
Guiding Personal Choices in a Quality Contracts Driven
Query Economy∗

Huiming Qu
IBM Watson Research Center

hqu@us.ibm.com

Jie Xu
University of Pittsburgh

xujie@cs.pitt.edu

Alexandros Labrinidis
University of Pittsburgh

labrinid@cs.pitt.edu

ABSTRACT
The emergence of Web 2.0 has brought upon a plethora of database-
driven web applications and services where both Quality of Service
(QoS) and Quality of Data (QoD) are of paramount importance to
end users. In our previous work, we have proposed Quality Con-
tracts, a comprehensive framework for specifying multipledimen-
sions of QoS/QoD; we have also developed algorithms to maxi-
mize overall system performance under Quality Contracts. In this
work, we turn our attention to the user side of the equation, on
how to choose and adapt Quality Contracts to better serve users’
needs in the presence of other users, who are competing for the
same resources, in a virtual “economy” of Quality Contractsat the
server. Towards this, we propose the Adaptive Quality Contract
(AQC) scheme to maximize the success ratio of user queries. AQC
switches between its Overbid (aggressive) mode and Deposit(con-
servative) mode, to allow users to survive through economicdown-
turns and upturns. Extensive experiments with real traces show that
our proposed scheme outperforms other competing schemes, under
a variety of environments and a spectrum of workloads.

1. INTRODUCTION
How many times did you have to wait for your query to finish

executing when visiting a travel reservation web site like Orbitz
and Expedia? After getting the query results, how many timeswas
the quoted price proved to be inaccurate when you clicked “buy
this ticket”? This is just one example of a web-database system
that illustrates the trade-off between Quality of Service (QoS) and
Quality of Data (QoD). Clearly, some users would prefer fastre-
sponse time, while tolerating slightly stale results (e.g., when they
just want to find out about flight schedules). However, other users
would instead prefer to get the most accurate query results,even
if the response time was a bit higher (e.g., when they are ready to
purchase a ticket). There are a number of issues that need to be
addressed to implement a web-database system that is “receptive”
to user preferences on QoS and QoD. We enumerate these next.

∗Work supported in part by NSF Career award IIS-0746696 and
NSF ITR award ANI-0325353.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
PersDB ‘09,August 28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Q1: How to describe user preferences?First and foremost, there
needs to be a way for users to specify their preferences on QoSand
QoD. One simple way would be to effectively assign users to equiv-
alence classes (i.e., prefers QoS over QoD, or prefers QoD over
QoS) and allow users to select which class they belong to. In our
previous work, we have proposed (and advocated using) a moreso-
phisticated framework, calledQuality Contracts(QCs) [6] which is
based on the micro-economic paradigm. The QC framework allows
users to specify their preferences across a variety of quality dimen-
sions. Similar proposals exist for other domains, such as the utility
functions in real-time systems [15] and the service level agreements
(SLAs) in Grid computing [3]1.

Q2: How are user preferences “implemented” to influence sys-
tem decisions?Given a framework for users to specify their prefer-
ences over different quality dimensions, it is crucial to have a way
to influence resource allocation decisions to maximize usersatis-
faction (i.e., compliance to user preferences). Towards this, we
have developed admission control policies [13] and query & up-
date scheduling algorithms [12] that maximize the overall system
profit (to be gained by the server from satisfying QCs) and thus
maximize the overall user satisfaction. The proposed algorithms
are especially useful during periods of high server load, since they
provide graceful service degradation.

In this work, we address another important problem that material-
izes aftersatisfactory solutions for questions Q1 and Q2 have been
provided.

