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Abstract

Quality of Service (QoS) and Quality of Data (QoD)
are the two major dimensions for evaluating any
query processing system. In the context of data
stream management systems (DSMSs), multi-query
scheduling has been exploited to improve QoS. In this
paper, we are proposing to exploit query scheduling to
improve QoD in DSMSs. Specifically, we are present-
ing a new policy for scheduling multiple continuous
queries with the objective of maximizing the freshness
of the output data streams and hence the QoD of such
outputs. The proposed Freshness-Aware Schedul-
ing of Multiple Continuous Queries (FAS-MCQ) pol-
icy decides the execution order of continuous queries
based on each query’s properties (i.e., cost and se-
lectivity) as well the properties of the input update
streams (i.e., variability of updates). Our experimen-
tal results have shown that FAS-MCQ can improve
QoD by up to 50% compared to existing scheduling
policies used in DSMSs. Finally, we propose and eval-
uate a parametrized version of our FAS-MCQ sched-
uler that is able to balance the trade-off between
freshness and response time according to the appli-
cation’s requirements.

Keywords: Quality of Service (QoS), Quality of Data
(QoD), Data Freshness, Data Stream Management
Systems, Continuous Queries, Operator Scheduling.

1 Introduction

Data streams processing is an emerging research area
that is driven by the growing need for monitoring
applications. A monitoring application continuously
processes streams of data for interesting, significant,
or anomalous events, as defined by the users. Moni-
toring applications have been used in important busi-
ness and scientific information systems, for exam-
ple, monitoring network performance, real-time de-
tection of disease outbreaks, tracking the stock mar-
ket, performing environmental monitoring via sen-
sor networks, providing personalized and customized
Web pages.

For example, consider the University of Pitts-
burgh’s Realtime Outbreak of Disease Surveillance
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System (http://rods.health.pitt.edu). Such a system
receives data from different sources (e.g., hospitals,
clinics, pharmacies, etc.) and integrates it together
in order to detect correlations or abnormal events. In
the event of detecting a disease outbreak, CDC and
health departments are notified to start mobilizing
their resources.

Efficient employment of monitoring applications
needs advanced data processing techniques that
can support the continuous processing of rapid un-
bounded data streams. Such techniques go beyond
the capabilities of traditional store-then-query Data
Base Management Systems. This need has led to
a new data processing paradigm and created a new
generation of data processing systems, called Data
Stream Management Systems (DSMS) that support
the execution of continuous queries on data streams
(Terry et al. 1992).

Aurora (Carney et al. 2002), STREAM (Motwani
et al. 2003), TelegraphCQ (Chandrasekaran et al.
2003), Tribeca (Sullivan 1996), Gigascope (Cranor
et al. 2003), Niagara (Chen et al. 2000) and Nile
(Hammad et al. 2004) are examples of current pro-
totype DSMSs. In such systems, each monitoring ap-
plication registers a set of continuous queries (CQs),
where a CQ is continuously executed with the ar-
rival of new relevant data (Figure 1). In the Real-
time Outbreak of Disease System (RODS) example,
health officials register queries for tracking specific in-
dicators of disease outbreaks by monitoring multiple
input data streams (e.g., prescription data from phar-
macies). The arrival of new updates on the input data
streams triggers the execution of the registered CQs.
The output of such a frequent execution of a contin-
uous query is what we call an output data stream (see
Figure 1).

As the amount of updates on the input data
streams increases and the number of registered
queries becomes large, advanced query processing
techniques are needed in order to efficiently synchro-
nize the results of the continuous queries with the
available updates. Efficient scheduling of updates is
one such query processing technique which success-
fully improves the Quality of Data (QoD) provided
by interactive systems.

QoD can be measured in different dimensions such
as accuracy, completeness, freshness etc. (Yeganeh
et al. 2009). In this paper, we focus on improving
QoD in a DSMS in terms of freshness as we assume
complete processing of stream data where the DSMS
operates under a reasonable load without the need
for employing load shedding or approximation tech-
niques. As such, the DSMS provides complete and
accurate results that, however, might be stale which
makes freshness the main QoD dimension to consider
for improvement.

Freshness is especially important, when we are in-
terested in an accurate view of the current physical
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world, be it an outbreak of a disease (as in the RODS
system) or the detection of traffic patterns and con-
gestions in an urban setting during a physical dis-
aster. Such accurate views must reflect all positive
event “signals” (i.e., updates) that satisfy the regis-
tered CQs.

Freshness, as well as scheduling policies for im-
proving freshness, has been studied in contexts such
as replicated databases (Cho & Garcia-Molina 2000,
2003), Web databases (Labrinidis & Roussopoulos
2001, Qu et al. 2006, Qu & Labrinidis 2007), and dis-
tributed caches (Olston & Widom 2002). To the best
of our knowledge, our work is the first to study the
problem of freshness in the context of data streams.
In this respect, our work can be regarded as com-
plementary to the current work on the processing of
continuous queries, which considers mainly Quality of
Service (QoS) metrics like response time and through-
put such as (Carney et al. 2003, Chandrasekaran et al.
2003, Babcock et al. 2003, Sutherland et al. 2005, Bai
& Zaniolo 2008, Sharaf et al. 2008).

The contributions of this paper are as follows:

1. We propose a policy for Freshness-Aware
Scheduling of Multiple Continuous Queries
(FAS-MCQ). The proposed policy, FAS-MCQ,
has the following salient features:

• It exploits the variability of the processing
costs of different continuous queries regis-
tered at the DSMS.

