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ABSTRACT mobile users, include monitoring of stock quotes, airline sched-

Complex event detection over data streams has become ubiquitouéJle “P‘?'atesv local news, weat_her_readlngs, anc_i traffic mforma_tlpn.
through the widespread use of sensors, wireless connectivity andSpeC.'f'Ca.”y' we consider .appllc.:apons where wireless connectivity
the wide variety of end-user mobile devices. Typically, such event and timeliness of data delivery is inherent, such as emergency man-

detection is carried out by a data stream management server execut2deMent in disaster areas. Another example is the query of a trader
ing continuous queries, previously submitted by the users. In this (Figuré 1) which processes stock price updates, at the floor of a
paper, we consider the situation where the end-users submit querie§"arket exchange. First, it filters out stocks that are not in the NAS-
from hand-held devices and the results of the continuous queries,PAQ index using the select operatoh. Then, it drops columns
which are in the form of individual data streams, are disseminated °f N0 interest (such as source information etc.) using the project

to the users over a shared broadcast medium. Specifically, we pro_operator02. Th.en, it.joins Fhe tup!e§ with the user's portfolip to
pose three power-aware query operator placement algorithms thalappend the buying Pnce using the join tab_le operétor Finally, it
calculates the user’s profit in the last 5 minutes, every 30 seconds,

determine which part of a continuous query plan is executed at the

data stream management server and which part is executed at th&'SNg the aggregate (.)per.a'@q. . . .
users’ wireless device. The algorithms’ effectiveness with respect . !N our focused applications, the end-users typically submit queries
to energy consumption is evaluated using simulation from hand-held battery-operated devices and receive the results of

CQs over a shared wireless medium. A DSMS could be effort-
lessly integrated with any of the existing wireless broadcast com-

Categories and SUbj ect Descri ptors munication infrastructure (such as MBMS [17], ISDB-T [16], Star-
H.2.4 [Database M anagement]: Systems—Query Processing, Dis- Band and Hughes Network) to support the continuous dissemina-
tributed Databases tion of the results of CQs to the end-users. However, the design of

current data dissemination techniques used in wireless networks,
especiallydata broadcastingneeds re-thinking because the con-

General Terms tinuous dissemination of the results clearly stresses the battery ca-

Algorithms, Experimentation, Measurement, Performance. pacity as well as the wireless bandwidth.
Our goal in this work, is to design operator placement algorithms
1. INTRODUCTION that work in synergy with the broadcast organization so that to min-

imize the total energy consumption on the hand-held devices. Our

Complex event detection over data streams in monitoring appli- . .
- A . approach is based on the observation that the energy costs for re-
cations has become ubiquitous through the wide spread use of sen-

. - . . .~ ceiving data are typically much higher than the energy costs for pro-
sors, wireless connectivity and the wide variety of end-user mobile . . : .
- . o ) cessing that data, an observation that has also motivated in-network
devices. Typically, such event detection is carried out ldata

stream management seri@SMS) executingcontinuous queries processing in wireless sensor networks (e.g., [14, 20]). Hence, it
(CQ), that have been previously submitted by the users [23, 2]. In is often more beneficial to broadcast an intermediate query result
DSM’SS monitoring agplication); register CQZ which continu’ouély with a relatively smaller size than to broadcast the final result. At

process unbounded data streams, looking for data that represenEhe same time the set of query operators processing the interme-

. : .~ diate result to produce the final result, is shipped to the user-side.
events of interest to the end-user, who can be stationary or mobile. : :
Examples of such applications, of equal interest to stationary and In the exam_ple described abovg, the f|_rst two operalaréSelect)
' andO; (Project) are data reducing, while the last two operatdys
This research was supported in part by NSF grant 11S-0534531 (Join Table) andD, (Aggregation) could potentially be data ex-
and NSF career award 11S-0746696 panding. ThusO3; andO4 could be shipped to the wireless user,
and the much smaller intermediate result produce@®bywill be
broadcast. The join operataR)s can be processed on the client,
since the joining portfolio table is user-specific. However, this op-
Permission to make digital or hard copies of all or part of this work for ~€rator shipping will incur an extra processing energy cost at the
personal or classroom use is granted without fee provided that copies areuser device.
not made or distributed for profit or commercial advantage and that copies  Thus, the key challenge in designing an effective operator place-
bear thls notice and the full citation on th_e first page. To copy other\lee,_t_o ment scheme is the balancing of the trade-off between the reduc-
Liﬁumﬁgzgggﬁgzrog fzir.vers orto redistribute to lists, requires prior specific tion in tuning energy and the increase in processing energy so as to
MobiDE’10, June 6, 2010, Indianapolis, Indiana, USA. minimize the overall energy consumption at the end-user devices.
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Figure 1. Continuous Query Plan