Q3: How should users adapt their Quality Contracts in the
presence of competition?User preferences, if expressed through
the Quality Contracts framework, include a constraint component
(e.g., maximum acceptable data staleness) and a “worth” compo-
nent (i.e., virtual money) for every quality dimension of interest to
the user. In such an environment, always truthfully exposing the
“worth” of the queries will not allow users to react to high compe-
tition (i.e., by “paying” a bit more than expected) nor to take advan-
tage of reduced competition (i.e., by “paying” less than expected).
In general, we consider the Quality Contracts submitted by the dif-
ferent users (along with their queries) as acompetitive economy. As
such, it is crucial for users to be able to adapt these QCs overtime
(while trying to achieve query quality that meets their preferences).
In this paper, we propose user strategies to adapt QCs over time,
during economic downturns (i.e., when the competition is less) and
also during economic upturns (i.e., when the competition ishigher).

Contributions The main contributions of this paper are:

• Given an environment where user preferences over different
quality dimensions are expressed using Quality Contracts (QCs)

1We refer the reader to [6] for a detailed description of the QC
framework and comparison to other approaches.

U
p

d
at

es

Queries

User Control Panel

Quality Contract Adaptation

Budget Monitoring

Query result & receipt +

Web-DB Server

Admission Control
Scheduling

Quality Contract

Bid = Qmax = qosmax + qodmax

uumax

Q
oS

 p
ro

fit
 (

$)

Q
oD

 p
ro

fit
 (

$)

Staleness (# UU)

qodmax

Response Time (ms)

+
qosmax

rtmax

Refund = Qmax - Qpaid

Profit Guided Opimization

P
us

h-
ba

se
d

or
 p

ul
l-b

as
ed

Figure 1: System Architecture

and are attached to queries, we look at the user viewpoint and,
in particular, the framework for adapting QCs over time and
the connection between a user’s true preferences and his or her
“exposed” QCs.

• We propose theAdaptive Quality Contract (AQC)strategy, which
monitors a user’s queries and the server’s responses and auto-
matically adapts the QCs of subsequent user-submitted queries.
AQC2 switches between two modes:Overbid mode, used at
times of fierce competition among users; andDeposit mode,
used at times of little competition.

We have demonstrated a QC-enabled web-database system dur-
ing SIGMOD 2007 [14]. Our demo illustrated both the server view
(for which the technical details were published in [12]) anda pre-
liminary version of the user view, which is presented in thispaper.
In addition to introducing the AQC strategy (not in [14]), this pa-
per explains its mathematical foundations, and presents a detailed
experimental study using real traces.

2. SYSTEM ARCHITECTURE
We assume a web-database server architecture like the one in

Figure 1. The system consists of two parts: the user module and the
web-database server. Before describing these two parts, wediscuss
the basic concepts behind the QC economy.

2.1 The Quality Contract (QC) Economy
Economic mechanisms can be broadly classified into two types:

commodity markets and auction markets [2]. Previous work has at-
tempted to solve the system resource allocation problem under both
paradigms. Under the commodity markets paradigm, commodities
are exchanged in standardized contracts. Servers (acting as sell-
ers) need to valuate their resources and assign prices for each unit.
Users (acting as buyers) then decide from whom they buy the ser-
vice to fulfill their queries. The shortcoming of commodity markets
is the complexity and high cost for a server to valuate its resources,
especially when the server workload fluctuates rapidly overtime.
To avoid this overhead at the server and make the valuation more
precise, many systems follow the auction markets paradigm [2, 9,
16, 8, 19], where users need to give a price and bid on the resources
or services provided by the server. Obviously, the uncertainty and
burden of valuation never disappear; they are simply shifted to the
user side. In this work, we adopt the auction markets paradigm.
However, as we will elaborate in Section 3, we propose an adaptive
bidding mechanism so that neither servers nor users have to worry
about exact valuation.

In our system, users are allocated virtual money, which they
spend in order to execute their queries according to their prefer-
ences; user preferences are described via QCs attached to each sub-

2AQC is pronounced AQuaC, which sounds like AFLAC; however,
we do not have a fancy mascot.

mitted query. Servers, on the other hand, execute users’ queries and
get virtual money in return for their service.

