Guiding Personal Choices in

a Quality Contracts Driven

Query Economy:-

Huiming Qu
IBM Watson Research Center

hqu@us.ibm.com

ABSTRACT

The emergence of Web 2.0 has brought upon a plethora of databa
driven web applications and services where both Qualityeofise
(QoS) and Quality of Data (QoD) are of paramount importamace t
end users. In our previous work, we have proposed Quality Con
tracts, a comprehensive framework for specifying multiikaen-
sions of QoS/QoD; we have also developed algorithms to maxi-
mize overall system performance under Quality Contractghilk
work, we turn our attention to the user side of the equation, o
how to choose and adapt Quality Contracts to better serva’use
needs in the presence of other users, who are competing gor th
same resources, in a virtual “economy” of Quality Contratthe
server. Towards this, we propose the Adaptive Quality Gabtr
(AQC) scheme to maximize the success ratio of user quer@s& A
switches between its Overbid (aggressive) mode and Defoosit
servative) mode, to allow users to survive through econatoien-
turns and upturns. Extensive experiments with real traoes shat

our proposed scheme outperforms other competing schemebe, u

a variety of environments and a spectrum of workloads.

1. INTRODUCTION

How many times did you have to wait for your query to finish
executing when visiting a travel reservation web site likdi@
and Expedia? After getting the query results, how many tiwes
the quoted price proved to be inaccurate when you clicked “bu
this ticket"? This is just one example of a web-databaseegyst
that illustrates the trade-off between Quality of ServiQ@$) and
Quality of Data (QoD). Clearly, some users would prefer fast
sponse time, while tolerating slightly stale results (eaden they
just want to find out about flight schedules). However, ottearsi
would instead prefer to get the most accurate query resits)
if the response time was a bit higher (e.g., when they areyread
purchase a ticket). There are a number of issues that neeel to b
addressed to implement a web-database system that is tikefep
to user preferences on QoS and QoD. We enumerate these next.

“Work supported in part by NSF Career award 11S-0746696 and
NSF ITR award ANI-0325353.

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct cornialeadvantage,
the VLDB copyright notice and the title of the publicatiorddts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciahsion from the
publisher, ACM.

PersDB ‘09,August 28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0@®/

Jie Xu
University of Pittsburgh

Xujie@cs.pitt.edu

Alexandros Labrinidis
University of Pittsburgh

labrinid@cs.pitt.edu

Q1: How to describe user preferencesFirst and foremost, there
needs to be a way for users to specify their preferences oreQoS
QoD. One simple way would be to effectively assign users tiveq
alence classes (i.e., prefers QoS over QoD, or prefers Q&b ov
QoS) and allow users to select which class they belong toutn o
previous work, we have proposed (and advocated using) asoere
phisticated framework, calle@uality Contract§QCs) [6] which is
based on the micro-economic paradigm. The QC frameworallo
users to specify their preferences across a variety oftguditnen-
sions. Similar proposals exist for other domains, such asititity
functions in real-time systems [15] and the service levetagents
(SLAS) in Grid computing [3}.

Q2: How are user preferences “implemented” to influence sys-
tem decisions?Given a framework for users to specify their prefer-
ences over different quality dimensions, it is crucial teéha way

to influence resource allocation decisions to maximize gaés-
faction (i.e., compliance to user preferences). Towards the
have developed admission control policies [13] and queryp& u
date scheduling algorithms [12] that maximize the ovengdtam
profit (to be gained by the server from satisfying QCs) and thu
maximize the overall user satisfaction. The proposed dlgos
are especially useful during periods of high server loat;esthey
provide graceful service degradation.

In this work we address another important problem that material-
izes aftersatisfactory solutions for questions Q1 and Q2 have been
provided.

