
Admission Control Mechanisms for Continuous
Queries in the Cloud∗

Lory Al Moakar 1‡, Panos K. Chrysanthis 1, Christine Chung 2‡, Shenoda Guirguis 1,
Alexandros Labrinidis 1, Panayiotis Neophytou 1, Kirk Pruhs 1

1 Department of Computer Science, University of Pittsburgh

2 Department of Computer Science, Connecticut College

{lorym, panos, shenoda, labrinid, panickos, kirk}@cs.pitt.edu

cchung@conncoll.edu

Abstract—Amazon, Google, and IBM now sell cloud comput-
ing services.We consider the setting of a for-profit business selling
data stream monitoring/management services and we investigate
auction-based mechanisms for admission control of continuous
queries. When submitting a query, each user also submits a
bid of how much she is willing to pay for that query to run.
The admission control auction mechanism then determines which
queries to admit, and how much to charge each user in a way
that maximizes system revenue while being strategyproof and
sybil immune, incentivizing users to use the system honestly.
Specifically, we require that each user maximizes her payoff
by bidding her true value of having her query run. We design
several payment mechanisms and experimentally evaluate them.
We describe the provable game theoretic characteristics of each
mechanism alongside its performance with respect to maximizing
profit and total user payoff.

I. INTRODUCTION

The growing need for monitoring applications such as the
real-time detection of disease outbreaks, tracking the stock
market, sensor networks, and personalized and customized
Web alerts, has led to a paradigm shift in data processing
paradigms, from Database Management Systems (DBMSs) to
Data Stream Management Systems (DSMSs) (e.g., [1], [2],
[3]). In contrast to DBMSs in which data is stored, in DSMSs,
monitoring applications register Continuous Queries (CQs)
which continuously process unbounded data streams looking
for data that represent events of interest to the end-user.
There are already a number of commercial stand-alone

DSMSs on the market, such as Streambase [4], S-stream [5]
and Coral8 [6], aiming to support specific applications. We
consider the setting of a business that seeks to profit from sell-
ing data stream monitoring/management services. One might
imagine that a DSMS rents server capacity to clients similar to
the way Amazon, Google, and IBM now sell cloud computing
services [7], [8], [9]. Auctions, used for example by Google
to sell search engine ad words, are a proven way of both
maximizing a system’s potential profit, as well as appealing
to the end-user (client). Instead of a business selling their
services at a set price, an auction mechanism (soliciting bids,

∗This was supported in part by an IBM faculty award, and from NSF grants
CNS-0325353, CCF-0514058, IIS-0534531, IIS-0746696 and CCF-0830558.

‡Authors are listed in alphabetical order. This work was done while the
third author was a graduate student at Pitt.

then selecting winners) allows a system to charge prices per
client based on what the individual client is willing to pay.
And perhaps most compellingly, an auction setting allows the
system to subtly control the balance between overloading their
servers and charging the right prices. Hence, we investigate
auction-based mechanisms for admission control of CQs to
be serviced by the DSMS center.
One of the key challenges to designing these auction

mechanisms is determining how to best take advantage of the
shared processing between CQs. The fact that some queries
can share resources obfuscates each query’s actual load on the
system. Without clear-cut knowledge of each query’s load on
the system, optimally selecting the queries to admit becomes
exceedingly challenging from a combinatorial perspective.
From a business point of view, the most obvious design

goal for the admission control mechanism is to maximize
profit. Another first class design goal for the mechanism is to
not be manipulable by users. Specifically, we desire that the
mechanism is strategyproof (also known as incentive compat-
ible or truthful), which means a client always maximizes her
payoff by bidding her true valuation for having her query run.
Auction-based profit-driven businesses like eBay and Google
AdWords attempt to design and use strategyproof auction
mechanisms, even at the expense of potential short-term profit,
because when users perceive that the system is manipulable,
they have less trust in the system and are less likely to continue
using it. Hence requiring that the auction based admission
control mechanisms be strategyproof is an investment in the
long-term success.
Besides users not being truthful about their valuations,

another way users may manipulate the system is by submitting
bogus queries. Specifically, a user may increase her payoff
by submitting queries that she has no interest in. We call a
mechanism that is not susceptible to this kind of manipulation
sybil immune. Hence, toward establishing the DSMS center,
our ultimate goal is to design a CQ admission control mech-
anism which is strategyproof and sybil immune. This led us
to develop a number of admission control mechanisms with
different properties based on sound principles that allow their
formal validation as strategyproof and/or sybil immune. We
have also experimentally identified potential tradeoffs in terms
of system profit, client payoff and rate of CQ admission[10].