• It utilizes the divergence in the arrival pat-
terns and frequencies of updates streamed
from different remote data sources.

• It considers the impact of selectivity on
the freshness of the output data stream.
Reverting back to our RODS/event detec-
tion example, our proposed policy will favor
queries that lead to positive signals instead
of “blindly” processing queries that lead to
negative signals.

2. Beyond the basic FAS-MCQ policy, we have also
explored a weighted version of our FAS-MCQ
scheduling policy that supports applications in
which queries have different priorities. These pri-
orities could reflect criticality, and hence their
importance with respect to QoD captured by
freshness, or popularity, and thus be used to op-
timize the overall user satisfaction.

3. We study the trade-off between scheduling CQs
with the goal of improving QoD (using FAS-
MCQ) as opposed to scheduling to improve QoS,
which is provided by Rate-based policies such as
the ones proposed in (Sharaf et al. 2008, 2006,
Urhan & Franklin 2001)

4. Finally, we propose a parametrized version of our
FAS-MCQ scheduler that is able to balance the
trade-off between QoD and QoS according to the
application’s requirements.

In order to evaluate our proposed scheduling
policies, we have implemented a simulator of such
DSMS scheduler and ran extensive experiments. As
our experimental results have shown, FAS-MCQ can
improve QoD by up to 55% compared to exist-
ing scheduling policies used in DSMSs. FAS-MCQ
achieves this improvement by deciding the execution
order of continuous queries based on individual query
properties (i.e., cost and selectivity) as well as prop-
erties of the update streams (i.e., variability of up-
dates).

The rest of this paper is organized as follows. Sec-
tion 2 provides the system model. In Section 3, we

Input Data
Streams

Output Data 
Stream D1

1 2 3

Query Scheduler

Continuous Query Qn
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Output Data 
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Continuous Query Q1

Load Shedder

Memory ManagerQuery Optimizer

Figure 1: A DSMS hosting multiple continuous
queries

define our freshness-based QoD metrics. Our pro-
posed policies for improving freshness are presented
in Section 4. In Section 5, we study the trade-off
between QoD and QoS. Section 6 describes our simu-
lation testbed, whereas Section 7 discusses our exper-
iments and results. Section 8 surveys related work.
We conclude in Section 9.

2 System Model

We assume a data stream management system
(DSMS) where users register multiple continuous
queries over multiple input data streams (as shown
in Figure 1). In this section, we discuss the details
of data stream processing in a DSMS, whereas in Sec-
tion 3, we define our freshness-based QoD metrics on
data streams.

In a DSMS, each input data stream consists of up-
dates at remote data sources that are either continu-
ously pushed to the DSMS or frequently pulled from
the data sources. For example, sensor networks read-
ings are continuously pushed to the DSMS, whereas
updates to Web databases are frequently pulled using
Web crawlers.

Each update ui is associated with a timestamp ti.
This timestamp is either assigned by the data source
or by the DSMS. In the former case, the timestamp
reflects the time when the update took place, whereas
in the latter case, it represents the arrival time of the
update at the DSMS.

In this work, we assume single-stream queries
where each query is defined over a single data stream.
However, data streams can be shared by multiple
queries, in which case each query will operate on its
own copy of the data stream. Queries can also be
shared among multiple users, in which case the re-
sults will be shared among them.

A single-stream query plan can be conceptualized
as a data flow diagram (Carney et al. 2002, Babcock
et al. 2003), i.e., as a sequence of nodes and edges,
where the nodes are operators that process data and
the edges represent the flow of data from one operator
to another (as in Figure 1). A query Q starts at a
leaf node and ends at a root node (Or). An edge from
operator O1 to operator O2 means that the output of
operator O1 is an input to operator O2. Additionally,
each operator has its own input queue where data is
buffered for processing.

As a new update arrives at a query Q, it passes
through the sequence of operators that compose Q.
An update is processed until it either produces an
output or until it is discarded by some predicate in
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the query. An update produces an output only when
it satisfies all the predicates in the query.

In a query, each operator Ox is associated with
two values:

• processing time or cost (cx), and

• selectivity or productivity (sx).

As in traditional database systems, an operator with
selectivity sx in a DSMS produces sx tuples after pro-
cessing one tuple for cx time units. sx is typically less
than or equal to 1 for operators like filters. Selectivity
expresses the behavior or power of a filter. Addition-
ally, for a query Qi, we define three parameters

1. maximum cost (Ci),

2. total selectivity or total productivity (Si), and

3. average cost (Cavg
i ).

For a query Qi which is composed of a stream of
operators < O1, O2, O3, ..., Or >, the maximum cost
Ci, the total selectivity Si and the average cost Cavg

i
are defined as follows:

Ci = c1 + c2 + ... + cr

Si = s1 × s2 × ... × sr

Cavg
i = c1 + c2s1 + c3s2s1 + ... + crsr−1...s1

The total selectivity measures the probability that
a new update will satisfy all the query predicates,
while the average cost measures the expected time for
processing a new update until it produces an output
or until it is discarded. The average cost is computed
as follows. An update starts going through the chain
of operators with O1, which has a cost of c1. With
a “probability” of s1 (equal to the selectivity of op-
erator O1) the update will not be filtered out, and,
as such, continue on to the next operator, O2, which
has a cost of c2. Moving along, with a “probability”
of s2 the update will not be filtered out, and, as such,
continue on to the next operator, O3, which has a
cost of c3. Up until now, on average, the cost will
be Cavg = c1 + c2s1 + c3s2s1. This is generalized in
the formula for Cavg

i above as in (Urhan & Franklin
2001). The maximum cost is a special case of the av-
erage cost when the selectivity of each operator in the
query is 1.

