
Optimizing I/O-Intensive Transactions in Highly Interactive
Applications

Mohamed A. Sharaf
ECE Department

University of Toronto
Toronto, Ontario, Canada

msharaf@eecg.toronto.edu

Panos K. Chrysanthis
CS Department

University of Pittsburgh
Pittsburgh, PA, U.S.A.
panos@cs.pitt.edu

Alexandros Labrinidis
CS Department

University of Pittsburgh
Pittsburgh, PA, U.S.A.

labrinid@cs.pitt.edu

Cristiana Amza
ECE Department

University of Toronto
Toronto, Ontario, Canada

amza@eecg.toronto.edu

ABSTRACT
The performance provided by an interactive online database system
is typically measured in terms of meeting certain pre-specified Ser-
vice Level Agreements (SLAs), with expected transaction latency
being the most commonly used type of SLA. This form of SLA acts
as a soft deadline for each transaction, and user satisfaction can be
measured in terms of minimizing tardiness, that is, the deviation
from SLA. This objective is further complicated for I/O-intensive
transactions, where the storage system becomes the performance
bottleneck. Moreover, common I/O scheduling policies employed
by the Operating System with a goal of improving I/O throughput
or average latency may run counter to optimizing per-transaction
performance since the Operating System is typically oblivious to
the application high-level SLA specifications. In this paper, we
propose a new SLA-aware policy for scheduling I/O requests of
database transactions. Our proposed policy synergistically com-
bines novel deadline-aware scheduling policies for database trans-
actions with features of Operating System scheduling policies de-
signed for improving I/O throughput. This enables our proposed
policy to dynamically adapt to workload and consistently provide
the best performance.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Transaction process-
ing.

General Terms
Algorithms, Design, Performance.

Keywords
Database Systems, Transaction Processing, I/O Scheduling.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

1. INTRODUCTION
In today’s highly interactive database applications, optimizing

I/O intensive transactions is a challenge, as important now as it was
at the emergence of database management systems. The reason
for this is that today’s highly interactive applications, such as Web
applications driven by a database or a data warehouse, must meet
the users’ high performance expectations in light of the fact that
these applications involve large number of data accesses. For ex-
ample, in database-driven Web applications, a user during a single
session accesses (interactively or at the “speed of thought”) web
pages which are dynamically created from data in databases. Typ-
ically, such a dynamic web page is composed by a number of con-
tent fragments, each of which is materialized at every request by
running several I/O intensive queries and executing lengthy code to
produce HTML. As reported in [17], I/O access can constitute up
to 90% of the transaction execution time.
Similarly, in data warehousing applications, users interactively

analyze massive amounts of data by means of OLAP (on-line ana-
lytical processing) tools. Such tools typically query the underlying
data warehouse, retrieve and process large tables of data, and finally
provide users with summarized aggregate information.
In such highly interactive applications, user satisfaction or posi-

tive experience determines the applications’ success (and keeps the
competitors “more than a click away” [25]). Service Level Agree-
ments (SLAs) are used to quantify the user’s satisfaction. Trans-
action latency expressed as a deadline is the most commonly used
form of SLA, reflecting the user’s expectation for the transaction to
finish within a certain amount of specified time.
In order to maximize users’ satisfaction, the underlying data man-

agement system should strive to maximally meet the pre-specified
SLAs. However, this is a non-trivial task, especially given the
bursty and unpredictable behavior of Web access which often leads
to conditions of heavy load and high utilization. This goal is further
complicated in I/O-bound transactions, where slow disk access be-
comes the performance bottleneck and traditional caching cannot
fully mitigate the problem.
Previous work that attempts to meet the users’ pre-specified SLAs

focuses on scheduling multiple transaction access to CPU (e.g., [25,
24, 26, 10]) as well as CPU scheduling of sub-transactions to meet
a global transaction deadline (e.g., [14, 15, 16, 27]). In these poli-
cies, as well as in most transaction scheduling policies, the sched-
uling of I/O requests is handled by the underlying operating sys-

