk >,
wheretk is the time offset ofQk ’s result within the broadcast cycle.
Under such a scheme, the client needs to first tune to the index
packet to learn the broadcast timetk of its registered query, then
power off the NIC until timetk. At time tk, it powers on its NIC
again, tune into the broadcast to retrieve the query result (i.e,Dk)
and after it finishes fetching all ofDk ’s data packets, powers off
the NIC again until the next broadcast cycle. The tuning time for a
nodeNi in the indexed broadcast is computed as:

TT (Ni) =
|Dk | + |Index |

BW

where| Index | is the size of the index, which could change from
one cycle to another depending on the number of queries whose
results are disseminated in the broadcast.

3. OPERATOR PLACEMENT
In this section, we formalize the placement of CQ operators in

wireless DSMS environments and propose three operator place-
ment algorithms, namely:MinDataCut, MinPowerCut, andBOSe.

3.1 Problem Statement
Our goal is to design operator placement algorithms that work

in synergy with the broadcast organization so that we minimize the
total energy consumption at the wireless clients. The total energy
consumption is the sum of two components:tuningandprocessing,
which can be expressed as:

ETotal = ETune + EProcess (1)

As discussed in the introduction, our approach to minimizing
Eq.1 is based on the observation that the energy costs for receiving
data is typically much higher than the energy costs for processing
that data. Hence, it is often beneficial to broadcast an intermediate
query result with a relatively smaller size than to broadcast the fi-
nal result. Accordingly, the set of query operators processing that
intermediate results to produce the final result are moved to the
client-side incurring an extra processing energy.

For the algorithms to be able to calculate the trade-offs between
tuning and processing energy for each client, when a client registers
a CQ for processing it also attaches its profile. This profile includes
three parameters regarding the client’s characteristics:

1. Speed(Ni): the processing speed of the client in cycles per
unit of time.

2. PP (Ni): the power consumed per unit of time of processing.

3. PT (Ni): the power consumed per unit of time when the NIC
is active.

Hence, the tuning energyETune consumed by each wireless
clientNi is expressed as:

ETune(Ni) = TT (Ni) × PT (Ni) + U(Ni) × EPowerUp

whereTT (Ni) is the tuning time,U(Ni) is the number of times the
client needs to power up the NIC andEPowerUp is the amount of
energy incurred in powering up the NIC.

Given the clients profiles and their corresponding registered que-
ries, an operator placement algorithm decides to shift some of the
computation to the client-side, if it is beneficial in reducing the
overall total energy consumption. Specifically, it splits the query
plan into two segments, where the first segment is processed on the
server, whereas the second segment is processed on the client. For
instance, if clientNi registered queryQi, thenQi might be split at
operatorOi

x with segmentGi
leaf,x on the server andGi

x+1,root on
the client.

For a clientNi running segmentGi
x+1,root, the processing time

is computed as:

TP (Ni) =
X

Oj∈Gi
x+1,root

cj × tnj−1

Speed(Ni)

Hence,the processing energyEProcess consumed by each wire-
less clientNi is expressed as:

EProcess(Ni) = TP (Ni) × PP (Ni)

3.2 MinDataCut
In this first algorithm, our objective is to focus on the tuning en-

ergy component in Eq.1. That is, minimize the total amount of en-
ergy spent by the wireless clients for tuning into the broadcast chan-
nel. Towards this, we leverage the discrepancies in size between the
intermediate results within each query. To illustrate this, assume
a queryQk composed of operators< Ok

l , ..., Ok
x, Ok

y , ..., Ok
r >

where the sizes of the intermediate results are expressed as:<
dsk

l , ..., dsk
x, dsk

y, ..., dsk
r>. This sequence of data sizes is typically

non-monotonic as it might increase or decrease across segments of
operators. For example, if(si

y × pi
y) < 1, thendsk

y < dsk
x. That

is, Ok
y is a data reduction operator which decreases the size of its

input data. On the other hand, if(si
y × pi

y) > 1, thendsk
y > dsk

x.
That is,Ok

y is a data production operator which increases the size
of its input data.