Towards this end we have developed three operator placement al-

gorithms that use different criteria for selecting the operators to
be placed on the user device. In particular, we propdseat-
aCutwhich focuses on minimizing the tuning enerdylinPower-
Cutwhich extends MinDataCut to consider the processing energy
needed for executing operators at the client-side;B@&ewhich
further extends the previous two algorithms to also consider the
broadcast data organization. In the context of this paper, we opti-
mize only for energy without considering any other metrics such as
response time minimizing which was the goal of existing operator
placement schemes in Distributed DSMSs ([3]). Also, we consider
CQs similar to the above example witklect, project, aggregate
andjoin-table operators.

The contributions of this paper are summarized as follows:

1. We present three algorithms for the placement of continu-
ous query operators across the DSMS and mobile clients in a
wireless data broadcasting environment that result in differ-
ing degrees of energy savings.

. We integrate our proposed algorithms with both sorted and
indexed data broadcast organizations.

. We provide an extensive experimental evaluation of our pro-
posed algorithms under different settings for sensitivity anal-
ysis. Our results show that BOSe performs best and can
achieve an overall energy reduction of up to 53%.

Roadmap: Section 2 provides the system model. Our three op-

erator placement algorithms are presented in Section 3. Section 4
describes our experimental setup and discusses the experiments and

results. Section 5 surveys related work.

2. SYSTEM MODEL

In our model, a DSMS allows wireless users to register CQs. In

addition to the standard modules of CQ admission manager, query
optimizer, CQ scheduler, memory manager and load shedder, the
DSMS implements a wireless disseminator which broadcasts the

results of CQ to the wireless users.

2.1 Data Stream Processing
A CQ evaluation plan generated by the query optimizer can be

EI—l

tngy_1

tsp—1

Figure2: Operator model

we simpy denote that operator segment@$. Figure 1 shows an

operator segmertts =< Oz, 03, 04 >.
In a query, each operat@” (or simply O.) could be one of

four types: selectd), project (n), aggregate (e.g ), or join-table

(Xr). Each operator is associated with three parameters:

1. Processing cost (c.): is the number of cycles needed to pro-
cess an input tuple.

. Selectivity or Productivity (s;): is the ratio of output tuples
produced byO,. after processing one input tuple. Thus,
is less than or equal to 1 for a filter operator and it could be
greater than 1 for a join operator.

3. Projectivity (ps): is the ratio between the size of a tuple
produced byO, (i.e., output size) to its size before being
processed (i.e., input size). Thus,is less than or equal to 1
for a project operator and it may be greater than 1 for a join

operator.

For an operato0,,, with upstream(Oz) = O5—1, we define
the following characterizing parameters (Figure 2):

e Number of Output Tuples (tn.): is the number of tuples
produced at the output @), after processing then,— tu-
ples in its input queue.

thgy =tng—1 X Sz

e Size of Output Tuples (ts.): is the size of each tuple pro-
duced at the output @, after processing a tuple in its input
queue.

tSe =18z—1 X Pz

e Size of Output Data (ds.): is the size of the data block
produced at the output queue@f; after processing a block
of data from its input queue.

dsz = tng X tsg

Notice that if O, is the root operator in quer§,, (i.e., O, =
OF ..), thends, is the total size of the data block produced®y.

conceptualized as a data flow tree [2, 9], where the nodes are oper2.2 Wireless Broadcast
ators that process tuples and edges represent the flow of tuples from | \yireless networks, broadcasting is the natural method to prop-

one operator to another (Figure 1). An edge from operé@pto
operatorO, means that the output 6¥, is an input toO,. Hence,
upstream(0y) = O, anddownstream(0,) = O,. Each oper-
ator is associated withqueuewhere input tuples are buffered until
they are processed.