The virtual money is “paid” upon submission of a query to the
server as part of the bidding (i.e.,Qmax); any refund is given back
along with the query results (i.e.,Qmax− Qpaid). In our work, we
follow a hedonic price model [17]; goods (i.e., services in our case)
are priced by the users’ valuation of different characteristics (QoS
and QoD in our framework) and their contribution to users’ utility.
Towards this, we adopt the Quality Contracts (QC) frameworkas
shown in Figure 1 for service pricing (by the users). A QC consists
of aQoS function(where response time is mapped to QoS profit for
the server) and aQoD function(where staleness is mapped to QoD
profit for the server). The QoS and QoD metrics are application-
dependent and orthogonal to our work.

Although our framework allows for users to specify complicated
functions for QoS and QoD, in reality we expect users to simply
select from a set of predefined such functions, much like mostof
our other digital “products” with different levels of service (e.g.,
cell phone plans).

In the presence of QCs, users and servers have distinct objec-
tives: servers try to maximize their income, whereas users try to
“stretch” their budget to execute as many queries as they can.

2.2 Server View
The web-database server is responsible for processing bothup-

dates and queries in order to meet the service requirements speci-
fied in the QC of each query.

Server Objective: Maximize Profit. The server objective is
to maximize its profit, gained from each QC, through admission
control and scheduling.

Server Optimization Mechanism: There are two phases of server
optimization schemes: (1) admission control upon arrival of a query
or an update, and (2) transaction scheduling once admitted.In gen-
eral, the higher the bid, the higher the chance that a query isadmit-
ted and completed with high quality. Due to the space limitation,
please refer to [13, 12] for more details on these two phases.We
adopted Two Phase Locking - High Priority (2PL-HP) [1] where
the lower priority transaction releases the lock to the higher prior-
ity transaction at a conflict.

2.3 User View
The user aspect of the system must include an interface for users

to specify QCs and the ability to monitor the execution of QC-
enabled queries, while keeping track of the current budget.Al-
though the QC framework empowers users to influence resource
allocation decisions at the server (to better meet their preferences),
it also places the burden on the users to choose QCs (and adapt
them over time). We expect that users will employuser agents,
which will have explicit “instructions” from each user (on his/her
true preferences and budget constraints) and a QC adaptation strat-
egy.

Quality Contract / User Satisfaction: In this paper, we adopt
QCs with linearly decreasing positive functions [12]. Intuitively,
users can set the following four parameters to define a QC:

• qosmax, the maximum QoS profit,

• qodmax, the maximum QoD profit,

• rtmax, the maximum bearable response time, and

• uumax, the maximum bearable staleness.

In this work, we simplify our model with an equivalent presenta-
tion, where the first two parameters (qosmax and qodmax) are re-
placed by:

• Qmax: qosmax +qodmax, the maximum payment for the query.

• γ: qodmax
qosmax

, relative importance between QoS and QoD.

Q o S0 1 0 s e c5 s e c1 Q o D0 3 U U1 U U1
(a) QoS (b) QoD

Figure 2: User Satisfaction Functions Example

As discussed in the introduction section (question Q3), in spec-
ifying QCs, users may not want to reveal the true worth of their
queries (e.g., how much they can pay for a query result with a cer-
tain response time), although they would be willing to reveal their
constraints (i.e., would prefer an answer within 10 seconds). In
other words, the constraints in QCs are truthful, but the mapping to
the worth dimention may not be. Figure 2 shows a simple exam-
ple of what “truthful” user satisfaction functionsmight look like.
Under this setting, queries are considered acceptable as long as the
results meet the constraints on both QoS and QoD. Without loss of
generality, we adopt such binary-step user satisfaction functions in
this paper.

Following the example of Figure 2, we define two outcomes for
a query for the general case:

• Success:A query succeeds if it is returned with valuable an-
swers, meaning that the response time is shorter than the QoS
constraint,rtmax, and the staleness is smaller than the QoD con-
straint,uumax. Successful queries give to the server a nonzero
payment,Qpaid > 0. The actual value ofQpaid depends on
how well the server executes the query, given the QC. In terms
of the user satisfaction functions, a successful query yields 1
from the product of all user satisfaction functions of the query
(i.e., across all quality dimensions).