To minimize the tuning energy of queryQk, it is sufficient to
select the intermediate result with the smallest size, saydsk

x. This
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result is selected for broadcast and all the operators followingOx

areshipped to the client. In the general case, however, our goal
is to minimize the total energy. That is,

Pm

i=0 ETune(Ni), where
m is the number of clients/queries. For this, it is sufficient to find
the set of edgesE in the operator plan that satisfy the following
conditions:

1. Each queryQi has exactly one edgeEi
x in E, and

2.
Pm

i=0

dsi
x

BW
is minimum.

The first condition above ensures that there exists one intermedi-
ate result for each query, hence the final result of each query could
be produced at the client side after shipping the necessary opera-
tors. The second condition ensures that the total size of those inter-
mediate results is minimum.

Once the set of edgesE is identified, we start moving operators
to the client side. In particular, for a queryQi, if Ei

x ∈ E, then all
the operators following operatorOi

x are moved to the client side.
That is,<Oi

x+1, ..., O
i
r>.

3.3 MinPowerCut
As discussed above, MinDataCut is expected to reduce the to-

tal tuning energy since it selects the broadcast with the minimum
length. MinDataCut, however, is oblivious to the clients capabili-
ties and limitations, such as processing speed and power. Thus, if
the operators to the right of the edges inE are expensive to pro-
cess, there is a possibility that the overall total power consumption
(i.e., tuning and processing) will be even higher than processing
everything at the server.

To avoid the drawback of MinDataCut, a natural extension is
to label the edges according to both the processing energy cost as
well as the data tuning energy cost. Specifically, the processing
cost is the expected time needed to process the intermediate result
at the client side. For instance, in queryQk, an edgeEk

x will be
labeled withdsx as before, in addition to the cost of processing
the output ofOx (i.e.,tnx) by the operators segmentGi

x+1, which
is the segment of operators that starts after the min-cut point and
ends at the root. Thus, the edge selection algorithm must satisfy
the following conditions:

1. Each queryQi has exactly one edgeEi
x in E, and

2.
Pm

i=0

“

dsi
x

BW
× PT (Ni) +

P

Oj∈Gi
x+1

tnj−1×cj

Speed(Ni)
× PP (Ni)

”

is minimum.

This is achieved by selecting the edge with the minimal label
from each query.

3.4 Broadcast-Aware Operator Selection
MinPowerCut as opposed to MinDataCut, which only considers

the tuning energy, provides the advantage of considering the energy
needed for processing at the client side. This will usually lead Min-
PowerCut to select an edge towards the end of the query plan since
it will involve placing less operators at the client. However, the se-
lected edge by MinPowerCut might have a higher data size than the
edge selected by MinDataCut. As a result, the length of the broad-
cast cycle generated by MinPowerCut is expected to be higher than
MinDataCut. Under a broadcast data dissemination mode, increas-
ing the length of the broadcast cycle has a negative impact onall
clients. In particular, each client will have to wait longer to receive
its query result and in the case of sorted broadcast, spending more
tuning energy while waiting.

The Broadcast-Aware Operator Selection (BOSe)balances the
trade-off between tuning energy and processing energy. BOSe could
be perceived as a hybrid of MinDataCut and MinPowerCut as it
integrates the desirable features of each. On one hand, like Min-
DataCut, BOSe tries to minimize the length of the broadcast cycle
so that to minimize tuning energy. On the other hard, BOSe, like
MinPowerCut, considers the extra energy needed for operator pro-
cessing at the client side.

BOSe uses the MinDataCut output as a starting point and then
applies a greedy selection process geared towards finding a seg-
ment of operators within each query and reinstate them back on the
server. Since MinDataCut gives the minimal broadcast size, that
means that any reinstatement by BOSe will incur an increase in the
broadcast no matter what. Thus, BOSe will only perform a rein-
statement if itsbenefitin terms of reducing processing energy is
greater than thecostincurred in terms of increasing tuning energy,
which depends on the broadcast organization.