785

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1559845.1559927&domain=pdf&date_stamp=2009-06-29

tem (OS). However, the OS is typically oblivious to the application
higher-level performance goals (i.e., SLAs). Even worst, the oper-
ating system usually employs scheduling policies which optimize
the I/O throughput (e.g., using the Shortest Seek Time First (SSTF)
policy) which under some workload conditions curtail the meeting
of SLAs.
The lack of SLA-awareness at the I/O scheduling level, moti-

vated us to investigate scheduling I/O page requests issued by mul-
tiple transactions in order to meet per-transaction deadline. Such a
deadline could be a user specified transaction deadline (i.e., SLA)
or in the case of sub-transactions, the global transaction SLA could
be used to derive an intermediate deadline for each sub-transaction
using schemes such as [14, 15, 16, 27].
The same observation above motivated the work in [8] which

studied the scheduling of I/O operations in the context of Real-
Time Database Management System (RTDBMS) with hard dead-
lines. In particular, [8] proposed a policy for scheduling I/O opera-
tions with the goal of maximizing transaction success rate (i.e., the
number of transactions meeting their deadlines).
Contrary to RTDBMS where transactions are associated with

hard deadlines, in highly interactive database applications, trans-
actions are associated with soft-deadlines which express the per-
formance expectations of the end-user and beyond which transac-
tions are not dropped but are still processed to completion. Hence,
contrary to RTDBMS, the success rate is not an appropriate per-
formance goal in highly interactive database applications. Thus,
in this paper, we argue that minimizing transaction tardiness (i.e.,
amount of deviation from deadline) is a more appropriate perfor-
mance goal in online interactive systems where users’ transactions
are not dropped beyond deadlines but are still processed even if
they passed those assigned deadlines. Towards this, we propose
a parameter-free adaptive scheme, called TraQIOS, for scheduling
I/O requests issued by transactions to disk-resident data. The target
goal for TraQIOS is to automatically and dynamically adapt to the
workload conditions so that to minimize the overall tardiness ex-
perienced in a database system executing multiple concurrent I/O-
intensive transactions.
TraQIOS extends the impact of SLA-aware transaction sched-

uling policies to the I/O sub-system and performs two functions:
(1) It assigns each I/O request an intermediate deadline given the
transaction’s global deadline and system status, and (2) it sched-
ules pending I/O requests according to their intermediate deadlines
using a novel SLA-aware I/O scheduling policy.
The I/O scheduling policy used in TraQIOS dynamically com-

bines the features of scheduling policies designed for improving
I/O throughput (e.g., SSTF) with those of deadline-aware sched-
uling policies (e.g., Earliest Deadline First (EDF)). This enables
our proposed policy to dynamically adapt to the workload and con-
stantly improve the provided performance. To that end, TraQIOS
extends the synergy between SLA-awareness at the DBMS level to
the I/O scheduling at the operating system level.

The contributions of this paper are summarized as follows:

1. We study the trade-off between several I/O scheduling poli-
cies in terms of optimizing tardiness of transactions under
different workload conditions.

2. We introduce a new scheme, TraQIOS, as an integrated com-
ponent of the DBMS data manager for handling I/O accesses
to disk-resident data. TraQIOS adaptively combines the best
features of existing I/O schedulers guided by the high-level
SLA specifications assigned to transactions.

3. We provide an experimental evaluation of our proposed scheme

R1,i

C1,i K1,i C2,i K2,i

R2,i

Ai

….

K0,i Cx,i Kx,i CN,i KN,i

Rx,i RN,i

Di Fi
Ei

….

Figure 1: Transaction Model

which shows that the two components of TraQIOS, namely,
1) the mechanism for assigning deadlines to I/O requests,
and 2) the policy for scheduling individual I/O requests, both
outperform existing schemes.