A single-stream querg);, has a singldaeafoperatorOfeaf and a
singleroot operatorOF,,.. For example, in Figure 1); is the leaf,
whereas0, is the root. Further, in a query plapy, anoperator
segmeme.ﬁy is the sequence of operators that start©&tand
ends atO;. If the last operator o}, is the root operator, then
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agate information and guarantee scalability for bulk data transfer.
Specifically, data can be efficiently disseminated by any combina-
tion of the following two schemesbroadcast pustandbroadcast

pull [5, 24].

In this work, we adopt broadcast push since it naturally complies
with the DSMS access model where a client installs a CQ once and
the server repeatedly broadcasts the new results as they become
available. Hence, any number of clients can monitor the broad-
cast channel and retrieve data as it arrives, at a constant bandwidth

speed:BW.
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In our model, thawireless disseminatdnitiates a new broadcast As discussed in the introduction, our approach to minimizing
cycle as soon as the previous one ends and consists of the result&q.1 is based on the observation that the energy costs for receiving
produced by the CQs during the previous broadcast cycle. We data is typically much higher than the energy costs for processing
denote the broadcast result of quély as D, and its size in bytes that data. Hence, it is often beneficial to broadcast an intermediate
as| Dy |. If the final result of a query is broadcast, i.e., the result query result with a relatively smaller size than to broadcast the fi-

produced at the query root operator, tHeBy, |= ds®,,,. Oth- nal result. Accordingly, the set of query operators processing that
erwise, if the output of an internal operatof is broadcast, then intermediate results to produce the final result are moved to the
| Dy, |= dsk. client-side incurring an extra processing energy.

The resultD;, of each quen@, appears on the broadcast chan- For the algorithms to be able to calculate the trade-offs between

nel as a contiguous sequence of data packets preceded by a detuning and processing energy for each client, when a client registers
scriptor packet that contains an identifier@f and the time offset a CQ for processing it also attaches its profile. This profile includes
to the next broadcast cycle. Accordingly, each client shoure three parameters regarding the client’s characteristics:

to each broadcast cycle for results corresponding to its registered

CQs. During tuning, the client's network interface card (NIC) is 1. Speed(N): the processing speed of the client in cycles per

in active modeconsuming relatively large amounts of energy com- unit of time.

pared when the client's NIC is switched to &ie mode Hence, 2. Pp(N;): the power consumed per unit of time of processing.

the amount of energy consumed by a wireless client depends on the

data organization [4, 13, 12]. 3. Pr(N;): the power consumed per unit of time when the NIC
In this paper, we adopt two basic data organization schemes. The is active.

first one usesorted broadcasivhere the broadcast server sorts the
query results according to data size. In particular, each query result

Dy, is assigned a priority equal tgﬂ and thebroadcast is orga-

nized in descending order of priority. Hence, results with smaller Erune(N;) = Tr(N;) X Pr(N;) + U(N;) X Epowervp
size (or equivalently, shorter transmission time) will appear first
on the broadcast. This clearly maintains a broadcast that follows
the shortest job firstscheduling policy which has been shown to
minimize total response time in on-demand data broadcast [1]. Ac-
cordingly, for a clientV; that registered quer§), its tuning time
Tr(N;) is computed as:

Hence, the tuning energ¥r... consumed by each wireless
client N; is expressed as:

whereTr(V;) is the tuning timel/ (V;) is the number of times the
client needs to power up the NIC afth,yervp is the amount of
energy incurred in powering up the NIC.

Given the clients profiles and their corresponding registered que-
ries, an operator placement algorithm decides to shift some of the
computation to the client-side, if it is beneficial in reducing the

Tr(N;) = | Di |+, | Dil ‘whereVi :| Di |<| Dy | overall total energy consumption. Specifically, it splits the query
BW plan into two segments, where the first segment is processed on the

The second data organization scheme usdndexed broadcast server, whereas the second segment is processed on the client. For
where the broadcast server attaches an index at the beginning ofnstance, if clientV; registered querg)®, then@" might be split at
each broadcast cycle (i.e., a (1,1) index [13]). The index contains anoperatorO;, with segmenty.,; . on the server and; ;1 oot ON
entry for each querg); on the broadcast in the form Qx, t >, the client. _
wheret;, is the time offset of)'s result within the broadcast cycle. For a clientlV; running segment+; ;1 .., the processing time
Under such a scheme, the client needs to first tune to the indexis computed as:
packet to learn the br.oa.dcast tlmgof its rgglstered query, then N ¢j X tnj_1
power off the NIC until timet;,. At time ¢, it powers on its NIC Tp(N:) = > Specd(N;)
again, tune into the broadcast to retrieve the query resultifi.g, OF€GL L] root !
and after it finishes fetching all db,’s data packets, powers off
the NIC again until the next broadcast cycle. The tuning time for a
nodeN; in the indexed broadcast is computed as:

_ |Dk| + |Inde:c| EP'rocess(Ni) = TP(Nz) X PP(Nl)
BW 3.2 MinDataCut

where| Ilndte‘r | |sttkt1e Séze Of(tjhe |ndei<r,] Wh'CthUIdf change frohm In this first algorithm, our objective is to focus on the tuning en-
one cycle o another depending on thé number of queries w Oseergy component in Eq.1. That is, minimize the total amount of en-

results are disseminated in the broadcast. ergy spent by the wireless clients for tuning into the broadcast chan-
nel. Towards this, we leverage the discrepancies in size between the
3. OPERATOR PLACEMENT intermediate results within each query. To illustrate this, assume
In this section, we formalize the placement of CQ operators in a query@;, composed of operators Of,...,0%, OF .., OF >
wireless DSMS environments and propose three operator place-where the sizes of the intermediate results are expresseet as:
ment algorithms, namelwlinDataCut, MinPowerCytandBOSe dsy,...,dsk, dsk, ..., dsi>. This sequence of data sizes is typically
31 Probl Stat t non-monotonic as it might increase or decrease across segments of
: ro. em .a emen ) operators. For example, (&}, x p;) < 1, thends; < ds. That
_ Our goal is to design operator placement algorithms that work s O is a data reduction operator which decreases the size of its
in synergy with the broadcast organization so that we minimize the input data. On the other hand, (i, x p) > 1, thends’ > ds".

total energy c_onsumptlon at the wireless cll_ents. The total_ ENeT9Y That is,OF is a data production operator which increases the size
consumption is the sum of two componerttsingandprocessing of its inpu? data

which can be expressed as: To minimize the tuning energy of quelyy, it is sufficient to
Erotat = ETune + EpProcess 1) select the intermediate result with the smallest size ds8y This

Hence the processing energyp occss consumed by each wire-
less client; is expressed as:

Tr(N;)
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result is selected for broadcast and all the operators following The Broadcast-Aware Operator Selection (BO®a)ances the
are shipped to the client. In the general case, however, our goal trade-off between tuning energy and processing energy. BOSe could
is to minimize the total energy. That i5," ; ETune(N;), where be perceived as a hybrid of MinDataCut and MinPowerCut as it

m is the number of clients/queries. For this, it is sufficient to find integrates the desirable features of each. On one hand, like Min-
the set of edge& in the operator plan that satisfy the following DataCut, BOSe tries to minimize the length of the broadcast cycle

conditions: so that to minimize tuning energy. On the other hard, BOSe, like
MinPowerCut, considers the extra energy needed for operator pro-
1. Each query); has exactly one edgg’. in E, and cessing at the client side.
; BOSe uses the MinDataCut output as a starting point and then
2.7, g‘;{/ is mini . applies a greedy selection process geared towards finding a seg-

ment of operators within each query and reinstate them back on the

The first condition above ensures that there exists one intermedi-server. Since MinDataCut gives the minimal broadcast size, that

ate result for each query, hence the final result of each query couldmeans that any reinstatement by BOSe will incur an increase in the
be produced at the client side after shipping the necessary operabroadcast no matter what. Thus, BOSe will only perform a rein-
tors. The second condition ensures that the total size of those inter-statement if itsbenefitin terms of reducing processing energy is

mediate results is minimum. greater than theostincurred in terms of increasing tuning energy,
Once the set of edgégis identified, we start moving operators  which depends on the broadcast organization.
to the client side. In particular, for a quegy;, if E. € E, then all At each iteration, BOSe examines all the current edges B)e.,
the operators following operat@;, are moved to the client side.  between the server and clients. For each eiges E, it generates
Thatis,<O%,1, ..., OL>. a list of all the possible segments of operators following that edge.
. That is, all the prefixes of the operator segmeént; 1 root. FOr
3.3 MinPowerCut instance, inc OF, 05, 0%, O% >, if E¥ € E, then BOSe will con-