• Failure: If a query fails either the QoS or the QoD constraint,
we call the query afailure, andQpaid = 0. This allows the user
to also infer the data freshness of the returned results.

User Objective: Success Ratio Maximization.The users’ goal
is to adapt Quality Contracts (e.g., by changingQmax) to get as
many as possible of his/her queries executed successfully,within
the given total budget.

2.4 Analysis of Existing QC Adaptation Schemes
Assuming a user withN queries to submit and a total budget

B, we consider three baseline strategies, which computeQ
(i)
max, the

total bid for the QC of queryi, as follows:

• Fixed (FIX): Q
(i)
max = B

N
. FIX is a static policy, which assigns

each query an equal share of the total budget.

• Random (RAN): Q
(i)
max =uniform[B

N
− c, B

N
+ c], wherec is a

constant. This strategy usesB
N

as the mean, and[B
N
−c, B

N
+c]

as the range to pickQmax uniformly.

• Dynamic (DYN): Q
(i)
max = Bi

N−i
. This scheme monitors the

current budget leftBi and the number of queries leftN − i

before queryi is issued.

Problems with existing schemes: FIX does not make full use
of the budget, because it ignores the refunds from the previous
failed queries. The RAN scheme is similarly problematic. DYN
addresses the issue of ignored refunds by dynamically updating the
available budget. However, DYN favors the queries issued later
than earlier and creates an unfair allocation of the total budget.

3. ADAPTIVE QUALITY CONTRACT (AQC)
In this section, we present our proposedAdaptive Quality Con-

tract Scheme (AQC), which addresses the problems and limitations
of the baseline algorithms that were presented in the previous sec-
tion. Our AQC scheme switches between two modes:Overbid
mode(Section 3.1) andDeposit mode(Section 3.2); we discuss
how AQC chooses between the two modes in Section 3.3.

3.1 Overbid Mode
As we have shown, DYN unfairly “favors” later queries by mono-

tonically increasingQmax as time progresses using the cumulative
refunds from previously finished queries. This behavior is roughly
equivalent to last-minute spending by companies at the end of a
fiscal year, since at that time, any of the remaining money in the
current year’s budget will effectively disappear unless spent imme-
diately.

The Overbid mode of AQC addresses this problem by setting
the budget of the submitted quality contracts for each queryto be
such that theexpected payments sum up to the overall budget. In
contrast, the DYN scheme sets the bid per query to be such thatthe
individual bids sum up to the total budget (which clearly results in
under-utilization of the budget, until the last minute).

In order to make the expected payments sum up to the overall
budget, we need to make sure that the expected payments for the
ith query sum up to its fair share of the budget:

Ep[Q
(i)

paid(x, y)] = budget per query=
Bi

N − i
(1)

Then, in order to find how to set the QC for the query, we have to
essentially expressQpaid in terms ofQmax, and solve Equation 1
for Qmax. Qpaid depends on the QoS functionS, QoD function
D, and how well the server returns the query (response timex and
stalenessy). Thus, as we show next, the expectation ofQpaid over
the probability distribution of response time (x) and staleness (y)
can be expanded as the sum of expected expenditure from the QoS
function and from the QoD function respectively:

Ep[Q
(i)

paid(x, y)] = Ep[S(x)] + Ep[D(y)] (2)

If we combine Equation 1 with Equation 2, we have that:

Ep[S(x)] + Ep[D(y)] =
Bi

N − i
(3)

In this work, we adopt linear segmented QCs where the QoS
function can be represented as in Equation 4 and the QoD function
can be represented as in Equation 5. If other formats of QC func-
tions are adopted, Equation 4 and Equation 5 should be modified
accordingly.

S(x) =



qosmax(1 −
x

rtmax
) if x ∈ [0, rtmax]

0 otherwise
(4)

D(y) =



qodmax(1 −
y

uumax
) if y ∈ [0, uumax]

0 otherwise
(5)

We compute the expectation of QoS profit using empirical expec-
tation, as shown in Equation 6.