3 Freshness of Data Streams

In this section, we describe our proposed metric for
measuring the quality of output data streams. Our
metric is based on the freshness of data and is sim-
ilar to the ones previously used in (Cho & Garcia-
Molina 2000, Labrinidis & Roussopoulos 2001, Olston
& Widom 2002, Cho & Garcia-Molina 2003, Labrini-
dis & Roussopoulos 2004). However, it is adapted
to consider the nature of continuous queries and in-
put/output data streams.

3.1 Average Freshness for Single Streams

In a DSMS, the output of each continuous query Q
is a data stream D. The arrival of new updates at
the input queue of Q might lead to appending a new
tuple to D. Specifically, let us assume that at time t
the length of D is |Dt | and there is a single update
at the input queue, also with timestamp t. Further,
assume that Q finishes processing that update at time
t′. At this time we distinguish two cases:

• If the tuple satisfies all the query’s predicates,
then |Dt′ |=|D |+1. In this case, the output data
stream D is considered stale during the interval
[t, t′] as the new update occurred at time t and
it took until time t′ to append the update to the
output data stream.

• If the tuple does not satisfy all the predicates,
then |Dt′ |=|D |. In this case, the output data
stream D is considered fresh during the inter-
val [t, t′] because the arrival of a new update has
been discarded by Q. Obviously, if there is no
pending update at the input queue of D, then D
would also be considered fresh.

Equivalently, if we view a tuple that matches all the
predicates of a query as a positive “signal”, then the
current definition of freshness measures the amount of
time that passes before the signal becomes “visible”
to the end users.

Formally, to define freshness, we consider each out-
put data stream D as an object and F (D, t) is the
freshness of object D at time t which is defined as
follows:

F (D, t) =

{
1 if ∀u ∈ It, σ(u) is false
0 if ∃u ∈ It, σ(u) is true (1)

where It is the set of input queues in Q at time t
and σ(u) is the result of applying Q’s predicates on
update u.

To measure the freshness of a data stream D over
an entire discrete observation period from time Tx to
time Ty, we have that:

F (D) =
1

Ty − Tx

Ty∑

t=Tx

F (D, t) (2)

Figure 2 shows an example of measuring the fresh-
ness of a data stream. Specifically, the figure shows
two output data streams; (1) the ideal stream, which
shows the times instants when updates became avail-
able at the DSMS; and (2) the actual stream, which
shows the time instants when updates became avail-
able to the user. The delay between the time an up-
date is available at the system until the time it is
propagated to the user is composed of two intervals:
(a) the interval where the continuous query is wait-
ing to be scheduled for execution; and (b) the interval
where the continuous query is processing the update.
The sum of these two intervals represents the overall
interval when the output data stream deviates from
the ideal one. That is, when the output data stream
is stale compared to the physical world.

In the example illustrated in Figure 2, the output
data stream is stale for the intervals t1, t2 and t3.
Hence, the staleness of the data stream is computed
as: (t1 + t2 + t3)/(Ty −Tx), equivalently, the freshness
of the data stream is computed as: ((Ty −Tx)− (t1 +
t2 + t3))/(Ty − Tx).

3.2 Average Freshness for Multiple Streams

Having measured the average freshness for single
streams, we proceed to compute the average fresh-
ness over all the M data streams maintained by the
DSMS. If the freshness for each stream, Di, is given
by F (Di) using Equation 2, then the average fresh-
ness over all data streams will be:

F =
1

M

M∑

i=1

F (Di) (3)
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Figure 2: An example on measuring the freshness of a data stream

4 Freshness-Aware Scheduling of Multiple
Continuous Queries

In this section we describe our proposed policy for
Freshness-Aware Scheduling of Multiple Continuous
Queries (FAS-MCQ).

Current work on scheduling the execution of multi-
ple continuous queries focuses mainly on QoS metrics
such as response time and throughput. Examples
of such work appeared in (Chen et al. 2000, Shanmu-
gasundaram et al. 2002, Carney et al. 2003, Chan-
drasekaran et al. 2003, Babcock et al. 2003, Suther-
land et al. 2005, Sharaf et al. 2006, Bai & Zaniolo
2008, Sharaf et al. 2008). The scheduling policies pro-
posed in that body of work mainly exploited the vari-
ability in the output rate of different CQs to improve
the provided QoS. Meanwhile, previous work on syn-
chronizing database updates exploited the variability
in the amount (frequency) of updates to improve the
provided QoD (Cho & Garcia-Molina 2000, Olston &
Widom 2002, Cho & Garcia-Molina 2003).

In contrast to the work mentioned above, our pro-
posal, FAS-MCQ, exploits both the variability in out-
put rate as well as the amount of updates to improve
the QoD, i.e., freshness, of output data streams.

In our previous work (Sharaf et al. 2005), we
provide preliminary work on improving the fresh-
ness of data streams. In the next sections, we pro-
vide detailed analysis of our approach as well as ex-
tensions for handling multi-class continuous queries
(Section 4.4) and for efficient implementation (Sec-
tion 4.5). Additionally, in Section 5, we address the
problem of balancing the trade-off between scheduling
with the goal of improving QoD vs. QoS.