At each iteration, BOSe examines all the current edges (i.e.,E)
between the server and clients. For each edgeEx ∈ E, it generates
a list of all the possible segments of operators following that edge.
That is, all the prefixes of the operator segmentGx+1,root. For
instance, in<Ok

1 , Ok
2 , Ok

3 , Ok
4 >, if Ek

1 ∈ E, then BOSe will con-
sider the cost/benefit of reinstating any of the segments:< Ok

2 >,
< Ok

2 , Ok
3 >, or < Ok

2 , Ok
3 , Ok

4 > back on the server. This pro-
cess is performed for each edge inE and the segment with highest
impact in reducing total energy is selected and its operators are re-
instated to the server. BOSe repeats the selection process until no
further improvement in energy is achievable.

3.4.1 BOSe optimization function
Recall that the total energy spent by wireless clients is the sum

of two components: tuning and processing as expressed in Eq. (1).
Also recall that at each step, BOSe is expected to increase the tun-
ing energy while decreasing the processing energy as compared to
MinDataCut. Assume these changes are∆Tune and∆Process, re-
spectively. Hence, after BOSe makes a selection, the new overall
energy consumption can be expressed as:

ETotal = (ETune + ∆Tune) + (EProcess − ∆Process)

Clearly, our objective is to select an operator segment which min-
imizes the value:∆Tune − ∆Process. Thus, we simply need to
compute that value for each operator segment under consideration
and select the one with the lowest value. To illustrate this process,
assume thatER ∈ E, hence, BOSe needs to examine all the pre-
fixes of operator segmentGR+1,root. Further, assume thatG is
one of those prefixes under examinations, which is considered as a
candidate to be moved from the clientNi back to the server side.
For instance, in Figure 3,G =< O2

2 , O2
3 >. Moving G back to the

server will reduce the processing energy by the amount∆Process,
which is computed as follows:

∆Process =
X

Oj∈G

tnj−1 × cj

Speed(Ni)
× PP (Ni)

Further, moving segmentG back to server entails removing its
input edge from the broadcast (i.e., edgeER). Further, it also en-
tails replacingER with G’s output edge, sayEA. That is,ER is
removed fromE, whereasEA is added toE (Figure 4). Hence, we
need to compute the impact of that remove/addition operation on
the tuning energy (∆Tune) which depends on the broadcast orga-
nization.

In the case ofsorted broadcast, removingER will reduce the
tuning time for the clientNi receiving data fromER. Addition-
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Q1

Q2
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Q4

Q5

MinDataCut

line

Server side Client side

Figure 3: MinDataCut and operator segment G2,3.

ally, it will also reduce the tuning time for all the clients waiting
for results that appear afterER on the broadcast cycle. This reduc-
tion per client is simplydsR/BW , wheredsR is the data size of
associated with edgeER. Hence, the total reduction is computed
as:

∆R =
dsR

BW
× (PT (Ni) +

X

N∈NR

PT (N)) (2)

whereNR is the set of clients waiting for results that appear after
ER on the broadcast cycle.

Similarly, addingEA will increase the tuning time for the client
Ni receiving data fromEA. Additionally, it will also increase the
tuning time for all the clients waiting for results that appear after
EA on the broadcast cycle (Figure 4). This increase per client is
simply dsA/BW , wheredsA is the data size of associated with
edgeEA. Hence, the total increase is computed as:

∆A =
dsA

BW
× (PT (Ni) +

X

N∈NA

PT (N)) (3)

whereNA is the set of clients waiting for results that appear after
EA on the broadcast cycle.

Moreover, under a sorted broadcast, the location of the new edge
EA on the broadcast cycle is determined according to its data size.
SincedsA > dsR, thenEA will appear at a further offset than the
one whereER. This entails that whenEA replacesER, the client
Ni will have to spend more tuning time to receiveEA than what
it used to spend to receiveER. This translates into extra tuning
energy which is computed as:

∆R,A =

P

E∈ER,A
dsE

BW
× PT (Ni) (4)

where ER,A is the set of edges on the broadcast cycle that appear
afterER and beforeEA.