Q3: How should users adapt their Quality Contracts in the
presence of competition?User preferences, if expressed through
the Quality Contracts framework, include a constraint congmt
(e.g., maximum acceptable data staleness) and a “worthpoem
nent (i.e., virtual money) for every quality dimension offgrest to
the user. In such an environment, always truthfully exppsire
“worth” of the queries will not allow users to react to highnepe-
tition (i.e., by “paying” a bit more than expected) nor toeadvan-
tage of reduced competition (i.e., by “paying” less thanested).
In general, we consider the Quality Contracts submittedhbydif-
ferent users (along with their queries) asompetitive economyAs
such, it is crucial for users to be able to adapt these QCstuwer
(while trying to achieve query quality that meets their prefices).
In this paper, we propose user strategies to adapt QCs ower ti
during economic downturns (i.e., when the competitionss)jeand
also during economic upturns (i.e., when the competitidnighker).

Contributions The main contributions of this paper are:

e Given an environment where user preferences over different
quality dimensions are expressed using Quality Contr&u&s]

1We refer the reader to [6] for a detailed description of the QC
framework and comparison to other approaches.

Quality Contract

mitted query. Servers, on the other hand, execute usersegund
get virtual money in return for their service.
The virtual money is “paid” upon submission of a query to the

A
2
g
Push-based
or pull-based

+

Qos profit (3,
QoD profit
]

&
Updates

T, Ul

Oyvmercomorsan ™, Response Time (ng) Salness (+UU) g s e server as part of the bidding (i.eQ,max); any refund is given back
oty Contrast Adapaton G 810 = Qnac = Q05 + Q00 Prot Guided Opimization along with the query results (i.€Jmax — Qpaid). In our work, we
Budget Monitoring _ Admission Control follow a hedonic price model [17]; goods (i.e., servicesun case)
‘ Queries’ Scheduling

are priced by the users’ valuation of different charactiesgQoS
and QoD in our framework) and their contribution to userdityt
Towards this, we adopt the Quality Contracts (QC) framevask
Figure 1: System Architecture shown in Figure 1 for service pricing (by the users). A QC ¢siss
of aQoS functior{where response time is mapped to QoS profit for
the server) and ®oD function(where staleness is mapped to QoD
and are attached to queries, we look at the user viewpoint and profit for the server). The QoS and QoD metrics are applinatio
in particular, the framework for adapting QCs over time and dependent and orthogonal to our work.

the connection between a user's true preferences and hisor h Although our framework allows for users to specify comptith
“exposed” QCs. functions for QoS and QoD, in reality we expect users to sympl

select from a set of predefined such functions, much like rabst
our other digital “products” with different levels of sece (e.g.,
cell phone plans).

In the presence of QCs, users and servers have distinct-objec
tives: servers try to maximize their income, whereas usgrtot
“stretch” their budget to execute as many queries as they can

T Query result & receipt + S}B Refund = Quax - Qpaid

e We propose thddaptive Quality Contract (AQG}rategy, which
monitors a user’s queries and the server’s responses and aut
matically adapts the QCs of subsequent user-submittedeguer
AQC? switches between two mode©verbid mode used at
times of fierce competition among users; dbeposit mode
used at times of little competition.

We have demonstrated a QC-enabled web-database system dur. ;
ing SIGMOD 2007 [14]. Our demo illustrated both the servesmvi 2.2 Server View

(for which the technical details were published in [12]) angre- The web-database server is responsible for processingupeth
liminary version of the user view, which is presented in faper. dates and queries in order to meet the service requiremeets-s
In addition to introducing the AQC strategy (not in [14])idipa- fied in the QC of each query.) o
per explains its mathematical foundations, and presentsailed Server Objective: Maximize Profit. The server objective is
experimental study using real traces. to maximize its profit, gained from each QC, through admissio

control and scheduling.
Server Optimization Mechanism: There are two phases of server

2. SYSTEM ARCHITECTURE optimization schemes: (1) admission control upon arrivalquery

We assume a web-database server architecture like the one iro! &1 update, and (2) transaction scheduling once admitiegen-