4.1 Scheduling without Selectivity

In order to explain the intuition underlying our FAS-
MCQ scheduler, let us assume two queries Q1 and Q2,
with output data streams D1 and D2. Each query is
composed of a set of operators, each operator has a
certain cost, and the selectivity of each operator is
one. Hence, we can calculate for each query Qi its
maximum cost Ci as shown in Section 2. Moreover,
assume that there are N1 and N2 pending updates for
queries Q1 and Q2 respectively. Finally, assume that
the current wait time for the update at the head of
Q1’s queue is W1, similarly, the current wait time for
the update at the head of Q2’s queue is W2.

In order to determine which of the two queries
should be scheduled first for execution, we compare
two policies X and Y :

• Under policy X , query Q1 is executed before
query Q2,

• Under policy Y , query Q2 is executed before
query Q1.

Under policy X , where query Q1 is executed before
query Q2, the total loss in freshness, LX , (i.e., the
period of time where Q1 and Q2 are stale) can be
computed as follows:

LX = LX,1 + LX,2 (4)

where LX,1 and LX,2 are the staleness periods expe-
rienced by Q1 and Q2 respectively. Since Q1 will re-
main stale until all its pending updates are processed,
LX,1 is computed as follows:

LX,1 = W1 + (N1C1)

where W1 is the current loss in freshness (i.e., increase
in staleness) and (N1C1) is the time required to apply
all the pending updates. Similarly, LX,2 is computed
as follows:

LX,2 = (W2 + N1C1) + (N2C2)

where W2 is the current loss in freshness plus the extra
amount of time (N1C1) where Q2 will be waiting for
Q1 to finish execution. By substitution in Equation 4,
we get

LX = W1 + (N1C1) + (W2 + N1C1) + (N2C2) (5)

Similarly, under policy Y , where Q2 is scheduled
before Q1, we have that the total loss in freshness,
LY will be:

LY = (W1 + N2C2) + (N1C1) + W2 + (N2C2) (6)

In order for LX to be less than LY , the following
inequality must be satisfied:

N1C1 < N2C2 (7)

The left-hand side of Inequality 7 shows the total
increase in staleness incurred by Q2 when Q1 is exe-
cuted first. Similarly, the right-hand side shows the
total increase in staleness incurred by Q1 when Q2
is executed first. Hence, the inequality implies that
between the two queries, we start with the one that
has the lower NiCi value. Similarly, in the general
case, where there are more than 2 queries ready for
execution, we start with the one that has the lowest
NiCi value since it will have the minimum negative
impact on the freshness of the other queries in the
system. Finally, it is worth mentioning that min-
imizing the negative impact on the overall freshness
was the same general criterion that we used in our
prior work on scheduling updates over materialized
WebViews (Labrinidis & Roussopoulos 2001).
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4.2 Scheduling with Selectivity

Assume the same setting as in the previous section,
with the only difference being that the total produc-
tivity of each query Qi is Si ∈ [0, 1], which is com-
puted as in Section 2. The objective when schedul-
ing with selectivity is the same as before: we want
to minimize the total staleness. Recall from Inequal-
ity 7 that the objective of minimizing the total loss is
equivalent to selecting for execution the query that
minimizes the loss in freshness incurred by other
queries in the system.

In the presence of selectivity, we will apply the
same principle above. Towards this, we first need to
compute for each output data stream Di its stale-
ness probability (Pi) given the current status of the
input data stream. This is equivalent to computing
the probability that at least one of the pending up-
dates will satisfy all of Qi’s predicates. If Si is the
total selectivity of Qi, then (1 − Si)

Ni is the prob-
ability that all pending updates do not satisfy Qi’s
predicates, and hence Pi = 1 − (1 − Si)

Ni is the stal-
eness probability for Qi.

If out of two queries Q1 and Q2, Q2 is executed
before Q1, then the expected loss in freshness incurred
by Q1 due only to the impact of processing Q2 first
will be:

LQ1
= P1N2C

avg
2 (8)

where N2C
avg
2 is the expected time that Q1 will be

waiting for Q2 to finish execution and P1 is the prob-
ability that D1 is stale in the first place. For example,
in the extreme case of S1 = 0, if Q2 is executed before
Q1, it will not increase the staleness of D1 since all
the updates will not satisfy Q1. However, at S1 = 1,
if Q2 is executed before Q1, then the staleness of D1
will increase by N2C

avg
2 with probability one.

Similarly, if Q1 is executed before Q2, then the
expected loss in freshness incurred by Q2 only due to
processing Q1 first is computed as:

LQ2
= P2N1C

avg
1 (9)

In order for LQ2
to be less than LQ1

, then the
following inequality must be satisfied:

N1C
avg
1

P1
<

N2C
avg
2

P2
(10)

Thus, in our proposed policy, each query Qi is as-
signed a priority value Vi which is the product of its
staleness probability and the inverse of the product
of its expected cost and the number of its pending
updates. Formally,

Vi =
1 − (1 − Si)

Ni

NiC
avg
i

(11)

4.3 The FAS-MCQ Policy

Our proposed policy for Freshness-Aware Scheduling
for Multiple Continuous Queries (FAS-MCQ) uses
the priority function of Equation 11 to determine the
scheduling order of different queries. Under this
priority function FAS-MCQ behaves as follows:

1. If all queries have the same number of pending
tuples and the same selectivity, then FAS-MCQ
selects for execution the query with the lowest
cost.

2. If all queries have the same cost and the same
selectivity, then FAS-MCQ selects for execution
the query with less pending tuples.