As discussed above, MinDataCut is expected to reduce the to-Sider the cost/benefit of remstatlng any of the segment& >,
tal tuning energy since it selects the broadcast with the minimum < O5,0% >, or < O, 0%, O > back on the server. This pro-
length. MinDataCut, however, is oblivious to the clients capabili- Cess is performed for each edgefirand the segment with highest
ties and limitations, such as processing speed and power. Thus, ifimpact in reducing total energy is selected and its operators are re-
the operators to the right of the edgesHrare expensive to pro- instated to the server. BOSe repeats the selection process until no
cess, there is a possibility that the overall total power consumption further improvement in energy is achievable.
(i.e., tuning and processing) will be even higher than processing S .
everything at the server. 3.4.1 BOSe optimization function

To avoid the drawback of MinDataCut, a natural extension is ~ Recall that the total energy spent by wireless clients is the sum
to label the edges according to both the processing energy cost a®f two components: tuning and processing as expressed in Eg. (1).
well as the data tun|ng energy cost. Spec|f|ca”y, the process"']g Also recall that at each Step, BOSe is eXpeCted to increase the tun-
cost is the expected time needed to process the intermediate resulind energy while decreasing the processing energy as compared to

at the client side. For instance, in quegy, an edgeE” will be MinDataCut. Assume these changes Arg..e andAprocess, re-
labeled withds, as before, in addition to the cost of processing SPectively. Hence, after BOSe makes a selection, the new overall
the output ofO,, (i.e.,tn.) by the operators segme@t, , ;, which energy consumption can be expressed as:

is the segment of operators that starts after the min-cut point and
ends at the root. _T_hus, the edge selection algorithm must satisfy Brotar = (Erune + Atune) + (Eprocess — Aprocess)
the following conditions:
Clearly, our objective is to select an operator segment which min-
1. Each query; has exactly one edgg’, in E, and imizes the value:Arune — Aprocess. Thus, we simply need to
» compute that value for each operator segment under consideration
ds? tn Xc P H i
2.7, (BW x Pr(N:i) + 3, jeGi,, Sp]le(N]) X PP(NZ-)) and select the one with the lowest value. To |IIustr§te this process,
f i assume thaFr € E, hence, BOSe needs to examine all the pre-
is minimum. . )
fixes of operator segmer¥ r+1,r00t. Further, assume that is
one of those prefixes under examinations, which is considered as a
candidate to be moved from the clieN} back to the server side.
For instance, in Figure 37 =< 0%, 02 >. Moving G back to the

This is achieved by selecting the edge with the minimal label
from each query.

3.4 Broadcast-Aware Operator Selection server will reduce the processing energy by the amadumtocess,
MinPowerCut as opposed to MinDataCut, which only considers which is computed as follows:
the tuning energy, provides the advantage of considering the energy Aprosess = Z tnj—1 X ¢j cJ x Pp(N)

needed for processing at the client side. This will usually lead Min-
PowerCut to select an edge towards the end of the query plan since
it will involve placing less operators at the client. However, the se-  Furthe, moving segmenG back to server entails removing its
lected edge by MinPowerCut might have a higher data size than theinput edge from the broadcast (i.e., edge). Further, it also en-
edge selected by MinDataCut. As a result, the length of the broad- tails replacingEr with G's output edge, sa¥ 4. That is,Er is

cast cycle generated by MinPowerCut is expected to be higher thanremoved fromE, whereast 4 is added tdE (Figure 4). Hence, we
MinDataCut. Under a broadcast data dissemination mode, increas-need to compute the impact of that remove/addition operation on
ing the length of the broadcast cycle has a negative impaetlon  the tuning energyAr...) which depends on the broadcast orga-
clients. In particular, each client will have to wait longer to receive nization.

its query result and in the case of sorted broadcast, spending more In the case oforted broadcastremoving Er will reduce the
tuning energy while waiting. tuning time for the clientV, receiving data fromF'r. Addition-

Speed
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Server side <.‘:'/ ==>Client side

MinDataCut
line

Figure 3: MinDataCut and operator segment G> 3.

ally, it will also reduce the tuning time for all the clients waiting
for results that appear aftéfr on the broadcast cycle. This reduc-
tion per client is simplydsr/ BW, wheredsr is the data size of
associated with edg€'r. Hence, the total reduction is computed
as:

__dsr

Ar = gy

x (Pr(N;)+ Y Pr(N)) 2

NeNg
whereNg is the set of clients waiting for results that appear after
Er on the broadcast cycle.