Figure 1. The system consists of two parts: the user modual¢hen eral, the higher the bid, the higher the chance that a quexgrig-

o : ted and completed with high quality. Due to the space lindtat
web-database server. Before describing these two partdisaess .
the basic concepts behind the QC economy. please refer to [13, 12] for more details on these two phadés.

adopted Two Phase Locking - High Priority (2PL-HP) [1] where
2.1 The Quality Contract (QC) Economy the lower priority transaction releases the lock to the @igtrior-
Economic mechanisms can be broadly classified into two types ity transaction at a conflict.

commodity markets and auction markets [2]. Previous wogkdta .
tempted to solve the system resource allocation probleranath 2.3 User View

paradigms. Under the commodity markets paradigm, comiesdit The user aspect of the system must include an interface éos us
are exchanged in standardized contracts. Servers (adisgla to specify QCs and the ability to monitor the execution of QC-
ers) need to valuate their resources and assign pricesdbrusst. enabled queries, while keeping track of the current buddeét.
Users (acting as buyers) then decide from whom they buy the se though the QC framework empowers users to influence resource
vice to fulfill their queries. The shortcoming of commodityrkets allocation decisions at the server (to better meet thefepeaces),

is the complexity and high cost for a server to valuate iteueses, it also places the burden on the users to choose QCs (and adapt
especially when the server workload fluctuates rapidly dvee. them over time). We expect that users will emplaser agents

To avoid this overhead at the server and make the valuatioe mo which will have explicit “instructions” from each user (oisher
precise, many systems follow the auction markets paradiym,[true preferences and budget constraints) and a QC adapsatid-
16, 8, 19], where users need to give a price and bid on the resou egy.
or services provided by the server. Obviously, the unaestand Quality Contract / User Satisfaction: In this paper, we adopt
burden of valuation never disappear; they are simply shiftehe QCs with linearly decreasing positive functions [12]. ltitely,
user side. In this work, we adopt the auction markets panadig users can set the following four parameters to define a QC:
However, as we will elaborate in Section 3, we propose antadap
bidding mechanism so that neither servers nor users haverty w
about exact valuation.

In our system, users are allocated virtual money, which they e rtmax the maximum bearable response time, and
spend in order to execute their queries according to theiffepr e uumay the maximum bearable staleness.
ences; user preferences are described via QCs attachezhtsuda

® (osmax the maximum QoS profit,

qodmax, the maximum QoD profit,

In this work, we simplify our model with an equivalent preten

2AQC is pronounced AQuaC, which sounds like AFLAC; however, tion, where the first two parametergoémax and godmax) are re-
we do not have a fancy mascot. placed by:

e (max gosmax*tqodmax the maximum payment for the query.

. godmax e i
o 71 ey relative importance between QoS and QoD.

| agp

3uu

(b) QoD

| Q
oS 5
10 sec

Ssec

(8) Qos

10y

Figure 2: User Satisfaction Functions Example

As discussed in the introduction section (question Q3)pets
ifying QCs, users may not want to reveal the true worth ofrthei
gueries (e.g., how much they can pay for a query result witkra c
tain response time), although they would be willing to révkair
constraints (i.e., would prefer an answer within 10 secpndis
other words, the constraints in QCs are truthful, but thepirapto
the worth dimention may not be. Figure 2 shows a simple exam-
ple of what “truthful” user satisfaction functionsight look like.
Under this setting, queries are considered acceptablenga®the
results meet the constraints on both QoS and QoD. Withostdbs
generality, we adopt such binary-step user satisfactioations in
this paper.

Following the example of Figure 2, we define two outcomes for
a query for the general case:

e Success:A query succeeds if it is returned with valuable an-

swers, meaning that the response time is shorter than the QoS

constraintytmax and the staleness is smaller than the QoD con-
straint,uumax. Successful queries give to the server a nonzero
payment,Qpaig > 0. The actual value ofpaig depends on

how well the server executes the query, given the QC. In terms D.and h

of the user satisfaction functions, a successful querydgiél
from the product of all user satisfaction functions of themyu
(i.e., across all quality dimensions).

e Failure: If a query fails either the QoS or the QoD constraint,
we call the query dailure, andQpajg = 0. This allows the user
to also infer the data freshness of the returned results.