978-1-4244-5446-4/10/$26.00 © 2010 IEEE ICDE Conference 2010409Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:45:51 UTC from IEEE Xplore.  Restrictions apply. 



Clearly the most important of them for our business is system
profit and interestingly, the mechanism which is strategyproof
and sybil immune offers the best tradeoff with respect to profit.
To summarize, our contributions are:

• We introduce the notion of sybil immunity for auction
mechanisms.

• We propose a number of mechanisms for this problem
(four natural, greedy mechanisms ) and show that they
are strategyproof, but only CAT (CQ Admission based on
Total load) is also sybil immune.

• We experimentally show that CAT provides the best trade-
off between system profit and total user payoff.

II. SYSTEM MODEL

In our model, the DSMS center has an admission control
mechanism that supports a subscription period. During each
subscription period, say a day, users submit queries qi (i =
1 ... n) along with a bid bi. At the end of each subscription
period, the mechanism evaluates the users’ bids, and returns
a decision about which CQs to admit and run the next day. It
also returns the price pi charged to each admitted qi.
A bid bi expresses a declared bound on how much a user

is willing to pay to have query qi executed. Further each user
has a private value vi expressing how much having query qi

run is really worth to her. The payoff (aka utility) ui of the
user that submitted query qi is vi − pi if qi is accepted, and 0
otherwise.
The aggregate load of the operators in the accepted CQs can

be at most the capacity of the server. We model the system
capacity as the amount of work that can be executed in a time
unit, given the system’s resources (CPU, memory, etc.).
For our purposes, it is sufficient to view a CQ as a collection

of operators ignoring their dependencies. We assume that
each operator oj has an associated load cj that represents the
fraction of the system’s capacity that oj will use, and this load
can at least be reasonably approximated by the system [1], [3].
We consider two different definitions of the load of the

query. The total load of a query is the sum of the loads of
its operators. The fair share load of a query is the sum of the
fair-share load of its operators, where the fair-share load of an
operator is the load of the operator divided by the number of
queries that share that operator. It is expected that many CQs
may contain the same operator. Shared operator processing has
already been proposed and utilized in the literature ([1], [11],
[12]). Operator sharing is based on the premise that many CQs
are monitoring a few hot streams, and many of the CQs are
similar, but not identical.

III. PROPOSED MECHANISMS

In this section, we present several greedy CQ auction mech-
anisms. We show that all of these mechanisms, CAT, CAT+
(an extension to CAT), CAF (CQ Admission based on Fair
Share), and CAF+ (an extension to CAF) are strategyproof.
Each of these mechanisms has the following form:

• Sort queries in order of decreasing profit density (bid per
unit of required server load), and then

• admit queries until the server is full.
A. Clients Chosen by Total Load (CAT, CAT+)

In the following subsections, we propose two mechanisms
using the above form based on the total load of a query: CAT
and CAT+.

CAT (CQ Admission based on Total load).
Our first strategyproof mechanism that depends on the total

load CT
i is shown in Algorithm 1.

Algorithm 1 Our basic total load mechanism (CAT). Input: A set
of queries each with its total load CT

i and its corresponding bid bi .
Output: The set of queries to be serviced and their corresponding
payments.

1) Set priority Pri to bi/CT
i for each query i.

2) Sort and renumber queries in non-increasing Pri so that
Pr1 ≥ Pr2 ≥ . . . ≥ Prn.

3) Add the maximal prefix of the queries in this ordered list that
fits within server capacity to the winner list.

4) Let lost be the index of the first losing user in the above
priority list.

5) Charge each winner i a payment of pi = CT
i (blost/CT

lost).
Charge all other users 0.

Selecting winners. Steps 1 through 3 of Algorithm 1 greedily
select winners as follows. A priority is assigned to each
operator, where the priority is the value-load ratio: Pri =
bi/CT

i . Then the list of CQs is sorted in descending order
of these priority values. The algorithm admits CQs from the
priority list in this order until the remaining load of the next
CQ qj does not cause system capacity to be exceeded. The
remaining load of query qj is the total load of all the operators
of qj except those operators that are shared with CQs that have
already been chosen as winners.

Calculating payments. Once the algorithm selects the winners,
it calculates the payment for each winning user according to
Steps 4 and 5 of Algorithm 1.

Strategyproofness. The CAT mechanism is strategyproof.
Please refer to [10] for the proof.

CAT+: An Extension to CAT. CAT+ extends CAT by al-
lowing the algorithm to continue until there are no unserviced
CQs left that will fit in the remaining server capacity.
Selecting winners. While CAT stops as soon as it encounters
a query whose load exceeds remaining capacity, CAT+ skips
over any queries that are too costly, continuing onto more
light-weight queries down in the priority list.