Roadmap: The rest of this paper is organized as follows. Section 2
provides the system model. Our proposed TraQIOS scheme for
SLA-aware I/O scheduling is presented in Section 3. Section 4
describes our experimental testbed, whereas Section 5 discusses
our experiments and results. Section 6 surveys related work. The
paper concludes in Section 7.

2. SYSTEM MODEL
In this work, we assume a traditional database management sys-

tem (DBMS) which supports transaction execution with synchronous
I/O operations that suspend the transaction execution until they are
serviced.
We model each transaction (Ti) as a sequence of pairs of I/O

requests Ri,x and processing time Ki,x, starting with processing
time Ki,0, where Ri,x is the xth I/O request in transaction Ti and
Ki,x models the amount of time spent processing the data fetched
by Ri,x or preparing new data to be read or written by Ri,x+1 in a
synchronous fashion (Figure 1).
TraQIOS receives I/O requests as issued according to a trans-

action schedule generated by the employed concurrency control
mechanism of the DBMS. The choice of the concurrency control
mechanism bears no significance to TraQIOS which operates as a
layer in between the database system and the I/O system where it
handles I/O requests as they come. It could be two-phase locking
(2PL) or multiversion [4], ensuring serializability, snapshot isola-
tion [9] or some other weaker level of isolation [3].
In our model, each transaction Ti is associated with the following

three parameters:

1. Transaction Arrival Time (Ai): The time when Ti has arrived
at the DBMS.

2. Transaction Deadline (Di): The SLA assigned to Ti which
represents the ideal time when Ti should finish execution.

3. Transaction I/O Length (Ni): The number of I/O requests
issued by Ti as estimated by the query optimizer.

Notice the Ni is the expected total number of page requests is-
sued by transaction Ti, which includes the I/O operations required
for accessing tables, indexes, as well as intermediate tables used
internally by a transaction such as temporary storage allocated by
join queries or external merge sort. However, the actual number of
page I/O requests might often deviate from the one estimated by
the query optimizer. This is mainly because of inaccuracy in the
histogram-based statistics or lack of indexes on the accessed data.
However, this inaccuracy is often limited which makes Ni a good
estimate of the actual number of I/O requests issued by the Ti.
Also notice that a portion of the issued requests are served di-

rectly from the buffer pool cache if the corresponding pages are

786

available in memory. For pages not in the buffer pool, an I/O re-
quest is issued to the storage sub-system. We call the latter, physi-
cal I/O requests and these are the ones handled by TraQIOS. Each
physical I/O request Ri,x is characterized by the following param-
eters:

1. Request Block Number (Bi,x): The address of the block re-
quested by Ri,x,

2. Request Cost (Ci,x): The disk access time incurred by re-
quest Ri,x.

Typically Ci,x is composed of three components: (1) seek time,
(2) rotational time, and (3) transfer time.
However, seek time is the most fluctuating component in com-

puting the cost of a request since it involves the mechanical move-
ment of the disk head to the respective address of the request. For
this reason, the disk performance is typically captured by the aver-
age access time parameter C which is the expected time to access
an arbitrary data block. Further, the main objective of disk sched-
uling policies is to minimize the total amount of seek time incurred
in accessing blocks of data (e.g., using the Shortest Seek Time First
(SSTF). In this paper, we also focus on seek time and we will use
the terms request cost and seek time interchangeably.
The time when transaction Qi finishes execution is denoted as

finish time (Fi). Ideally, Fi should be less than or equal to Di.
However, in the presence of multiple transactions issuing I/O re-
quests concurrently, the I/O requests issued by Qi might experi-
ence queuing delays in the storage system leading to delaying the
finish time of Ti beyond Di.
In our model, the system strives to finish executing each transac-

tion Ti before its deadline. However, if Ti cannot meet its deadline,
the system will still execute it but it will be “penalized" for the de-
lay beyond the deadline Di. This penalty per transaction is known
as tardiness which is formally defined as:

DEFINITION 1. Transaction tardiness, Ei, for transaction Ti

is the total amount of time spent by Ti in the DBMS beyond its
deadline Di. That is, Ei = 0 if Fi ≤ Di, and Ei = Fi − Di

otherwise.