User Objective: Success Ratio MaximizationThe users’ goal
is to adapt Quality Contracts (e.g., by changi@eax to get as
many as possible of his/her queries executed successitithyin
the given total budget.

2.4 Analysis of Existing QC Adaptation Schemes
Assuming a user withV queries to submit and a total budget

B, we consider three baseline strategies, which com@\(ﬁ@, the
total bid for the QC of query, as follows:

e Fixed (FIX): Qﬁﬁéx = % FIX is a static policy, which assigns
each query an equal share of the total budget.

e Random (RAN): Qiax=uniform{ 2 — ¢, £ 1 ¢], wherecis a
constant. This strategy us%as the mean, ar{g‘?] -, % +c]
as the range to picmax uniformly.

e Dynamic (DYN): Qﬁﬁgx =]fji. This scheme monitors the
current budget leftB; and the number of queries lel{ — ¢
before queryi is issued.

Problems with existing schemes: FIX does not make full use
of the budget, because it ignores the refunds from the pusvio
failed queries. The RAN scheme is similarly problematic. NDY
addresses the issue of ignored refunds by dynamically unapidte
available budget. However, DYN favors the queries issuget la
than earlier and creates an unfair allocation of the totdget:

3. ADAPTIVE QUALITY CONTRACT (AQC)

In this section, we present our proposkdaptive Quality Con-
tract Scheme (AQCyvhich addresses the problems and limitations
of the baseline algorithms that were presented in the pus\sec-
tion. Our AQC scheme switches between two mod@serbid
mode (Section 3.1) andeposit modgSection 3.2); we discuss
how AQC chooses between the two modes in Section 3.3.

3.1 Overbid Mode

As we have shown, DYN unfairly “favors” later queries by meno
tonically increasing)max as time progresses using the cumulative
refunds from previously finished queries. This behaviooigghly
equivalent to last-minute spending by companies at the érad o
fiscal year, since at that time, any of the remaining moneyén t
current year’s budget will effectively disappear unlessrgpmme-
diately.

The Overbid mode of AQC addresses this problem by setting
the budget of the submitted quality contracts for each qteeiye
such that theexpected payments sum up to the overall budiyet
contrast, the DYN scheme sets the bid per query to be sucththat
individual bids sum up to the total budget (which clearlyulesin
under-utilization of the budget, until the last minute).

In order to make the expected payments sum up to the overall
budget, we need to make sure that the expected paymentsefor th
i*" query sum up to its fair share of the budget:

B;
N @
Then, in order to find how to set the QC for the query, we have to
essentially expresQpajg in terms of@max and solve Equation 1
for Qmax Qpaid depends on the QoS functias QoD function
ow well the server returns the query (response tirzied
stalenesg). Thus, as we show next, the expectatiortkiq over
the probability distribution of response time (x) and stalss (y)
can be expanded as the sum of expected expenditure from e Qo
function and from the QoD function respectively:

E, [Qpuia(®: ¥)] = budget per query-

E, [Qégid(w: y)| = Ep[S(z)] + Ep[D(y)] (2
If we combine Equation 1 with Equation 2, we have that:
B, [5(2)] + By[D(y)] = -)

In this work, we adopt linear segmented QCs where the QoS
function can be represented as in Equation 4 and the QoDidunct
can be represented as in Equation 5. If other formats of Q€-fun
tions are adopted, Equation 4 and Equation 5 should be madifie
accordingly.

o q08max(1 — ML) if x S [0, Ttma)d

S(@) = { 0 e otherwise)
B qodmax(l — ﬁ) if (AS [0, UUmaﬂ

Dly) = { 0 " otherwise ®)

We compute the expectation of QoS profit using empirical expe
tation, as shown in Equation 6.