3. If all queries have the same cost and the same
number of pending tuples, then FAS-MCQ se-
lects for execution the query with high staleness
probability.

In case (1), FAS-MCQ behaves like the Shortest
Remaining Processing Time policy. In case (2), FAS-
MCQ gives lower priority to the query with high fre-
quency of updates. The intuition is that when the
frequency of updates is high, it will take a long time
to establish the freshness of the output data stream.
This will block other queries from executing and will
increase the staleness of their output data streams.
In case (3), FAS-MCQ gives lower priority to queries
with low selectivity as there is a low probability that
the pending updates will “survive” the filtering of the
query operators and thus be appended to the output
data stream.

4.4 Weighted Freshness

In many monitoring applications, some queries are
more important than others. That is especially ob-
vious in emergency systems where a few continuous
queries can be more critical than others. For exam-
ple, under the RODS system that monitors for disease
outbreaks, it is crucial to monitor for signs of water-
borne diseases in areas affected by Hurricane Katrina
(and thus consider the corresponding query more cru-
cial than the rest), whereas in other areas of the world
it may be more important to monitor for signs of the
avian flu. In cases like these, when the system is
loaded, it is necessary to maximize the freshness of
these critical queries.

Towards handling multi-class CQs, we modify our
proposed FAS-MCQ policy to increase the freshness
of data streams which have higher levels of impor-
tance. Specifically, we assign each continuous query
Qi a weight αi. This assigned weight represents the
importance of the query and it takes values in the
range (0.0, 1.0] where the weight 1.0 is assigned to
the most important query. Hence, the objective of
our policy would be to maximize the overall weighted
freshness. A priority function that allows us to max-
imize the weighted freshness can be easily deduced
from Equations 8 and 9. Recall that Equation 8 mea-
sures the expected loss in freshness experienced by Q1
due to executing Q2 first, thus, the expected loss in
weighted freshness experienced by Q1 is measured as:

WLQ1
= α1P1N2C

avg
2

Similarly, the expected loss in weighted freshness ex-
perienced by Q2, when Q1 is executed first, is mea-
sured as:

WLQ2
= α2P2N1C

avg
1

In order for WLQ2
to be less than WLQ1

, the follow-
ing inequality must be satisfied:

N1C
avg
1

P1α1
<

N2C
avg
2

P2α2

Then, the priority assigned to each query is computed
as:

Vi =
αi(1 − (1 − Si)

Ni)

NiC
avg
i

(12)

The weights of the queries can be explicitly or im-
plicitly defined, depending on the application. For
example, in the case of an application that includes
queries that are critical, the critical queries can be
explicitly assigned higher weights than the rest of
the queries. In applications where explicit critical-
ity/importance information is not given, an implicit
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measure of importance can be derived. For exam-
ple, the popularity of each query (i.e., the number of
users that registered that query) can be used as the
weight. In such an application, the weighted FAS-
MCQ policy will provide high levels of overall user
satisfaction in terms of QoD (freshness). Finally, it
is worth mentioning that the weight given to a query
can be dynamic; for example, it can change depend-
ing on the time of day or the day of the week (e.g.,
for traffic management queries).

4.5 Implementing the FAS-MCQ Scheduler

The FAS-MCQ Scheduler is invoked at every schedul-
ing point and uses the current values for Ni and Si
to compute the priority of each query Qi, according
to Equation 11. In our implementation of the FAS-
MCQ policy, a scheduling point is reached when a
query finishes execution. In order to keep the schedul-
ing overhead low when computing priorities, we use
a Calendar Queue (Brown 1988) for priority manage-
ment. Calendar queues have been widely used for
implementing priority-based scheduling algorithms in
high-speed networks as well as in the Aurora DSMS
(Carney et al. 2003).

A calendar queue is an O(1) priority queue, based
on the idea of Bucket Sort. Specifically, the calendar
queue is structured as buckets where each bucket cor-
responds to a class of priorities. To insert an element
in the calendar queue, a hash function is used to map
its priority to the corresponding bucket. To retrieve
elements from the calendar queue, buckets are tra-
versed in order. A calendar queue allows us to avoid
re-computing the priorities of queries that received no
new updates between consecutive scheduling points.
Additionally, for queries with new updates, the amor-
tized cost of updating the priority is of O(1).

5 Scheduling for QoD vs. Scheduling for QoS

In this section we discuss the difference in behavior
between scheduling with the goal of improving QoD
as opposed to scheduling with the goal of improving
QoS (i.e., when the objective is to minimize the aver-
age response time). We also present a parametrized
version of our FAS-MCQ scheduler that balances the
trade-off between both the QoD and QoS metrics.

5.1 Scheduling for QoS

In traditional DBMSs, the response time of a query
is defined as the amount of time from the time the
query arrives at the system until the time when the
last tuple of the result is produced.

The definition of response time above captures the
behavior of DBMSs which respond to the arrival of
queries. In contrast, DSMSs respond to the arrival
of new data. Hence, in a DSMS, it is more appro-
priate to define response time from the perspective of
data (instead of queries). Therefore, we define tuple
response time as follows:

Definition 1 Tuple response time, Ti, for tuple i is
Ti = Di − Ai, where Ai is the tuple arrival time and
Di is the tuple departure time. Accordingly, the aver-

age response time for N tuples is: 1
N

∑N
i Ti.

Under this definition, tuples that are filtered out dur-
ing query processing do not contribute to the overall
response time metric (Tian & DeWitt 2003).