Hence, the system overall performance is measured using aver-
age tardiness which is defined as:

DEFINITION 2. The average tardiness forN database transac-
tions is: 1

N

PN
i=1 Ei.

In order to gain a better understanding of the performance of
I/O scheduling policies, in the rest of this paper, we assume I/O-
bound transactions where I/O access is the performance bottleneck.
Hence, the CPU is assumed to be lightly loaded and transactions
never experience queuing delays at the CPU level. Consequently,
the transaction scheduling policy used at the higher level does not
bear any impact since I/O accesses are the dominant units of work.

3. I/O SCHEDULING FOR DATABASE
TRANSACTIONS

In this section, we first define the problem of scheduling I/O re-
quests for database transactions under pre-specified SLAs. Then,
we present our proposed TraQIOS scheduling policy for improving
the performance of I/O intensive transactions.

3.1 Problem Statement
As mentioned in the Introduction, under policies that attempt

to meet the users’ pre-specified SLAs (e.g., [25, 24, 26, 10]), the
scheduling of I/O requests issued by a transaction is handled by
the underlying operating system which is typically oblivious to the
higher-level SLAs assigned to transactions. This highlights the
need for a mechanism which properly maps a transaction global
deadline to a local deadline associated with each I/O request as
well as the need for an I/O scheduling policy which efficiently uti-
lizes those local deadlines towards reducing the deviation from the
global deadline.
The problem of assigning local deadlines to individual I/O re-

quests is to some extent similar to that of setting local deadlines to
sub-transactions in an RTDBMS so that to minimize the transac-
tion drop rate (e.g., [14, 15, 16, 27]). However, as shown in [15],
those proposed policies are highly sensitive to the workload condi-
tions, where one might perform the best under one setting and the
worst under another setting. Moreover, in this paper, our goal is
to minimize transaction tardiness under soft deadlines as opposed
to reducing drop rate. In Section 3.2.2, we show that this conflict
in objective is efficiently addressed by our new SLA-aware slack
budgeting scheme for assigning intermediate soft deadlines which
is also adaptive to workload conditions.
Another key issue is that the OS typically schedules I/O requests

so that to maximize throughput and/or to minimize the average la-
tency per request. Specifically, one widely used I/O scheduling pol-
icy employed at the OS level is the Shortest Seek Time First (SSTF).
SSTF optimizes I/O latency by always serving the request closest
to the disk head. Assuming that seek time is the only variable per
disk access while rotational and transfer times are constants, SSTF
could be considered as an instant of the more general Shortest Job
First scheduling policy, which is known for optimizing average la-
tency [23].
However, optimizing average latency is sometimes at odds with

satisfying the pre-specified SLAs. In other words, minimizing la-
tency might lead to unnecessary increases in tardiness. This is due
to the fact that requests with short seek times might be given higher
priority than requests issued by a transaction with an imminent
deadline.
To that end, given the intermediate deadlines assigned to I/O

requests, there is still the need for an efficient scheduling policy
which enables minimizing the tardiness of each of those individ-
ual I/O request. From the above discussion, there are two obvi-
ous promising candidate policies to achieve that goal, namely, (1)
SSTF, and (2) EDF. Formally, we define the two policies as follows:

1. SSTF: Each I/O request Ri,x is assigned a priority equal to
1

Ci,x
, where Ci,x is the cost of Ri,x.

2. EDF: Each I/O request Ri,x is assigned a priority equal to
1

Di
, whereDi is the deadline of Ri.

Under both policies, a scheduling point is reached whenever an
I/O request is served. At that point, the priority of each I/O re-
quest is computed according to the policy used and the one with
the highest priority is served first.
Studying the performance of the two policies above should clar-

ify the trade-offs involved in the problem of scheduling I/Os with
soft deadlines. Specifically, Figure 2 shows the performance of the
two policies under our evaluation testbed, which is described in de-
tails in Section 4. The figure shows that EDF outperforms SSTF
at low and medium disk utilization. However, at high utilization,
SSTF clearly outperforms EDF.