E,[S(2)] = / S(2)p(x) dz

rtmax qoSmax rtmax
= qosmax/ p(z)de — ——= / zp(x)dx
0 Ttmax 0
~ gosmax(P(z < rtmax) — (6)
rtmax

where Rz < rtmax) is the percentage of cases that the response
time of the user query is smaller than its response time cainst
rtmax andZ is the average response time. BotfwP< rtmax)

(),

paid
Q&)

max

cIoserQé;)id is to Qfﬁ&,@ the bigger the deposit factor is. The in-

We call the ratio of

as thedeposit factor Notice that the

andz can be computed based on the query execution history. We yition is that we could deposit more and bid less when Hissabr

introducec to denote this part of computation and summarize the
expected QoS profit as follows:

E,[S(2)] = qosmax- «)
T
=P t —
a=P(z < rtmax) e~
Similarly, we compute the expectation of QoD profit:
E,[D(y)] ~ godmax- 8 (8)
ﬁ = P(y < UUmax) — L
UUmax

As described in Equation 3, the total expected profit froniniigo S
(Equation 7) and QoD (Equation 8) should be set to the current
budget per query2i:

B;
N—i ©)

wherea and 3 are computed based on query execution history (as
shown in Equation 7 and Equation 8). Since the ratio between
qosmax andgodmaxis known asy, we have:

qosmax- & + qodmax- B =

Qmax = qoSmax+ qodmax

(10

godmax = 7y - q0Smax
We solve Equations 9 and 10 to get the final solutio®efax:
B 1
N—-i a+~v-0

In the above solutionm is essentially the overbid factor.

3.2 Deposit Mode

Although Overbid mode successfully utilizes as much of tiné-b
get as possible (and in a fair manner across all queries)|| ih@t
detect the cases of “overpayment” because of the servendavi
light load. In such cases, there is not much “competitiom@irfr

Qgri)slx =

(11)

success comes with very good performance (a I@éﬁd usually
corresponds to high QoS and high QoD). A high deposit fatias t
may indicate that the system is currently lightly loadedthalgh
a lower bid will decrease the priority of the query, hopefuti a
lightly loaded server, the query can still be answered witon-
straints. On the contrary, if the last successful querylpaneets
the QoS and QoD constraints, the deposit factor will be ctose
zero and the query will be kept with a competitive bid.

3.3 Switching between Deposit and Overbid

At the beginning, the system is set to the overbid mode by de-
fault. AQC keeps track of the number of consecutive query suc
cesses duccess(.size) and uses it to decide the current system
mode.

If the number of successes is significantly large (i.e.,datban
a threshold:), the system is set to deposit mode. This is because
a consecutive successful query history indicates a lespetitine
environment or a lightly loaded web-database server, theidid
can potentially be decreased without hurting the succéigs ra

Notice thatsuccessQ.size only includes those queries that are
completed within the time window. Thus,success@.size may
decrease due to two reasons: (1) there are no more queries to b
completed (i.e., neither query success nor query failag) re-
sult, success@.size decreases as the moving windew moves
on. If success@.size drops belowe, the system mode will be set
to overbid because of the lack of successful feedbackshézg s a
query failure, which will resetuccess@.size to zero immediately.

In both cases, system mode is set to overbid promptly tazatihie
user’s budget as much as possible so that the server is tectit@
execute the users queries with higher priorities.

By switching between the overbid and deposit modes acagrdin
to the query success/failure, the AQC scheme naturallpalthe
law of supply and demand. We expect the overhead of adaptatio
to be linear to the total number of queries processed.

4. EXPERIMENTAL RESULTS

other users, and as such the user could have paid less than wha

Overbid mode would suggest.

The benefit of detecting these cases comes from the inherent d
namic nature of typical web-database servers. The loaddt su
servers can fluctuate fromery high(e.g., in periods of flash crowds),
where queries would require a high budget or they will not lble a
to execute, to relativelJow, where queries would require a much
less budget than usual to execute.