Ep[S(x)] =

Z

S(x)p(x)dx

= qosmax

Z rtmax

0

p(x)dx −
qosmax

rtmax

Z rtmax

0

xp(x)dx

≈ qosmax(P(x < rtmax) −
x̄

rtmax
) (6)

where P(x < rtmax) is the percentage of cases that the response
time of the user query is smaller than its response time constraint
rtmax, and x̄ is the average response time. Both P(x < rtmax)
and x̄ can be computed based on the query execution history. We
introduceα to denote this part of computation and summarize the
expected QoS profit as follows:

Ep[S(x)] ≈ qosmax · α (7)

α = P(x < rtmax) −
x̄

rtmax

Similarly, we compute the expectation of QoD profit:

Ep[D(y)] ≈ qodmax · β (8)

β = P(y < uumax) −
ȳ

uumax

As described in Equation 3, the total expected profit from both QoS
(Equation 7) and QoD (Equation 8) should be set to the current
budget per queryBi

N−i
:

qosmax · α + qodmax · β =
Bi

N − i
(9)

whereα andβ are computed based on query execution history (as
shown in Equation 7 and Equation 8). Since the ratio between
qosmax andqodmax is known asγ, we have:

Qmax = qosmax+ qodmax

qodmax = γ · qosmax (10)

We solve Equations 9 and 10 to get the final solution ofQmax:

Q
(i)
max =

Bi

N − i
·

1

α + γ · β
(11)

In the above solution, 1
α+γ·β

is essentially the overbid factor.

3.2 Deposit Mode
Although Overbid mode successfully utilizes as much of the bud-

get as possible (and in a fair manner across all queries), it will not
detect the cases of “overpayment” because of the server having a
light load. In such cases, there is not much “competition” from
other users, and as such the user could have paid less than what
Overbid mode would suggest.

The benefit of detecting these cases comes from the inherent dy-
namic nature of typical web-database servers. The load at such
servers can fluctuate fromvery high(e.g., in periods of flash crowds),
where queries would require a high budget or they will not be able
to execute, to relativelylow, where queries would require a much
less budget than usual to execute.

In order to make sure that the AQC scheme can successfully react
to the inherent dynamic nature of web-database servers, we intro-
duce a budget saving scheme which we callDeposit mode. The
main idea behind Deposit mode is to recognize cases when users
can spend less of their budget (because of a less competitivesitu-
ation), so that they are ready to spend more when facing stronger
competition from other users.

To implement Deposit mode, theQmax is reduced when there is
a row of consecutive successful query executions. LetQ

(s)
max, Q

(s)

paid
be the budget and the payment for the most recent successful query.
We set the newQ(i)

max in Deposit mode as follows:

Q
(i)
max = Q

(s)
max · (1 −

Q
(s)

paid

Q
(s)
max

) (12)

We call the ratio of
Q

(s)

paid

Q
(s)
max

as thedeposit factor. Notice that the

closerQ(s)

paid is to Q
(s)
max, the bigger the deposit factor is. The in-

tuition is that we could deposit more and bid less when historical
success comes with very good performance (a highQ

(s)

paid usually
corresponds to high QoS and high QoD). A high deposit factor thus
may indicate that the system is currently lightly loaded. Although
a lower bid will decrease the priority of the query, hopefully in a
lightly loaded server, the query can still be answered within con-
straints. On the contrary, if the last successful query barely meets
the QoS and QoD constraints, the deposit factor will be closeto
zero and the query will be kept with a competitive bid.

3.3 Switching between Deposit and Overbid
At the beginning, the system is set to the overbid mode by de-

fault. AQC keeps track of the number of consecutive query suc-
cesses (successQ.size) and uses it to decide the current system
mode.

If the number of successes is significantly large (i.e., larger than
a thresholdc), the system is set to deposit mode. This is because
a consecutive successful query history indicates a less competitive
environment or a lightly loaded web-database server, thus the bid
can potentially be decreased without hurting the success ratio.