787

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. E

D
F

)

0.0

0.5

1.0

1.5

2.0

EDF vs. EDF
SSTF vs. EDF

cross-over point

EDF outperforms SSTF
at low utilization

SSTF outperforms EDF
at high utilization

Figure 2: Trade-off between EDF and SSTF: at low-utilization,
EDF reduces tardiness by up to 50%

The conflict between EDF and SSTF in the I/O scheduling con-
text (as shown in Figure 2) is quite similar to the one observed in
an earlier study [6] where both EDF and SJF were used to priori-
tize CPU scheduling of transactions. Specifically, as pointed out in
[6], at high utilization, it is impossible to finish all transactions by
the specified deadlines. Using an EDF scheduler in such high-load
situations will have a substantial negative impact on the overall tar-
diness. This negative impact is known as the domino effect: trans-
actions keep missing their deadlines in a cascaded fashion. The
cause of the domino effect is that EDF might give high priority to a
transaction with an early deadline that it has already missed, instead
of scheduling another one which has a later deadline that could still
be met. As a result, both transactions will miss their deadlines and
accumulate tardiness.
In I/O scheduling, that negative impact is more prominent since it

might involve a costly seek to serve a request with an early deadline
instead of serving the one which is currently the closest to the disk
head. On the other hand, at low utilization, EDF can afford making
those costly “out-of-the-way” moves while still meeting most of
the deadlines. To the contrary, SSTF might run into the problem of
serving close by requests coming from transactions with long dead-
lines instead of scheduling requests which are relatively far from
the head but they are issued by transactions with more imminent
deadlines.
An obvious integration of EDF and SSTF assumes that one knows

the “cross-over” point where SSTF is better than EDF [6]. How-
ever, such a point is not easy to determine since it is dependent on
many factors including disk utilization, deadlines, data access pat-
tern, and cache size. It is also expected the cross-over point will
change drastically over time, as the workload changes. This mo-
tivates us to investigate a new adaptive policy for scheduling I/O
requests in the presence of soft deadlines.

3.2 The TraQIOS I/O Scheduling Policy
In this section, we present TraQIOS, our scheme for scheduling

I/O requests issued by transactions to disk-resident data. As men-
tioned in Section 1, TraQIOS performs the following two functions:

1. It assigns each I/O request an intermediate deadline given the
transaction’s global deadline and the system status, and

2. It schedules pending I/O requests according to their interme-
diate deadlines using an SLA-aware I/O scheduling policy.

To simplify the presentation, we will first describe our policy for

scheduling individual I/O requests assuming that each transaction
is accessing a single disk page. Then, in Section 3.2.2, we will
extend our model for the general case where each transaction is
accessing more than one disk page.

3.2.1 TraQIOS: Scheduling individual I/O Requests
TraQIOS assigns each pending I/O request a priority value and

at each scheduling point, the request with the highest value is the
one scheduled to be served. Specifically, our goal is to assign each
pending I/O request a certain priority so that to minimize the av-
erage transaction tardiness when requests are served in descending
order of their priority values.
In order to compute the priority of a transaction Ti under TraQIOS,

let us first assume that transaction Ti has issued an I/O requestRi,1

(or just Ri since in this section we are considering single I/O trans-
actions). Further, assume that Ci is the cost of request Ri and Ki

is the processing time of the data fetched by Ri as defined in Sec-
tion 2.
Additionally, let Si be the current slack of transaction Ti if its

I/O request is served immediately. Formally,

DEFINITION 3. Transaction slack, Si, for transaction Ti at time
t is the amount of time between Ti’s deadline (Di) and its finish
time if Ti is scheduled right now (i.e., it is scheduled at the current
time t). Hence, Si = Di − (t + Ci + Ki).