In order to make sure that the AQC scheme can successfully rea
to the inherent dynamic nature of web-database serversytne i
duce a budget saving scheme which we €#bposit mode The

main idea behind Deposit mode is to recognize cases when user

can spend less of their budget (because of a less compeditive
ation), so that they are ready to spend more when facingggron
competition from other users.

To implement Deposit mode, ti@maxis reduced when there is
a row of consecutive successful query executions.@ééix, Qé‘;)id
be the budget and the payment for the most recent successiyl q
We set the nev@){thxin Deposit mode as follows:

(s)
Qpaid

o)
max

Qb (1 — (12)

4.1 Experimental Setup

We have acquired access traces from a popular stock market in
formation web site, Quote.com, and combined them with th&RY
(New York Stock Exchange) update traces for the same time pe-
riod, which enabled us to accurately generate both queryuand
date workloads for our experiments.

Query Traces We use real queries from Quote.com for April 24,
2000. All queries are read-only. We concentrated on a “heavy
workload for the server, a 30-minute (10:30am-11:00angriat
with over 120,000 queries on 4,107 different stock symbols.
Update Traces We extracted the actual trades on all securities
listed on NYSE during the same time interval as our queryetrac
(10:30am-11:00am on April 24, 2000). The update trace share
the same indexing scheme with the query trace. The update tra

fragment we used has over 396,000 entries.

Comparison Algorithms To evaluate our proposed QC adapta-
tion strategy, we performed an extensive simulation stugitygtthe
FIX, RAN, DYN schemes (Section 2.4) and our proposed pragose

AQC strategy (Section 3).

Each query is submitted to the system along with a user-fpeci
QC:; each user also has an initial budget, which for simpliist

OAvg (Qmax) ($) W Avg (Qpaid) (§) DOAvg (Qmax) ($) B Avg (Qpaid) ($)

DAvg (Qmax) ($) mAvVg (Qpaid) (3) DAvg (Qmax) ($) mAvVg (Qpaid) (3)

20

20

18
16
14

10

®

AT VTV

onso

16
14
12
10

Dnnnnﬂﬂﬂﬂﬂﬂ““““

omnso

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

(a) FIX: Money Expenditure (c) RAN: Money Expenditure

(e) BYMoney Expenditure (g) AQC: Money Expenditure

1 1

°
>

o
IS

Success Ratio
Success Ratio

°
Iy

o

°

-

o
®
o

o
>
o
>

°

IS
°
=

Success Ratio
Success Ratio

°
o

o

N

“ | “ ‘ “““

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

o
°

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

(b) FIX: Success Ratio (d) RAN: Success Ratio

(f) DYN: Susdeatio (h) AQC: Success Ratio

Figure 3: Duet Over time

equal among all users.

4.2 Performance Comparison

For a fair comparison, we present results from two diffe et
cution runs: duet and quartet. In duet, each run containslagses
of users (i.e. two algorithms), creating a one-to-one cortfition
to show directly which algorithm performs better. In quaniee put
all four algorithms into the run, where they all interact aodnpete
with each other.

° ° °
2 & &

Success Ratio

o
N

FIX, AQC RAN, AQC DYN, AQC

Figure 4: Duet Environment: AQC vs. Baseline Algorithms.
AQC outperforms baseline algorithms by up to 183%.

4.2.1 Duet

Experiment Design (Figure 4) We compare AQC with each base-
line algorithm individually to eliminate unnecessary natetions
from multiple algorithms. We performed three runs: (FIX, @R
(RAN, AQC), and (DYN, AQC). Each query from the trace is ran-
domly associated with one of the two algorithms in the experit.
Results (Figure 4) We run each trace 20 times and report the aver-
age query success ratio for the three comparisons in Figurae!
performance difference is quite obvious: AQC users perfbd32o
better than FIX, almost 100% better than RAN, and more th&s 30
better than DYN.

Results Over Time(Figure 3) Given that the four algorithms have
different behavior over time, we also plot the Bighax and the
money paid?paiq for each query as well as the query success ratio
with a 2-minute window over time.