Similarly, addingE 4 will increase the tuning time for the client
N; receiving data fromE 4. Additionally, it will also increase the
tuning time for all the clients waiting for results that appear after
E 4 on the broadcast cycle (Figure 4). This increase per client is
simply dsa/BW, whereds  is the data size of associated with
edgeF 4. Hence, the total increase is computed as:

x (Pr(Ni) + Y Pr(N))

NeN,

_ dsa
~ BW

Aa (3

whereN, is the set of clients waiting for results that appear after
E 4 on the broadcast cycle.

| Egra | N,

| E} B | B

Ei(Er) L5(Ea)

Remove

Figure 4. Optimization step for BOSe algorithm

dsa
BW

Itis interesting to note that the above equations clearly reveal that
BOSe on indexed broadcast behaves like MinPowerCut on indexed
broadcast. This fact is also confirmed by our experimental results
in Section 4.

Aiq = X PT(NZ)

4. EXPERIMENTAL EVALUATION

In this section, we illustrate the performance of our proposed
algorithms over various parameters using a homegrown simulator.
First we present the experimental setup, and then we present and
discuss the results.

4.1 Experimental Setup

The input of our simulator is a complete plan of all the registered
CQs, along with the clients’ profiles which include their speed and
power consumption parameters for processing and tuning. Each
CQ consists of a set of operators and edges as described in our
model (Section 2.1), and each query is registered by one wireless
client.

The algorithms are implemented in Java and run as they would
on a real system as long as the query plan is modeled using the
data model used in the code. We have implemented our algorithms,
namely:MinDataCut MinPowerCut andBOSe We have also im-
plemented an additional algorithrBerverOpswhich is our base
case, as it executes all the operators on the server and broadcasts
the final results to the clients.

For each algorithm, we have measured its performance in terms
of average energy consumption per client, which includes tuning

Moreover, under a sorted broadcast, the location of the new edgeand processing. The parameters used for each set of experiments

E 4 on the broadcast cycle is determined according to its data size.
Sincedsa > dsg, thenE 4 will appear at a further offset than the
one whereEr. This entails that wheilv 4 replacesEr, the client

N; will have to spend more tuning time to recei#, than what

it used to spend to receivBr. This translates into extra tuning
energy which is computed as:

Z 5 dSE
AR = EE;# X Pr(N;) 4)

where Eg 4 is the set of edges on the broadcast cycle that appear
after E'r and beforel 4.
Thus,Ar..e for the sorted broadcast is computed as:

ATune = —Ar +Aa+ Ar,a

In the case ofndexed broadcaste optimization is simplified
since the edge remove/add operation will only affect the client un-
der examination without any impact on the other clients in the sys-
tem (i.e.,Ar,a = 0in Eq. 4). Thus,Arune for the indexed
broadcast is denoted kYr.,,.,. = —A’z + A’4, where equations 2
and 3 become
r_ dsr
BT BwW

A X PT(NZ)
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are summarized in Table 1. In each experiment, we vary one of
these parameters for sensitivity analysis, as described in Section 4.2.

Table 1: Workload Default Characteristics

Values

20 — 300 (default 50)
2 — 20 (default 10)

500 — 1000 tuples/sec
2000 — 4000 bytes
0.2 — 1.8, uniform
0.5 - 1.5, uniform

100 x 10° — 200 x 10° cycles

0.2 increments (Zipf)
1 x 10” cycles/sec
125000 bhytes/sec

0.16

Par ameter

Number of queries
Levels per query
Sources tuple rate
Sources tuple size
Selectivity

Projectivity

Operator costs
Operator cost skewness
Hand-held device speed
Bandwidth

Processing vs. Tuning powse

=

The number of levels per query refers to the number of operators
which exist in every single-stream query in the workload. Selec-
tivities and projectivities are uniformly assigned across operators
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. . . . \4
according to the values mentioned in Table 1. The cost of all the Broadcast: Sorted by size . S

operdors that are at the same level across queries is generated ac
cording to a Zipf distribution per level. The skewness of the Zipf
distribution per level is towards the high cost and is proportional
to the level number; in the default setting the skewness of operator
leveli is equal t00.2 x i. The processing vs. tuning power refers
to the ratio between the power needed per unit of time of query
processing on the wireless client vs. the power needed by the same
client for a unit of time of tuning into the broadcast network. We
chose that ratio to be 0.16, but we also perform a sensitivity analy-
sis on this parameter as discussed below. The results reported are i