As such, the tardiness of transaction Ti is dependent on its cur-
rent slack Si. In particular,

1. If Si < 0, then Ti will pass its deadline even if Ri is served
immediately, leading to Ti accumulating a tardiness of |Si|
time units.

2. If Si ≥ 0, then Ti will meet its deadline if Ri is served
immediately, leading to Ti finishing |Si| time units before its
deadline.

Given the slack time Si of Transaction Ti and the parameters
of request Ri, we assign Ri a priority value which is computed
as follows (for details on computing this priority, please see Ap-
pendix A):

Pi =

⎧⎨
⎩

1
Ci

Si ≤ 0

1
Ci

(1 − Si

nC−Ci
) 0 < Si ≤ nC − Ci

0 Si > nC − Ci

(1)

where C is the average request cost which is the expected time
needed for the head to travel between two arbitrary blocks on the
disk and n is the number of pending I/O requests.
To understand the intuition underlying our policy, notice that our

priority function assigns Ri a priority of 1
Ci
if Si < 0 (i.e., if Ti

cannot make its deadline). Clearly, this is the same priority that
would have been assigned to Ri under the SSTF policy which or-
ders request according to their seek time from the current head lo-
cation.
As the value of Si increases, our policy reduces the priority of

Ri since it has some slack which allows serving requests from other
transactions, since there is no reward if transaction Ti finishes be-
fore its deadline.
Our policy reduces the priority of Ri until Pi = 0 when Si >

nC −Ci. The reason for that is easily explained considering some
arbitrary request Rx which is competing with Ri over the disk ac-
cess. For that request Rx, it takes on average C units to access

788

P
ri

o
ri

ty
(P

i)
Priority

incre

Slack (

Higher priority
reduction rate

Lower priority
reduction rate

decreases with
ease in slack

(Si)
nc-ci

Figure 3: Priority as a function in slack

the data block requested by Rx and C more time units to move the
head back and fetch the block requested by Ri. Hence, if Rx is
scheduled first, then Ri is expected to be served in 2C time units
instead of Ci time units.
If the increase in Ri’s serving cost is still lower than Ri’s slack

(i.e., 2C − Ci < Si), then Ri can still meet its deadline even if
another request (i.e., Rx) is scheduled first. Hence, Ri can safely
allow Rx to be executed first by setting its own priority Pi to zero.
If that increase is higher thanRi’s slack (i.e., 2C −Ci > Si), then
Ri will lower its priority according to the ratio between its slack
and the extra incurred cost.
In the above discussion, for simplicity, we have assumed that Ri

is competing with a single arbitrary request Rx over the disk ac-
cess. However, in reality, at each scheduling point Ri is competing
with all the requests in the pending queue. Ideally, Ri should re-
duce its priority to zero if its slack can accommodate serving all
the other pending requests first. In such case, Ri is guaranteed a
zero tardiness even if all those pending requests are served first.
Assuming that there are n pending requests including Ri, then the
expected time needed to serve the other requests is: (n − 1)C.
Hence, the increase in Ri’s cost if those n requests are served first
is: (n− 1)C + C −Ci which results in the priority function above
(Eq. e:defInstant).
Under our priority function, the highest priority assigned to re-

quest Ri is 1/Ci. This priority decreases linearly depending on
the slack available for transaction Ti which issued Ri as shown in
Figure 3. The rate (or slope) of priority reduction is determined by
the ratio between Si and nC . Hence, the value nC acts as a knob
which allows our policy to integrate EDF scheduling with SSTF
scheduling. Specifically,

• If nC is high, the priority reduction rate is slow and our pol-
icy tends to behave like SSTF,

• If nC is low, the priority reduction rate is high and our policy
tends to behave like EDF.

Naturally, n increases with the increase in I/O utilization mov-
ing our policy more towards SSTF-like scheduling. Similarly, n
decreases with the decrease in utilization moving our policy more
towards EDF-like scheduling. This allows our policy to dynam-
ically adapt to the utilization as we will show experimentally in
Section 5.