Notice thatsuccessQ.size only includes those queries that are
completed within the time windoww. Thus,successQ.size may
decrease due to two reasons: (1) there are no more queries to be
completed (i.e., neither query success nor query failure),as a re-
sult, successQ.size decreases as the moving windoww moves
on. If successQ.size drops belowc, the system mode will be set
to overbid because of the lack of successful feedbacks; (2) there is a
query failure, which will resetsuccessQ.size to zero immediately.
In both cases, system mode is set to overbid promptly to utilize the
user’s budget as much as possible so that the server is motivated to
execute the users queries with higher priorities.

By switching between the overbid and deposit modes according
to the query success/failure, the AQC scheme naturally follows the
law of supply and demand. We expect the overhead of adaptation
to be linear to the total number of queries processed.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
We have acquired access traces from a popular stock market in-

formation web site, Quote.com, and combined them with the NYSE
(New York Stock Exchange) update traces for the same time pe-
riod, which enabled us to accurately generate both query andup-
date workloads for our experiments.
Query Traces We use real queries from Quote.com for April 24,
2000. All queries are read-only. We concentrated on a “heavy”
workload for the server, a 30-minute (10:30am-11:00am) interval
with over 120,000 queries on 4,107 different stock symbols.
Update Traces We extracted the actual trades on all securities
listed on NYSE during the same time interval as our query trace
(10:30am-11:00am on April 24, 2000). The update trace shares
the same indexing scheme with the query trace. The update trace
fragment we used has over 396,000 entries.
Comparison Algorithms To evaluate our proposed QC adapta-
tion strategy, we performed an extensive simulation study using the
FIX, RAN, DYN schemes (Section 2.4) and our proposed proposed
AQC strategy (Section 3).

Each query is submitted to the system along with a user-specified
QC; each user also has an initial budget, which for simplicity is

0
2
4
6
8

10
12
14
16
18
20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

Avg (Qmax) ($) Avg (Qpaid) ($)

0
2
4
6
8

10
12
14
16
18
20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

Avg (Qmax) ($) Avg (Qpaid) ($)

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

Avg (Qmax) ($) Avg (Qpaid) ($)

0

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

Avg (Qmax) ($) Avg (Qpaid) ($)

(a) FIX: Money Expenditure (c) RAN: Money Expenditure (e) DYN: Money Expenditure (g) AQC: Money Expenditure

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

S
u

cc
es

s
R

at
io

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

S
u

cc
es

s
R

at
io

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

S
u

cc
es

s
R

at
io

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (minute)

S
u

cc
es

s
R

at
io

(b) FIX: Success Ratio (d) RAN: Success Ratio (f) DYN: Success Ratio (h) AQC: Success Ratio

Figure 3: Duet Over time

equal among all users.

4.2 Performance Comparison
For a fair comparison, we present results from two differentexe-

cution runs: duet and quartet. In duet, each run contains twoclasses
of users (i.e. two algorithms), creating a one-to-one confrontation
to show directly which algorithm performs better. In quartet, we put
all four algorithms into the run, where they all interact andcompete
with each other.

0

0.2

0.4

0.6

0.8

1

FIX, AQC RAN, AQC DYN, AQC

S
u

cc
es

s
R

at
io

Figure 4: Duet Environment: AQC vs. Baseline Algorithms.
AQC outperforms baseline algorithms by up to 183%.

4.2.1 Duet
Experiment Design (Figure 4) We compare AQC with each base-
line algorithm individually to eliminate unnecessary interactions
from multiple algorithms. We performed three runs: (FIX, AQC),
(RAN, AQC), and (DYN, AQC). Each query from the trace is ran-
domly associated with one of the two algorithms in the experiment.
Results (Figure 4) We run each trace 20 times and report the aver-
age query success ratio for the three comparisons in Figure 4. The
performance difference is quite obvious: AQC users perform183%
better than FIX, almost 100% better than RAN, and more than 30%
better than DYN.
Results Over Time(Figure 3) Given that the four algorithms have
different behavior over time, we also plot the bidQmax and the
money paidQpaid for each query as well as the query success ratio
with a 2-minute window over time.