The Rate-based (RB) policy has been shown to
improve the average response time of a single multi-
stream query with join operators (Urhan & Franklin
2001). In the basic RB policy, each operator path

within a query is assigned a priority that is equal
to its production rate. The path with the highest
priority is the one scheduled for execution.

In our previous work (Sharaf et al. 2006, 2008), we
generalize the basic Rate-based strategy for schedul-
ing multiple continuous queries with the objective of
minimizing the average response time. That is, mul-
tiple continuous queries are scheduled for execution
based on their output rates. In this paper, we call
that extended version of RB as Rate-based for Multi-
ple Continuous Queries (RB-MCQ).

Under RB-MCQ, at each scheduling point we se-
lect for execution the CQ with the highest priority
(i.e., output rate). Specifically, under RB-MCQ, each
query Qi has a value called the global output rate
(GRi) which is defined in terms of the parameters
of the CQ operators. The output rate of a query Qi,
composed of the operators < O1, O2, O3, ..., Or >, is
basically the expected number of tuples produced per
time unit due to processing one tuple by the operators
along the query all the way to the root Or. Formally,

GRi =
Si

Cavg
i

(13)

or, equivalently,

GRi =
1 − (1 − Si)

Cavg
i

(14)

where Si and Cavg
i are the CQ’s expected selectivity

and expected cost as defined in Section 2.

5.2 Balancing the Trade-off between QoD
and QoS

In this section, we present our approach for balanc-
ing the trade-off between QoS and QoD. In particular,
we propose a tunable version of our FAS-MCQ sched-
uler that balances the trade-off between the provided
response time and data freshness in a data stream
management system.

Towards tuning the trade-off in the perceived per-
formance, we argue that the distinction between
scheduling for QoD and QoS is easily identified by
comparing the priority functions used by FAS-MCQ
(Equation 11) versus the one used by RB-MCQ
(Equation 14). Specifically, the scheduling decision
made by FAS-MCQ considers three factors: (1) cost
(2), selectivity, and (3) number of pending tuples,
whereas RB-MCQ considers only the first two factors.

As a result, FAS-MCQ might favor a query with
a relatively expensive cost and very few pending tu-
ples as opposed to RB-MCQ which might favor an
inexpensive query with a large number of pending tu-
ples. In such case, RB-MCQ may be appending tuples
faster to the output data streams (i.e., providing low
response time), however, the appended tuples would
be stale most of the time. On the other hand, FAS-
MCQ might be relatively slower in appending tuples
to the output data streams (i.e., providing high re-
sponse time) yet would maintain most of those output
data streams as fresh as possible.

Given the above observations, we propose a
parametrized version of FAS-MCQ that balances the
trade-off between the achieved QoD and QoS. We will
refer to this policy as FAS-MCQ(β), where β is a pa-
rameter that specifies the weight given to the number
of pending tuples (i.e., N) when computing the pri-
ority of a query.

Formally, under FAS-MCQ(β) each query Qi is
assigned a priority value Vi which is computed as fol-
lows:

Vi =
1 − (1 − Si)

Nβ

i

Nβ
i Cavg

i

(15)
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The parameter β takes values in the range [0.0,1.0]
and it acts as a knob for shaping the system’s behav-
ior. For instance, for β = 0.0, FAS-MCQ(0.0) behaves
like the RB-MCQ policy described above, whereas
for β = 1.0, FAS-MCQ(1.0) reverts to the original
FAS-MCQ described in Section 4. For settings where
0.0 < β < 1.0, the system achieves the desired bal-
ance between QoD and QoS.

6 Evaluation Testbed

We have conducted several experiments to compare
the performance of our proposed scheduling policy
and its sensitivity to different parameters. Specifi-
cally, we compared the performance of our proposed
FAS-MCQ policy to a two-level scheduling scheme
from Aurora where Round Robin is used to sched-
ule queries and pipelining is used to process updates
within the query. Collectively, we refer to the Aurora
scheme in our experiments as RR. We also included
the RB-MCQ policy (Sharaf et al. 2006) described in
Section 5 as well as a FCFS policy where updates are
processed according to their arrival times.

Queries: We simulated a DSMS that hosts 250
registered continuous queries. The structure of the
query is adapted from (Chen et al. 2002, Madden
et al. 2002) where each query consists of three op-
erators: two predicates and one projection.

Real Data Streams: We use the LBL-PKT-4
traces from the Internet Traffic Archive 1. The traces
contain an hour’s worth of all wide-area traffic be-
tween the Lawrence Berkeley Laboratory and the rest
of the world. In our experiments, we use the TCP
and UDP packet traces as 2 input data streams to
the system where the registered queries are uniformly
assigned to any of the 2 data streams.

Synthetic Data Streams: In this setting, we
generate 10 input data streams each of length 10K
tuples. Initially, we generate the updates for each
stream according to a Poisson distribution, with its
mean inter-arrival time set according to the simu-
lated system utilization (or load). For a utilization
of 1.0, the inter-arrival time is equal to the expected
time required for executing the queries in the system,
whereas for lower utilizations, the mean inter-arrival
time is increased proportionally. Moreover, to stress
test the system, we generate a back-log of updates
where we traverse the Poisson stream and group to-
gether every 10 consecutive tuples in a burst setting
the arrival time of all tuples that belong to the same
burst to be equal to that of the first tuple in the burst.
In the default setting, 5 out of the 10 data streams
are bursty.