Calculating payments. The algorithm calculates the payment
of each selected query (or winning user) based on each user’s
movement window. Intuitively, the movement window of a
winning user is the amount of freedom the user has to bid
lower than her actual valuation without losing:
Definition 1: In CAT+, a user’s movement window is de-

fined as a sublist of the complete list of queries ordered in

410Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:45:51 UTC from IEEE Xplore.  Restrictions apply. 



descending priority Pri = bi/CT
i . We will refer to this list

as the priority list. The movement window of winning user
i begins with the user just after user i in the priority list,
and ends at the first user j in the priority list that satisfies
the following property: if user i’s bid was changed so that
it directly followed the position of user j in the priority list,
CAT+ would no longer choose query i as a winner. If such a
user j does not exist, then user i’s movement window spans
the entire remainder of the priority list.
Definition 2: For each winning query qi, last(i) is defined

to be the first query which is outside qi’s movement window. If
there are no queries remaining outside the movement window
of qi, then last(i) is set to null.
Since last(i) is the lowest position user i can lower her bid

to without losing, intuitively using last(i) to set the payment
of user i insures that she has no incentive to lie about her bid.
Consequently, for each winner i, the algorithm first calculates
the identity of last(i). Then the payment for the selected query
is defined as pi = CT

i · blast(i)/CT
last(i). If user i’s movement

window included all remaining queries in the priority list, i.e.,
if last(i) = null, then the payment of user i is 0.

Strategyproofness. The proof that CAT+ is strategyproof is
similar to that of CAT (see [10]).

B. Clients Chosen by Fair Share Load (CAF, CAF+)

We developed two more mechanisms that are exactly anal-
ogous to the mechanism from Section III-A, except that we
replace every incidence of the static total load CT

i with that
fair share load CSF

i :

• CAF (CQ Admission based on Fair share load): analo-
gous to CAF described in Section III-A.

• CAF+: analogous to CAT+ described in Section III-A.

Strategyproofness. Under CAF and CAF+, a user might be
tempted to lie about which operators are contained in her
query because of the concept of fair share load. However, both
CAF and CAF+ are bid-strategyproof (clients maximize their
payoff when bidding their true valuations) and strategyproof
(clients maximize their payoff when both bidding truthfully
and submitting only the operators in the query actually desired
by the user). Refer to [10] for the proofs of these properties.

IV. SYBIL ATTACK

Recall that a mechanism is sybil immune when no user
can increase her payoff by submitting queries that she does
not value. Both the CAF or CAF+ mechanisms are not
sybil immune. A user i can create fake users with negligible
valuations whose queries share operators with qi. This will
lower the attacker’s fair share load, and enabling her to be
selected as a winner while decreasing her payment.
In contrast to the fair share load, a user’s total load is not

dependent on the number of other users sharing her load, and
therefore CAT is sybil immune. However, CAT+ is not because
the arrival of additional queries might cause a loser to become
a winner with positive payoff. Proofs for these properties can
be found in [10].

V. EXPERIMENTAL EVALUATION

In this section, we demonstrate the behavior of our proposed
auction-based admission control mechanisms using simulation.
All of them were implemented in Java.
Metrics. For each mechanism, we measured the following

performance metrics:

• Profit: the sum of the payments of the admitted queries.
• Total user payoff : the sum of the valuations (bids) of the
admitted queries minus the payments. Total user payoff
can be seen as an indication of total user satisfaction
under each mechanism.

• System utilization: the used capacity of the server.

The reported results are the average of running each algorithm
on 50 different sets of workload.

TABLE I

WORKLOAD CHARACTERISTICS

Number of workload sets 50
Number of queries 2000
Number of operators 700 ∼ 8800
Max Degree of Sharing [1 − 60] - Zipf, skewness: 1
Maximum Bid 100 - Zipf, skewness: 0.5
Maximum Operator Load 10 - Zipf, skewness: 1
System Capacity 15K

Workload.We summarize the workload parameters in Table
I. We generated 50 sets of workload for four different system
capacities. Each set contains a number of different input
instances. An input instance consists of users’ queries along
with their bids, and is parameterized by:

• System capacity.
• Maximum degree of sharing: The degree of sharing of
an operator is the number of queries that share a single
operator, and the maximum is taken over all the operators.