In Figure 3(a), FIX gives a constant bid ($10) for each query.
Due to the unavoidable CPU time and unpredictable queuine, ti
the real expenditure is only around $2 on average. Failimguse
the refund leaves FIX with a small success ratio shown in Fig-
ure 3(b). RAN has similar results as shown in Figure 3(c) and

(d). @maxvaries around $10 an@paiqg is around $4 on average.
With more than half the budget wasted, RAN gains less than 50%
success ratio over time.

In Figure 3(e), we see that DYN dynamically adjusts the aurre
available budget and increas@saxover time. As a result, DYN's
success ratio increases over time too, as shown in Figyre-8tiv-
ever, DYN is still conservative on early issued queries,clhiot
only jeopardizes the fairness of queries coming at diffetiemes,
but also hurts its overall success ratio.

Finally, Figure 3(g) and (h) show AQC'’s improvement from two
sides. First, the averag@paiq is around $10, thus the budget is
fully used to increase the quality of query results. AQC iteab
to set@max higher than $10 because of foreseeing the expected
expenditure. Second, AQC tries to save money after corigecut
successes, so that it can bid higher to survive a tougheatisitu
later. This is why we see a few downward trends in Figure 3(g).
Both aspects help AQC achieve significantly better resuftsmit
competes with other algorithms.

4.2.2 Quartet

Experiment Design (Figure 5) Having compared the different
baseline algorithms (FIX, RAN, DYN) to our proposed algonit
(AQC), we mix the four user algorithms in the same execution r
each class of users has 30,000 queries with a f@gan of $10. In
this set of experiments, we focus on (1) varying quality tkists
(Figure 5(a)), and (2) showing both the user view and theeserv
view (Figure 5(b)).

Results (Figure 5(a)) We change the user constraints on QoS to be
tight, medium, and loose to generate three traces, High,wted
and Low workload respectively. As expected, for all alduoris,
the success ratio is higher with Low system workload (whiak h
loose quality constraints). In comparison to other algonis, AQC
performs the best under the whole spectrum of workloadsttfero
observation is that a high system workload also exaggettadqser-
formance differences among the algorithms. Under high leack
AQC outperforms FIX by 233%. AQC also achieves 155% better
performance than RAN and 28% better than DYN.

Results (Figure 5(b)) In addition to the users’ view of these al-
gorithms, we also show the server profit gains from each user a
gorithm under the medium workload. We observed similardsen
with both the high and the low workload. Figure 5(b) showd tha
the server stands to gain much more profit from DYN and AQC,
thus tends to serve them better than FIX and RAN. Making fe&i u

BFIX HRAN ODYN WAQC

Success Ratio
° o o
kS > ©

o
N

o

HIGH MEDIUM Low

aFIX HRAN ODYN WAQC

0$62,426
8%

m$299,997 W $164,649
36% 20%

0$299,991
36%

(a) User View: Success Ratio

(b) Server View: Profit

Figure 5: Quartet Environment: 4 algorithms under different workload settings.

of the budget is a win-win strategy from both users’ and st&sve

point of view.

To summarize, AQC not only gives the best success ratio under
various workloads, but also makes the users most popular &o
system’s point of view, as the system can make much more profit

from users utilizing AQC.

5. RELATED WORK

Web-databasesThere is a plethora of papers that focus on im-
proving the performance of user requests to databasendvied
sites, using caching [4, 11] or materialization [7]. Thegpraaches
usually provide a best-effort solution in terms of eitherSQor
QoD. In our recent work [6], we introduced the Quality Contra
framework to combine individual users’ preferences fohbQbS
and QoD. We demonstrated the QC framework in [14], in combi-

nation with our policies for admission control [13], and gué&

update scheduling [12]. Our demo also highlighted the benefi

user-side adaptation of QCs (although we did not provideAE
scheme, as we do in this paper).