38,0001

30,000 T
25,000 1
20,000 1
15,000 1
10,000 1

5000 1

Total Energy Consumption on Nodes

simulated units of energy according to the energy model described 0 0.04 0.08 0.12 0.16 0.2
in Section 2. Processing to Tuning Energy Factor
4.2 Results

We present the performance results under the settings shown inf19ure 5: Energy consumption for Tuning V's Processing per
unit of time for sorted broadcast.

Table 1. The values reported are averages of 15 runs for each ex-
perimental setting. We conducted the experiment using both sorted

broadcast as well as indexed broadcast. 10,0001

9000 T
8000 1
7000 1
6000 T
5000 1
4000 T
3000 1
2000 1
1000 1

Broadcast: Index

4.2.1 Processing over tuning energy cost ratio

In our first experiment, we measured the total energy consump-
tion at all the wireless clients, as the ratio of processing to tuning
power of the nodes increases linearly from 0.01 to 0.2, while keep-
ing the tuning power constant.

ServerOps

MinPowerCut

Sorted Broadcast: Figure 5 shows that the energy performance
of ServerOpss constant because this algorithm runs all operators
at the server side, hence, increasing the processing power of wire- , , , , , , , , , .
less clients will have no impact on its performance. The figure also 0 0.04 0.08 0.12 0.16 0.2
shows thaMinDataCutis linearly increasing. This is because Min- Processing to Tuning Energy Factor
DataCut tries to minimize only the tuning energy, but not the pro-
cessing energy. HenchlinDataCutselects the same set of edges ) ] )
for every setting regardless of the increase in power consumption Figure 6: Energy consumption for Tuning Vs Processing per
needed for processing. As the power ratio linearly increases, theUnit of timefor indexed broadcast.
total power needed by MinDataCut also increases linearly. Once

the processing power becomes high enough, its performance be'ﬁ'lared to its counterpart under the sorted broadcast which makes

Total Energy Consumption on Nodes

comes even worse than that of ServerOps because the increase i ) .

processing costs at the nodes dwarfs the savings gained from jus € processing comppnent dominate the energy as early. as the.0.04

minimizing the broadcast siz&inPowerCutperforms better than ratlo_ point as shoyvn n Figure 6. Also, _due tc_) the selective tur_nng

MinDataCut and ServerOps for higher processing to tuning power p.rowd.ed by |ndeX|ngM|nPower§:uns optimal since th.e Ipca} deci-
sions it makes per query lead directly to a global optimization. That

ratios, but it is worse than MinDataCut until the 0.08 ratio point, is. the optimization problem is reduced to simply finding the edge
because up to that point the tuning energy consumption would still ™} pumi P . Py g the edg
with the minimum energy consumption per query. Under this set-

dominate the processing one. MinPowerCut, however, is oblivious ting, BOSewill reinstate operators to the server side until it reaches
to the broadcast organization as it considers each query individu- 9 P . .
the same exact results B8nPowerCut For instance, at 0.01 ratio

ally without measuring the impact of its selected edge on the other : .
. - . . the improvement of both BOSe and MinPowerCut over ServerOps
clients in the system. For this reas@0QSeoutperforms MinPow is 53% and at 0.2 it is 7%,

erCut under the sorted broadcast organization as shown in Figure 5.7 _ " - ) .
Similar to this experiment, we also wanted to examine the sen-

Infact, BOSes always performing better than any of the three other sitivity to the operator cost parameter. Hence, we varied the mini-

algorithms because it evaluates the different options taking into ac- UM ODerator cost in the ranae between 1 up to 450 million cveles
count both the broadcast organization and the processing POWET here ?he cost per operator ?or each settin pis selected unifgrml
costs of operators running on the wireless clients, thus striking a per op 9 y

fine balance between both tuning and processing energies. For in_WIthIn a range of 1 million cycles that starts at the corresponding

stance, at a processing to tuning energy ratio of 0.01 BOSe pro-tmhg"sn;?tr; dcgf;;(jégztt ﬁ??g?%t;h: :e?.:gisgf;zogg 'E E'g:(;: r7nf’§(r:h
vides an improvement in energy of 48% over ServerOps and at 0.2 1 urpri u

an improvement of 21%. The improvement over MinPowerCut at those of Figure S, since the ”f“paC‘ of Increasing the processing
that point is 4%. cost resembles that of increasing the ratio between the processing

to tuning power consumption.