Thus,∆Tune for the sorted broadcast is computed as:

∆Tune = −∆R + ∆A + ∆R,A

In the case ofindexed broadcastthe optimization is simplified
since the edge remove/add operation will only affect the client un-
der examination without any impact on the other clients in the sys-
tem (i.e.,∆R,A = 0 in Eq. 4). Thus,∆Tune for the indexed
broadcast is denoted by∆′

Tune = −∆′
R + ∆′

A, where equations 2
and 3 become

∆′
R =

dsR

BW
× PT (Ni)

Remove

Add

Figure 4: Optimization step for BOSe algorithm

∆′
A =

dsA

BW
× PT (Ni)

It is interesting to note that the above equations clearly reveal that
BOSe on indexed broadcast behaves like MinPowerCut on indexed
broadcast. This fact is also confirmed by our experimental results
in Section 4.

4. EXPERIMENTAL EVALUATION
In this section, we illustrate the performance of our proposed

algorithms over various parameters using a homegrown simulator.
First we present the experimental setup, and then we present and
discuss the results.

4.1 Experimental Setup
The input of our simulator is a complete plan of all the registered

CQs, along with the clients’ profiles which include their speed and
power consumption parameters for processing and tuning. Each
CQ consists of a set of operators and edges as described in our
model (Section 2.1), and each query is registered by one wireless
client.

The algorithms are implemented in Java and run as they would
on a real system as long as the query plan is modeled using the
data model used in the code. We have implemented our algorithms,
namely:MinDataCut, MinPowerCut, andBOSe. We have also im-
plemented an additional algorithm,ServerOps, which is our base
case, as it executes all the operators on the server and broadcasts
the final results to the clients.

For each algorithm, we have measured its performance in terms
of average energy consumption per client, which includes tuning
and processing. The parameters used for each set of experiments
are summarized in Table 1. In each experiment, we vary one of
these parameters for sensitivity analysis, as described in Section 4.2.

Table 1: Workload Default Characteristics

Parameter Values
Number of queries 20 – 300 (default 50)
Levels per query 2 – 20 (default 10)
Sources tuple rate 500 – 1000 tuples/sec
Sources tuple size 2000 – 4000 bytes
Selectivity 0.2 – 1.8, uniform
Projectivity 0.5 – 1.5, uniform
Operator costs 100 × 106 − 200 × 106 cycles
Operator cost skewness 0.2 increments (Zipf)
Hand-held device speed 1 × 109 cycles/sec
Bandwidth 125000 bytes/sec
Processing vs. Tuning power 0.16

The number of levels per query refers to the number of operators
which exist in every single-stream query in the workload. Selec-
tivities and projectivities are uniformly assigned across operators
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according to the values mentioned in Table 1. The cost of all the
operators that are at the same level across queries is generated ac-
cording to a Zipf distribution per level. The skewness of the Zipf
distribution per level is towards the high cost and is proportional
to the level number; in the default setting the skewness of operator
level i is equal to0.2 × i. The processing vs. tuning power refers
to the ratio between the power needed per unit of time of query
processing on the wireless client vs. the power needed by the same
client for a unit of time of tuning into the broadcast network. We
chose that ratio to be 0.16, but we also perform a sensitivity analy-
sis on this parameter as discussed below. The results reported are in
simulated units of energy according to the energy model described
in Section 2.

4.2 Results
We present the performance results under the settings shown in

Table 1. The values reported are averages of 15 runs for each ex-
perimental setting. We conducted the experiment using both sorted
broadcast as well as indexed broadcast.

4.2.1 Processing over tuning energy cost ratio
In our first experiment, we measured the total energy consump-

tion at all the wireless clients, as the ratio of processing to tuning
power of the nodes increases linearly from 0.01 to 0.2, while keep-
ing the tuning power constant.