Selectivities: In any query, the selectivity of the
projection is set to 1, while the two predicates have
the same value for selectivity, which is selected using
a Zipf distribution from the range [0.1, 1.0]. The Zipf
distribution is defined using a Zipf parameter which
determines the degree of skewness. In our setting,
the skewness is toward queries with selectivity equal
to 1.0 and in the default setting the Zipf parameter
is set to 0.0 (i.e., uniform distribution).

Costs: All operators that belong to the same
query have the same cost, which is uniformly selected
from three possible classes of costs. The cost of an
operator in class i is equal to: K × 2i time units,
where i ∈ [0–2] and K is the scaling factor which
is used to scale the costs of operators to meet the
desired utilization. For synthesized data, K is equal
to 1. For the network traces, we measure the inter-
arrival time of the data trace, then we set K so that
the ratio between the total expected costs of queries

1http://ita.ee.lbl.gov/html/contrib/LBL-PKT.html
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tion

and the inter-arrival time is equal to the simulated
utilization. Finally, the cost of each of the calendar
queue operations is equal to the cost of the cheapest
operator in the system.

Table 1 summarizes our simulation parameters
and settings.

7 Experiments

In this section, we present a representative sample of
the experimental results obtained under the settings
described in Section 6.

7.1 Impact of Utilization

Figure 3 depicts the average total staleness over all
output data streams as the utilization of the DSMS
increases. In this setting, we use the basic version of
FAS-MCQ which is equivalent to setting β to 1.0 in
FAS-MCQ(β). The figure shows that, in general, the
staleness of the output data streams increases with
increasing load. It also shows that the FAS-MCQ
policy provides the lowest staleness for all values of
utilization with RB-MCQ being the closest contender.
Additionally, the relative improvement provided by
FAS-MCQ compared to RB-MCQ increases with in-
creasing utilization. For instance, at 0.1 utilization,
FAS-MCQ achieves 30% reduction in staleness com-
pared to RB-MCQ, whereas at 0.95 utilization, RB-
MCQ provides a 16% staleness while FAS-MCQ re-
duces the staleness to 10% (i.e., a 40% improvement).

As expected, the reduction in staleness provided
by FAS-MCQ comes at the expense of an increase in
response time which is illustrated in Figure 4. The
figure shows that, like staleness, the response time
increases with increasing load. Moreover, it shows
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Parameter Value
Policies FAS-MCQ, RB-MCQ, RR, FCFS
Number of Queries 250
Number of Operators per Query 3
Operators’ Costs 1K, 2K, 4K
Operators’ Selectivities 0.1–1.0
Utilization 0.1–0.99
Data Streams real and synthetic
Number of Data Streams 2 (real) and 10 (synthetic)
Number of Bursty Streams 0–10

Table 1: Simulation Parameters
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Figure 6: Staleness for different βs

that RB-MCQ reduces the response time compared
to FAS-MCQ. For example, at 0.95 utilization, the
response time provided by FAS-MCQ is 23% higher
than that of RB-MCQ (at a 40% improvement in stal-
eness compared to RB-MCQ as previously shown in
Figure 3). The trade-off between QoD (i.e., freshness)
and QoS (i.e., response time) is further illustrated us-
ing Figures 5 and 6 as explained next.

7.2 Staleness vs. Response Time

Figures 5 and 6 show the average staleness and av-
erage response time for the same simulation settings
used in the previous experiment. In addition to illus-
trating the difference in behavior between RB-MCQ
and FAS-MCQ, the figures also show the performance
of the parametrized FAS-MCQ(β) policy. Figure 5
shows how the response time of FAS-MCQ decreases
by decreasing the value of β down to β = 0.0. Notice
that at β = 0.0, the response time of FAS-MCQ(0.0)
is just slightly higher than RB-MCQ which is due to
the scheduling overheads. On the other hand, Fig-
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ure 5 shows the reduction in staleness with increasing
values of β.

To better assess the magnitude of the trade-off,
we plot the performance of the different policies at
utilization 0.95 in Figure 7. For instance, the fig-
ure shows that FAS-MCQ(1.0) reduces the staleness
by 40% while increasing the response time by 23%,
whereas FAS-MCQ(0.25) reduces the staleness by
20% and increases the response time by 14%.

7.3 Impact of Selectivity

Figure 8 shows the average staleness for an experi-
ment where all operators have the same cost, utiliza-
tion is set to 95%, and the skewness of selectivity is
variable. Recall that we control the degree of skew-
ness using a Zipf parameter. Specifically, setting the
Zipf parameter to 0.0 results in a uniform distribution
of selectivity, whereas by the increasing its value the
distribution is skewed towards high values. That is,
most of the registered CQs are productive.
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Figure 8 shows that by increasing the skewness,
the staleness provided by all policies increases. This
is because when most of the queries have high selec-
tivity, then the arrival of new updates will render the
output data streams stale most of the time. The fig-
ure also shows that the gains provided by FAS-MCQ
compared to RB-MCQ increase with increasing the
skewness. For instance, at 0.0, FAS-MCQ reduces the
staleness by 40% compared to RB-MCQ. This reduc-
tion goes up to 55% when the distribution is highly
skewed. The reason is that at a highly skewed distri-
bution, all queries will have the same cost and most
of them will have the same selectivity, hence, for RB-
MCQ most queries will have the same priority. That
is in contrast with FAS-MCQ which will utilize the
extra information provided by the number of pending
tuples to differentiate between queries and to assign
higher priorities to queries that feed a stale stream or
a stream that could be quickly brought to freshness.