In Figure 3(a), FIX gives a constant bid ($10) for each query.
Due to the unavoidable CPU time and unpredictable queuing time,
the real expenditure is only around $2 on average. Failing toreuse
the refund leaves FIX with a small success ratio shown in Fig-
ure 3(b). RAN has similar results as shown in Figure 3(c) and

(d). Qmax varies around $10 andQpaid is around $4 on average.
With more than half the budget wasted, RAN gains less than 50%
success ratio over time.

In Figure 3(e), we see that DYN dynamically adjusts the current
available budget and increasesQmax over time. As a result, DYN’s
success ratio increases over time too, as shown in Figure 3(f). How-
ever, DYN is still conservative on early issued queries, which not
only jeopardizes the fairness of queries coming at different times,
but also hurts its overall success ratio.

Finally, Figure 3(g) and (h) show AQC’s improvement from two
sides. First, the averageQpaid is around $10, thus the budget is
fully used to increase the quality of query results. AQC is able
to setQmax higher than $10 because of foreseeing the expected
expenditure. Second, AQC tries to save money after consecutive
successes, so that it can bid higher to survive a tougher situation
later. This is why we see a few downward trends in Figure 3(g).
Both aspects help AQC achieve significantly better results when it
competes with other algorithms.

4.2.2 Quartet
Experiment Design (Figure 5) Having compared the different
baseline algorithms (FIX, RAN, DYN) to our proposed algorithm
(AQC), we mix the four user algorithms in the same execution run;
each class of users has 30,000 queries with a meanQmaxof $10. In
this set of experiments, we focus on (1) varying quality constraints
(Figure 5(a)), and (2) showing both the user view and the server
view (Figure 5(b)).
Results (Figure 5(a))We change the user constraints on QoS to be
tight, medium, and loose to generate three traces, High, Medium,
and Low workload respectively. As expected, for all algorithms,
the success ratio is higher with Low system workload (which has
loose quality constraints). In comparison to other algorithms, AQC
performs the best under the whole spectrum of workloads. Another
observation is that a high system workload also exaggeratesthe per-
formance differences among the algorithms. Under high workload,
AQC outperforms FIX by 233%. AQC also achieves 155% better
performance than RAN and 28% better than DYN.
Results (Figure 5(b)) In addition to the users’ view of these al-
gorithms, we also show the server profit gains from each user al-
gorithm under the medium workload. We observed similar trends
with both the high and the low workload. Figure 5(b) shows that
the server stands to gain much more profit from DYN and AQC,
thus tends to serve them better than FIX and RAN. Making full use

0

0.2

0.4

0.6

0.8

1

HIGH MEDIUM LOW

S
u

cc
es

s
R

at
io

FIX RAN DYN AQC

$299,991
36%

$164,649
20%

$62,426
8%

$299,997
36%

FIX RAN DYN AQC

(a) User View: Success Ratio (b) Server View: Profit

Figure 5: Quartet Environment: 4 algorithms under differen t workload settings.

of the budget is a win-win strategy from both users’ and server’s
point of view.

To summarize, AQC not only gives the best success ratio under
various workloads, but also makes the users most popular from a
system’s point of view, as the system can make much more profit
from users utilizing AQC.

5. RELATED WORK
Web-databasesThere is a plethora of papers that focus on im-

proving the performance of user requests to database-driven web
sites, using caching [4, 11] or materialization [7]. These approaches
usually provide a best-effort solution in terms of either QoS or
QoD. In our recent work [6], we introduced the Quality Contract
framework to combine individual users’ preferences for both QoS
and QoD. We demonstrated the QC framework in [14], in combi-
nation with our policies for admission control [13], and query &
update scheduling [12]. Our demo also highlighted the benefits of
user-side adaptation of QCs (although we did not provide theAQC
scheme, as we do in this paper).