Sorted Broadcast: Figure 5 shows that the energy performance
of ServerOpsis constant because this algorithm runs all operators
at the server side, hence, increasing the processing power of wire-
less clients will have no impact on its performance. The figure also
shows thatMinDataCutis linearly increasing. This is because Min-
DataCut tries to minimize only the tuning energy, but not the pro-
cessing energy. Hence,MinDataCutselects the same set of edges
for every setting regardless of the increase in power consumption
needed for processing. As the power ratio linearly increases, the
total power needed by MinDataCut also increases linearly. Once
the processing power becomes high enough, its performance be-
comes even worse than that of ServerOps because the increase in
processing costs at the nodes dwarfs the savings gained from just
minimizing the broadcast size.MinPowerCutperforms better than
MinDataCut and ServerOps for higher processing to tuning power
ratios, but it is worse than MinDataCut until the 0.08 ratio point,
because up to that point the tuning energy consumption would still
dominate the processing one. MinPowerCut, however, is oblivious
to the broadcast organization as it considers each query individu-
ally without measuring the impact of its selected edge on the other
clients in the system. For this reason,BOSeoutperforms MinPow-
erCut under the sorted broadcast organization as shown in Figure 5.
In fact,BOSeis always performing better than any of the three other
algorithms because it evaluates the different options taking into ac-
count both the broadcast organization and the processing power
costs of operators running on the wireless clients, thus striking a
fine balance between both tuning and processing energies. For in-
stance, at a processing to tuning energy ratio of 0.01 BOSe pro-
vides an improvement in energy of 48% over ServerOps and at 0.2
an improvement of 21%. The improvement over MinPowerCut at
that point is 4%.

Indexed Broadcast: When using an indexed broadcastMinData-
Cut performs worse than ServerOps even earlier than before be-
cause, under indexed broadcast, a client tunes only to its result and
the presence of other results on the broadcast has no impact on its
tuning energy consumption. Hence, the tuning energy component
carries much less weight in the overall energy consumption com-
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Figure 5: Energy consumption for Tuning Vs Processing per
unit of time for sorted broadcast.
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Figure 6: Energy consumption for Tuning Vs Processing per
unit of time for indexed broadcast.

pared to its counterpart under the sorted broadcast which makes
the processing component dominate the energy as early as the 0.04
ratio point as shown in Figure 6. Also, due to the selective tuning
provided by indexing,MinPowerCutis optimal since the local deci-
sions it makes per query lead directly to a global optimization. That
is, the optimization problem is reduced to simply finding the edge
with the minimum energy consumption per query. Under this set-
ting, BOSewill reinstate operators to the server side until it reaches
the same exact results asMinPowerCut. For instance, at 0.01 ratio
the improvement of both BOSe and MinPowerCut over ServerOps
is 53% and at 0.2 it is 7%.

Similar to this experiment, we also wanted to examine the sen-
sitivity to the operator cost parameter. Hence, we varied the mini-
mum operator cost in the range between 1 up to 450 million cycles
where the cost per operator for each setting is selected uniformly
within a range of 1 million cycles that starts at the corresponding
minimum cost of that setting. The results are shown in Figure 7 for
the sorted broadcast. It is not a surprise that the result trends match
those of Figure 5, since the impact of increasing the processing
cost resembles that of increasing the ratio between the processing
to tuning power consumption.

4.2.2 Scalability test
Our second experiment consists of two parts. In the first part we

measure the average energy consumption per wireless client as we
increase the number of queries from 20 to 300. Since we assume
that each node registers one query, the number of nodes increases
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each workload for sorted broadcast.

at the same rate as the queries. In this experiment as the number
of queries increases, the size of the broadcast is also increasing.
This only affects the sorted broadcast organization because every
addition to the broadcast affects other clients tuning energy costs as
well. In the indexed broadcast the results are the same throughout
the experiment so we omitted presenting that plot. The results for
the query scalability test experiment for sorted broadcast are shown
in Figure 8. BOSe provides the most energy gains in both cases.

In the sorted broadcast all algorithms increase linearly, with Min-
DataCut and BOSe having a smaller slope. This is because both of
them try to specifically minimize the broadcast size. Since this ex-
periment only increases the broadcast size, the performance gains
for both of these algorithms, as compared to ServersOps and Min-
PowerCut, increase as the broadcast size increases. BOSe is better
because it also optimizes in terms of operator energy cost. In this
experiment the improvement of BOSe over ServerOps is 42% when
the number of queries is 300.