7.4 Impact of Bursts

The setting for this experiment is the same as the de-
fault one. The DSMS utilization, however, is set to
95% at all points. Additionally, we plot the average
staleness as the number of bursty input streams in-
creases as shown in Figure 9. For instance, at a value
of 0, all the arrivals follow a Poisson distribution with
no bursts, whereas at 10, all input streams are bursty.

Figure 9 shows the staleness of FAS-MCQ normal-
ized to that of RB-MCQ. Hence, the smaller the value
the bigger the reduction. The figure shows that as the
number of bursty streams increases, the reduction in
staleness provided by FAS-MCQ compared to RB-
MCQ increases up until there are 5 bursty streams.

At that point, FAS-MCQ reduces the staleness by
40%. After that point, the performance of the two
policies gets closer. The explanation is that at a mod-
erate number of bursty streams (up to 5 streams for
this setting), FAS-MCQ has a better chance to find a
query with a short queue of pending updates to sched-
ule for execution. As the number of bursty streams in-
creases, the chance of finding such a query decreases,
and as such, RB-MCQ is performing reasonably well.
For instance, at 10 bursty streams, FAS-MCQ reduces
the staleness by only 22% compared to RB-MCQ.

7.5 Real Data

Figure 10 shows the results for our final experiment
where we use real network traces. The selectivities
and costs of operators are the same as in the first
experiment.

In Figure 10, the behavior of the different schedul-
ing algorithms is consistent with the previous experi-
ments, where FAS-MCQ provides the lowest staleness
followed by RB-MCQ, then RR and FCFS. Addition-
ally, it shows the relatively high values of staleness
exhibited by all policies, which is explained by the
fact that the two traces are highly bursty, reflecting
an ON/OFF traffic pattern.

8 Related Work

Improving the QoS of multiple continuous queries has
been the focus of many research efforts. For example,
multi-query optimization has been exploited in (Chen
et al. 2000) to improve the system throughput in an
Internet environment and in (Madden et al. 2002) for
improving the throughput of a data stream manage-
ment system. Multi-query scheduling has been ex-
ploited by Aurora to achieve better response time
or to satisfy application-specified QoS requirements
(Carney et al. 2003). The work in (Babcock et al.
2003) employs a scheduler for minimizing the mem-
ory utilization. Moreover, balancing the trade-off
between multiple QoS metrics has been studied in
(Sutherland et al. 2005, Bai & Zaniolo 2008)

To the best of our knowledge, no previous work has
proposed multi-query scheduling policies for improv-
ing the QoD provided by continuous queries. Load
shedding, however, has been devised as a technique
to control the degree of degradation in the provided
QoD under overloaded conditions. Several load shed-
ding techniques have been proposed in (Tatbul et al.
2003, Babcock et al. 2004, Tatbul & Zdonik 2006,
Tatbul et al. 2007)

Scheduling policies for improving the QoD have
been studied in the context of replicated databases
and in web databases. For example, the work in (Cho
& Garcia-Molina 2000, 2003) provides policies for
crawling the Web in order to refresh a local database,
where it made the observation that a data item that
is updated more often should be synchronized less of-
ten. The same observation has been exploited in (Ol-
ston & Widom 2002) for refreshing distributed caches
and in (Lam & Garcia-Molina 2003) for multi-casting
updates. In this paper, we utilize the same observa-
tion for improving data stream freshness. Our work,
however, makes the scheduling decision based on the
current status of the DSMS queues (i.e., the num-
ber of pending updates) as opposed to assuming a
mathematical model for updates as in (Cho & Garcia-
Molina 2000, 2003).

The work in (Labrinidis & Roussopoulos 2001)
studies the problem of propagating the updates to
derived views. It proposes a scheduling policy for
applying the updates that considers the divergence
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in the computation costs of different views. Simi-
larly, our proposed FAS-MCQ considers the different
processing costs of the registered multiple continuous
queries. Moreover, FAS-MCQ generalizes the work in
(Labrinidis & Roussopoulos 2001) by considering up-
dates that are streamed from multiple data sources
with different traffic patterns as opposed to a single
data source.

Finally, the problem of considering user prefer-
ences to manage the trade-off between QoS and QoD
has been addressed in the context of web databases.
The work in (Qu et al. 2006) provided an admis-
sion control framework, whereas the work in (Qu &
Labrinidis 2007) introduced a two-level scheduling al-
gorithm to address the problem.

9 Conclusions

Motivated by the need to support monitoring applica-
tions which involve the processing of update streams
by continuous queries, in this paper we studied the
different aspects that affect the QoD of these appli-
cations. In particular, we focused on the freshness of
the output data stream and identified that both the
properties of queries, i.e., cost and selectivity, and the
properties of the input update streams, i.e., variabil-
ity of updates, have a significant impact on freshness.

Our major contribution is a new approach to
scheduling multiple queries in Data Stream Manage-
ment Systems. Our approach exploits the properties
of the continuous queries as well as the input data
streams in order to maximize the freshness of output
streams. We proposed a new scheduling policy called
Freshness-Aware Scheduling of Multiple Continuous
Queries (FAS-MCQ) and a weighted version of it that
supports applications with multi-class queries. We
also introduced a generalized variant of FAS-MCQ
that balances the trade-off between QoD and QoS,
according to application requirements. We have ex-
perimentally evaluated our proposed FAS-MCQ pol-
icy against scheduling policies used in current DSMS
prototypes as well as Web servers. Our experiments
show that FAS-MCQ can reduce staleness by up to
55% compared to the other policies.
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