Indexed Broadcast: When using an indexed broadcMinData- .
Cut performs worse than ServerOps even earlier than before be- 4-2.2  Scalability test
cause, under indexed broadcast, a client tunes only to its result and Our second experiment consists of two parts. In the first part we
the presence of other results on the broadcast has no impact on itsneasure the average energy consumption per wireless client as we
tuning energy consumption. Hence, the tuning energy componentincrease the number of queries from 20 to 300. Since we assume
carries much less weight in the overall energy consumption com- that each node registers one query, the number of nodes increases
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per tuplefor sorted broadcast. The x-axisdepictstheminimum sorted broadcast, normalized on MinDataCut.
number of cyclesin any operator. The maximum equals the
minimum plus1 - 10°.
30001 Broadcast: Sorted by size ServerOps 11
S MinPowerCut cxg 1 Ao A——A——A——A——ADataMin Cut
B 25007 Qo091
£ =
5 £ % 0.8T1
w0 | S o L
S o 2000 inDataCut 2% 0.7
U'g OSe 8 - 06T
§z 1500 2505t
T o3
ca o N 047
w 1000 T 5=
% w g 037
g 500 + g 5027 |gerverl\O/lpsC
owerMinCut
z FZoar BOSe
0 I I I I I Il 0 +
0 50 100 150 200 250 300 o 2 4 6 & 10 12 14 16 18 20
Number of Queries in workload Number of levels per query
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each workload for sorted broadcast. indexed broadcast, normalized on MinDataCut.

at the same rate as the queries. In this experiment as the numbetast (Figure 10), the other algorithms outperform MinDataCut from
of queries increases, the size of the broadcast is also increasingthe start because the tuning component is very low compared to the
This only affects the sorted broadcast organization because everyprocessing component, thus just trying to optimize the tuning part
addition to the broadcast affects other clients tuning energy costs asis not enough.
well. In the indexed broadcast the results are the same throughout
the experiment so we omitted presenting that plot. The results for
the query scalability test experiment for sorted broadcast are shown5- RELATED WORK
in Figure 8. BOSe provides the most energy gains in both cases. Current DSMSs’ prototypes assume that the underlying network
In the sorted broadcast all algorithms increase linearly, with Min- layer is responsible for propagating the output data streams to end-
DataCut and BOSe having a smaller slope. This is because both ofusers. However, this decoupling of the system from the trans-
them try to specifically minimize the broadcast size. Since this ex- port layer eliminates the chance of exploiting the CQs’ character-
periment only increases the broadcast size, the performance gainsstics for better bandwidth utilization. Previous research on Pub-
for both of these algorithms, as compared to ServersOps and Min-lish/Subscribe and mobile information systems shows the impor-
PowerCut, increase as the broadcast size increases. BOSe is bettéance of considering queries’ semantics together with employing
because it also optimizes in terms of operator energy cost. In this advanced data dissemination schemes sudates multicastand
experiment the improvement of BOSe over ServerOps is 42% when data broadcasfe.g., [8, 6, 4, 10, 11, 15]). In these schemes, data of
the number of queries is 300. interest for multiple clients is only disseminated once, thus making
The second part of this experiment keeps the number of queriesan effective use of the available bandwidth and allowing maximum
the same but increases the number of levels per query (i.e. numberscalability. For example, the work in [10] introduced techniques for
of operators per query) from 2 up to 20. The results are shown in reducing data dissemination costs in a subscription environment, by
Figure 9 and 10, and are normalized on MinDataCut to make them exploring the idea of merging queries with overlapping answers.
easier to understand. When the sorted broadcast is used MinDataThe same concept can be applied in disseminating a DSMS'’s out-
Cut scales up to 8 levels before it gets outperformed by the other put data streams. That is, when multiple clients register the same
algorithms. This shows that at that point the processing componentCQ, the output of that query is broadcast only once. Additionally,
outweighs the tuning component. In the case of the indexed broad-results from overlapping CQ’s can be efficiently merged to reduce
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