Grids and Web ServicesService Level Agreements (SLAS) in
Grid applications [3] is another related area. In SLAs, vese
availability, capability, and cost are considered for efffe re-
source management. SLAs also exist for Web-services [10, 18
20]. Although sharing the general goal of resource reguiasind
cost controlling, our work focuses on one specific resounaed-

databases.

6. CONCLUSIONS

In previous work we have proposed the Quality Contracts (QCs
framework, and introduced the supporting system optiriinat
In this work, we turn our attention to the user side of the equa
tion and consideuser strategies to adapt Quality Contracts over
time. Towards this, we proposed the Adaptive Quality Contract
(AQC) strategy, which monitors a user’s queries and thessisrie-
sponses in order to automatically adapt the QCs of subsegsen
submitted queries. We performed an extensive simulatiodyst
with real traces, which showed that AQC consistently odtpers

baseline algorithms (by up to 233%).

Currently, we are exploring strategy-proof mechanismstlier

bidding process and are considering how other schedulers [&)
could be adapted to “understand” Quality Contracts.

7. REFERENCES
[1] R. K. Abbott and H. Garcia-Molina. Scheduling real-time
transactions: A performance evaluatigfCM Transactions on
Database System&7(3):513-560, 1992.

[2] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat. Resource
allocation in federated distributed computing infrastawes. InProc.
of the 1st Workshop on Operating System and Architecturnap&t
for the Ondemand IT InfraStructur®ct 2004.

[3] R. Buyya, D. Abramson, and S. Venugopal. The Grid Economy
Proceedings of the IEEB3(3):698-714, 2005.

[4] A. Datta et al. Proxy-Based Acceleration of DynamicaBgnerated
Content on the World Wide Web: An Approach and Implementatio
In SIGMOD Conferenge2002.

[5] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, A. Labriisidand
K. Pruhs. Adaptive scheduling of web transactionddBE
ConferenceApril 2009.

[6] A. Labrinidis, H. Qu, and J. Xu. Quality contracts for kime
enterprises. IBIRTE Workshop2006.

[7] A. Labrinidis and N. Roussopoulos. Webview materiiaza. In
SIGMOD Conferenge2000.

[8] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman
Tycoon: An implementation of a distributed, market-basesburce
allocation systemMultiagent Grid Syst.1(3):169-182, 2005.

[9] H.C. Lau, S. F. Cheng, T. Y. Leong, J. H. Park, and Z. Zhao.
Multi-period combinatorial auction mechanism for distrtied
resource allocation and scheduling.IAT, 2007.

[10] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and polig in
dynamic web service selection. WWWW Alt, pages 66—73, 2004.

[11] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. WB0oG.
Lindsay, and J. F. Naughton. Middle-tier Database Cachong f
e-Business. '8IGMOD Conferenge2002.

[12] H. Qu and A. Labrinidis. Preference-aware query ancatgpd
scheduling in web-databases.I@DE Conferencg2007.

[13] H. Qu, A. Labrinidis, and D. Mosse. Unit: User-centniarisaction
management in web-database system$CIDE Conference2006.

[14] H. Qu, J. Xu, and A. Labrinidis. Demo: Quality is in theeegf the
beholder: Towards user-centric web-databaseSIGMOD
Conference2007.

[15] K. Ramamritham and J. Stankovic. Scheduling algor&fand
operating systems support for real-time systeftsceedings of the
IEEE, 82(1):55-67, 1994.

[16] O. Regev and N. Nisan. The popcorn market—an online atddt

computational resources. Rroc. of the first international conference

on Information and computation economi&998.

[17] S. Rosen. Hedonic prices and implicit markets: Product
differentiation in pure competitiorhe Journal of Political
Economy82(1):34-55, Janurary - February 1974.

[18] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, and F. Casatitomated
sla monitoring for web services. IEEE/IFIP DSOM 2002.

[19] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephand
W. S. Stornetta. Spawn: A distributed computational econdBEE
Trans. on Software Engineerin@8(2):103-117, February 1992.

[20] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and .Gheng.
Quality driven web services composition. MWW Conference
2003.