We varied the maximum degree of sharing from 1 to 60. We
keep the average query load the same throughout a workload
set, while varying the maximum degree of sharing. Operators
are assigned to queries randomly, where for each operator, the
number of queries sharing it is drawn from a Zipf distribution.
Experimental Results. Figure 1(a) shows the system profit

as the degree of sharing ranges from 1 to 60, for a system
with capacity 15,000. CAF and CAT are the best for profit, as
they do not admit queries as greedily as CAF+ and CAT+ do,
which means the prices they charge the admitted queries are
much higher than CAF+ and CAT+. The profit of CAF+ and
CAT+ decrease as degree of sharing increases because they are
simply admitting so many queries (as sharing increases) that
the prices they are charging continue to be driven downward.
Because the queries are selected in decreasing order of density
and charged a per-unit price equal to the per-unit bid of the
first losing query, very few queries lead to higher prices, more
queries lead to lower prices.
At the second crossover point between CAF and CAT, CAF

begins to admit such a high rate of queries that the prices it is
charging are being driven dramatically downward (remember,

411Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:45:51 UTC from IEEE Xplore.  Restrictions apply. 



(a) System Profit (b) Total User Payoff

Fig. 1. Figure 1(a) shows the system profit for a system capacity of 15,000. Figure 1(b) shows total user payoff, which can be interpreted as a measure of
total user-satisfaction. A user’s payoff is defined as her valuation minus her payment. Seen here is the sum of winning users’ payoffs.

query valuations are drawn from a skewed distribution), reduc-
ing overall profit faster than the gain in profit from admitting
more queries. The profit of CAF begins to really dive, as the
payments are an increasing function of each query’s fair share
load, which also shrinks as the degree of sharing increases.
With respect to maximizing total user payoff (Figure 1(b)),

CAF+, of course, has the highest payoff because not only are
the most queries admitted under CAF+, but users are only
paying for their fair share load, rather than for their total load.
As the degree of sharing increases, CAF begins to overtake
CAT+ in total user payoff because fair share load per user
is decreasing, which decreases payments, increasing payoffs.
Each query’s total load on the other hand, remains constant as
the degree of sharing increases.
The tradeoff between the System Profit to the Total User

Payoff can be quantified using their ratio. Table II shows this
ratio for all the mechanisms at the degree of sharing of 40
where CAF provides the best system profit and at 60 where
CAT provides the best system profit. Clearly, CAT provides
the best tradeoff between profit and user payoff.

TABLE II

TRADEOFF BETWEEN SYSTEM PROFIT AND TOTAL USER PAYOFF

Degree of sharing CAT CAT+ CAF CAF+
60 0.85 0.125 0.41 0.05
40 0.75 0.176 0.57 0.11

In terms of utilization, we found that all proposed mecha-
nisms admit queries so as to utilize more than 98 percent of
the system’s capacity.

VI. CONCLUSION

In this paper, we are able to explore a novel way of describ-
ing user preferences in the CQ admission control problem by
using an auction model. Although, most data stream admission

control (load shedding) algorithms work at the tuple level, we
believe that focusing on the query level, as we do in this work,
is equally important.
We provided a model for the problem that allows us to

establish its difficulty and complexity. We introduced the
notion of sybil immunity for auction mechanisms and designed
greedy and randomized auction mechanisms for this problem
which are all strategyproof. We conducted experiments to
evaluate the performance of these mechanisms for metrics such
as profit, admission rate, and total user payoff, and we showed
that one of the mechanisms namely CAT is sybil immune and
offers the best tradeoff with respect to profit.

REFERENCES

[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” VLDBJ, vol. 12, no. 2, pp.
120–139, 2003.

[2] T. S. Group, “Stream: The stanford stream data manager,” IEEE Data
Engineering Bulletin, 2003.

[3] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs, “Algo-
rithms and metrics for processing multiple heterogeneous continuous
queries,” ACM Trans. Database Syst., vol. 33, no. 1, pp. 1–44, 2008.

[4] “Streambase,” 2006. [Online]. Available: http://www.streambase.com
[5] System S. [Online]. Available: http://domino.research.ibm.com/

comm/research projects.nsf/pages/esps.index.html
[6] Coral8. [Online]. Available: http://www.coral8.com/
[7] S. Reiss, “Cloud computing. available at amazon.com today,” Wired,

April 2008.
[8] S. Baker, “Google and the wisdom of clouds,” Business Week, Dec.

2007.
[9] P. McDougall, “Google, ibm join forces to dominate ‘cloud computing’,”

Information Week, May 2009.
[10] C. Chung, “Evolutionary solutions and internet applications for algo-

rithmic game theory,” Ph.D. dissertation, U. Pittsburgh, Aug. 2009.
[11] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman, “Continuously

adaptive continuous queries over streams,” in SIGMOD 2002, pp. 49–60.
[12] S. Krishnamurthy, C. Wu, and M. Franklin, “On-the-fly sharing for

streamed aggregation,” in SIGMOD 2006, pp. 623–634.

412Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:45:51 UTC from IEEE Xplore.  Restrictions apply. 