Grids and Web ServicesService Level Agreements (SLAs) in
Grid applications [3] is another related area. In SLAs, resource
availability, capability, and cost are considered for effective re-
source management. SLAs also exist for Web-services [10, 18,
20]. Although sharing the general goal of resource regulation and
cost controlling, our work focuses on one specific resources: web-
databases.

6. CONCLUSIONS
In previous work we have proposed the Quality Contracts (QCs)

framework, and introduced the supporting system optimizations.
In this work, we turn our attention to the user side of the equa-
tion and consideruser strategies to adapt Quality Contracts over
time. Towards this, we proposed the Adaptive Quality Contract
(AQC) strategy, which monitors a user’s queries and the server’s re-
sponses in order to automatically adapt the QCs of subsequent user-
submitted queries. We performed an extensive simulation study
with real traces, which showed that AQC consistently outperforms
baseline algorithms (by up to 233%).

Currently, we are exploring strategy-proof mechanisms forthe
bidding process and are considering how other schedulers (e.g., [5])
could be adapted to “understand” Quality Contracts.

7. REFERENCES
[1] R. K. Abbott and H. Garcia-Molina. Scheduling real-time

transactions: A performance evaluation.ACM Transactions on
Database Systems, 17(3):513–560, 1992.

[2] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat. Resource
allocation in federated distributed computing infrastructures. InProc.
of the 1st Workshop on Operating System and Architectural Support
for the Ondemand IT InfraStructure, Oct 2004.

[3] R. Buyya, D. Abramson, and S. Venugopal. The Grid Economy.
Proceedings of the IEEE, 93(3):698–714, 2005.

[4] A. Datta et al. Proxy-Based Acceleration of DynamicallyGenerated
Content on the World Wide Web: An Approach and Implementation.
In SIGMOD Conference, 2002.

[5] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and
K. Pruhs. Adaptive scheduling of web transactions. InICDE
Conference, April 2009.

[6] A. Labrinidis, H. Qu, and J. Xu. Quality contracts for real-time
enterprises. InBIRTE Workshop, 2006.

[7] A. Labrinidis and N. Roussopoulos. Webview materialization. In
SIGMOD Conference, 2000.

[8] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman.
Tycoon: An implementation of a distributed, market-based resource
allocation system.Multiagent Grid Syst., 1(3):169–182, 2005.

[9] H. C. Lau, S. F. Cheng, T. Y. Leong, J. H. Park, and Z. Zhao.
Multi-period combinatorial auction mechanism for distributed
resource allocation and scheduling. InIAT, 2007.

[10] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and policing in
dynamic web service selection. InWWW Alt., pages 66–73, 2004.

[11] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo,B. G.
Lindsay, and J. F. Naughton. Middle-tier Database Caching for
e-Business. InSIGMOD Conference, 2002.

[12] H. Qu and A. Labrinidis. Preference-aware query and update
scheduling in web-databases. InICDE Conference, 2007.

[13] H. Qu, A. Labrinidis, and D. Mosse. Unit: User-centric transaction
management in web-database systems. InICDE Conference, 2006.

[14] H. Qu, J. Xu, and A. Labrinidis. Demo: Quality is in the eye of the
beholder: Towards user-centric web-databases. InSIGMOD
Conference, 2007.

[15] K. Ramamritham and J. Stankovic. Scheduling algorithms and
operating systems support for real-time systems.Proceedings of the
IEEE, 82(1):55–67, 1994.

[16] O. Regev and N. Nisan. The popcorn market—an online market for
computational resources. InProc. of the first international conference
on Information and computation economies, 1998.

[17] S. Rosen. Hedonic prices and implicit markets: Product
differentiation in pure competition.The Journal of Political
Economy, 82(1):34–55, Janurary - February 1974.

[18] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, and F. Casati. Automated
sla monitoring for web services. InIEEE/IFIP DSOM, 2002.

[19] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and
W. S. Stornetta. Spawn: A distributed computational economy. IEEE
Trans. on Software Engineering, 18(2):103–117, February 1992.

[20] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng.
Quality driven web services composition. InWWW Conference,
2003.