The second part of this experiment keeps the number of queries
the same but increases the number of levels per query (i.e. number
of operators per query) from 2 up to 20. The results are shown in
Figure 9 and 10, and are normalized on MinDataCut to make them
easier to understand. When the sorted broadcast is used MinData-
Cut scales up to 8 levels before it gets outperformed by the other
algorithms. This shows that at that point the processing component
outweighs the tuning component. In the case of the indexed broad-
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Figure 9: Total Energy Vs. number of levels per query for
sorted broadcast, normalized on MinDataCut.
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Figure 10: Total Energy Vs. number of levels per query for
indexed broadcast, normalized on MinDataCut.

cast (Figure 10), the other algorithms outperform MinDataCut from
the start because the tuning component is very low compared to the
processing component, thus just trying to optimize the tuning part
is not enough.

5. RELATED WORK
Current DSMSs’ prototypes assume that the underlying network

layer is responsible for propagating the output data streams to end-
users. However, this decoupling of the system from the trans-
port layer eliminates the chance of exploiting the CQs’ character-
istics for better bandwidth utilization. Previous research on Pub-
lish/Subscribe and mobile information systems shows the impor-
tance of considering queries’ semantics together with employing
advanced data dissemination schemes such asdata multicastand
data broadcast(e.g., [8, 6, 4, 10, 11, 15]). In these schemes, data of
interest for multiple clients is only disseminated once, thus making
an effective use of the available bandwidth and allowing maximum
scalability. For example, the work in [10] introduced techniques for
reducing data dissemination costs in a subscription environment, by
exploring the idea of merging queries with overlapping answers.
The same concept can be applied in disseminating a DSMS’s out-
put data streams. That is, when multiple clients register the same
CQ, the output of that query is broadcast only once. Additionally,
results from overlapping CQ’s can be efficiently merged to reduce
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the bandwidth consumption as we previously proposed in [21, 22].
In the context of this paper, we utilize techniques for data organi-
zation that have been investigated in broadcast push, in particular
broadcast indexing. Several broadcast indexing techniques have
been proposed (e.g., [13]) to support selective tuning that reduces
energy consumption.

The idea of query operator shipping to reduce the network uti-
lization in a distributed database system was extensively used in
MOCHA [19]. MOCHA pushes data reducing operators towards
the data sources, and the data producing operators towards the clients.
This is similar to our approach but in our case the data is dissem-
inated to the clients through a broadcast network instead of point-
to-point. Also, [19] considers ad-hoc queries, whereas in our work
we consider CQs over data streams.

The idea of query operator distribution was proposed in dis-
tributed DSMS (D-DSMS) (e.g., Borealis [3]) for workload balanc-
ing. As the query plan and the workload may change over time,
a D-DSMS needs to have the ability to dynamically move query
operators across the physical machines to balance the load with the
goal of improving the overall performance. There are several other
approaches of CQ operator distribution in D-DSMSs that consider
data transmission overhead (e.g, [25, 7]). For example, [25] aim to
minimize communication cost while maintaining balance of load
among hosts. Also, [18] proposes an overlay network between a
D-DSMS and the physical network in order to optimize latency and
network utilization based on a multi-dimensional cost space. The
work in [7] incorporates knowledge of network characteristics such
as bandwidth and topology into operator placement algorithms.

All of the above D-DSMS operator placement schemes only con-
sider point-to-point unicast connection between the distributed nodes,
as opposed to our work where we consider broadcast push as the
means of communication. Moreover, these techniques do not take
into account any energy consumption. In the future we plan to com-
bine the goals of load-balancing, response time and energy con-
sumption into one optimization goal.

6. CONCLUSIONS
We have developed three algorithms for continuous query oper-

ator placement for a data stream management system which broad-
casts the results of continuous queries to a set of wireless clients.
The goal of the algorithms is to minimize the overall energy con-
sumption on the wireless clients. We have demonstrated the behav-
ior of the proposed algorithms with extensive experimentation and
shown that our BOSe algorithm always performs better than all the
others with improvements of up to 53%.

We are currently working on extending our algorithms to support
sharing of operators among multiple queries and sharing of queries
among multiple clients. Also we are currently working on extend-
ing our algorithms to take into consideration energy consumption
as well as response time.
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