3.2.2 TraQIOS: Slack Budgeting Mechanism
In the previous section, we have discussed the adaptive policy

employed by TraQIOS for scheduling I/O requests. Such policy is
sufficient if each transaction is accessing a single disk page. How-
ever, in order to extend our scheme to handle the general case where
each transaction issues multiple I/O requests, the main problem to
address is how to set the slack value associated with each request
(see Eq. 1). The general criterion is to set such slack so that to
eventually minimize the transaction tardiness beyond its “global"
deadline.
To this end, the slack assigning problem is similar to that of set-

ting local deadlines to sub-transactions in an RTDBMS so that to
minimize the transaction drop ratio under hard deadlines (e.g., [14,
15, 16, 27]). These schemes proposed in RTDBMSs are designed
to work under the umbrella of the EDF policy. Given that our goal
in this paper is to minimize transaction tardiness under soft dead-
lines, we are seeking a new slack budgeting schemes which works
in synergy with our adaptive policy proposed above. Towards this
goal, we need to answer the following two basic questions:

1. How much is the current slack Si of transaction Ti?

2. How much of Si is to be assigned to each requestRi,x issued
by Ti?

To answer the first question, consider a transaction Ti issuing
requests Ri,0, Ri,1,...,Ri,Ni . Further, assume that at time t, Ti has
issued its request Ri,x(0 ≤ x ≤ Ni). Let Mi,x be the number
of remaining requests to be issued by Ti (i.e., Mi,x = Ni − x).
Hence, at time t, Ti has Mi,x more I/O requests to issue and it has
Di − t time units until it reaches its deadline.
However, the amount of time Di − t is not all slack since the

transaction will be performing more I/O accesses and CPU process-
ing during that interval. Thus, the maximum slack available for Ti

at time t is: Si = Di − t−Ci,x −Ki,x −Ci,x+1 −Ki,x+1 − ...−
Ci,Ni − Ki,Ni , where Ci,x is disk access cost of Ri,x and Ki,x is
the amount of time spent processing the data fetched by Ri,x.
The processing timesKi are simply estimated either by the query

optimizer or by monitoring the prior executions of the transac-
tion Ti. For the disk access costs Ci, the actual costs of requests
Ri,x+1, ..., Ri,Ni depend on their respective distance from the disk
head at the time when they are issued, hence, we assume that the
cost each of those requests is the average access time C. Thus, the
expected Si = Di − t − Ci,x − Ki,x − Mi,xC − PNi

j=x+1 Ki,j .
The remaining number of requests Mi is initially set to the ex-

pected transaction I/O lengthNi as estimated by the database query
optimizer. This includes the I/O operations required for accessing
tables, indexes, as well as intermediate tables used internally by a
transaction such as temporary storage allocated by join queries or
external merge sort. Then,Mi is decremented whenever one of the
following happens:

1. A page access is satisfied by a physical request to the I/O
sub-system, or

2. A page access is satisfied by a logical request to the database
buffer pool cache.

In both of the above cases, transaction Ti is accessing pages in-
cluded in the initial estimate of the number of I/O requests (i.e.,
Ni). However, in the presence of inaccuracy in estimates and Ti

ended up processing more pages than Ni, then every request be-
yond Ni will leaveMi equal to 1.
To answer the second question above on how much slack to as-

sign each I/O request, recall that the amount of slack advertised by

789

an I/O request plays an important role in determining its priority.
For instance, if requestRi advertises a high slack value, then its pri-
ority is reduced to allow other requests to use the slack available for
transaction Ti. However, this might lead to delaying the future M
requests to be issued by Ti and eventually causes Ti to experience
high tardiness. On the other hand, advertising a low slack value de-
prives other transactions from taking advantage of whatever slack
Ti might have. In summary, advertising a low slack value leads to
an SSTF-like scheduler where slacks are not exploited, whereas ad-
vertising a high slack value leads to an EDF-like scheduler where
slacks are used to accommodate more urgent requests.
To balance the trade-off in setting the slack value described above,

we propose using a slack budgeting mechanism which allows each
transaction to budget its slack given the current system conditions.
Specifically, we propose setting the slack value Si,x assigned to I/O
request Ri,x as follows:

Si,x =
MU

i,x

Mi,x
Si (2)

where Si is the total expected slack of Ti, Mi,x is the number of
remaining requests to be issued by Ti, and U is the average transac-
tion success rate which is the percentage of transactions finishing
before their deadlines as monitored by the system.
The intuition is that a high success rate is a good indication that

an EDF scheduling policy will perform well. Hence, our sched-
uler tries to inject more EDF-like scheduling by making transac-
tions advertise higher slacks. On the other hand, a low success
rate indicates that EDF is entering the domino effect phase where
transactions keep missing their deadlines. In that case, our policy
moves more towards SSTF-like scheduling, where transactions are
very strict about the amount of slack they advertise. For instance,
at U = 1, each I/O request Ri,x is associated with the entire slack
remaining for Ti, whereas at U = 0, a transaction will budget its
remaining slack uniformly over its remaining requests.
Notice that above two extremes (i.e., U = 0 and U = 1) are

equivalent to the policies for assigning deadlines to sub-transactions
under hard deadlines in RTDBMSs as proposed in [15]. Specif-
ically, [15] proposed the Ultimate Deadline policy where a sub-
transaction inherits the global deadline of its parent transaction. It
also proposed the Equal Slack policy where it divides the total re-
maining slack equally among the remaining subtasks. However, it
has been shown that both policies are very sensitive to the work-
load conditions. In particular, the Ultimate Deadline policy per-
forms reasonably well under low utilization, whereas at high uti-
lization, it is outperformed by the Equal Slack policy. Moreover,
in [15], sub-transactions are scheduled using EDF, whereas under
TraQIOS, I/O scheduling is performed according to our adaptive
SLA-aware policy. In particular, given our slack budgeting policy,
our general priority function for scheduling I/O requests is defined
as follows:

Pi,x =

⎧⎪⎨
⎪⎩

1
Ci,x

Si,x ≤ 0

1
Ci,x

(1 − Si,x

mC−Ci,x
) 0 < Si,x ≤ mC − Ci,x

0 Si,x > mC − Ci,x

(3)

where Si,x is computed as in Eq.2 andm is the expected total num-
ber of remaining I/O requests issued by the set of transactions cur-
rently in the system.

3.2.3 Discussion
A remaining question is how TraQIOS can be implemented. There

are several light-weight alternatives for the low-level physical I/O
instrumentation of TraQIOS. Here, we discuss two of them.
The first one is to modify the existing Linux I/O deadline-based

scheduler to accommodate general priority assignments beyond just
deadlines. This has been the approach followed in [11] where each
I/O request is assigned a deadline based on its priority. Similarly, in
our case, we will implement a TraQIOS priority assignment where
a request with a high priority under TraQIOS will receive a short
deadline, whereas a request with a low priority will receive a long
deadline.
Another alternative is to modify the Anticipatory scheduler [12]

which is the default scheduler in Linux 2.6. One advantage of this
approach is that the Anticipatory already computes the seek time
for each request from the current head position. Hence, the inter-
mediate deadline assigned to a request by TraQIOS is the only other
parameter the scheduler needs in order to compute our proposed
priority function. That intermediate deadline is simply passed from
the storage manager (e.g., MySQL/InnoDB) through the standard
arguments and system calls defined by POSIX.

4. EVALUATION TESTBED
We created a simulator to model transaction execution in a DBMS

system. In this section, we describe the experimental setup, whereas
and the experimental results are presented in Section 5.
Metrics: Wemainly compare the performance of different poli-

cies in terms of the provided average tardiness as defined in Sec-
tion 2. However, for the sake of completeness, we as also report re-
sults on the transaction miss ratio provided by TraQIOS and com-
pare it against existing policies which are known for optimizing
such metric.
Policies: We conducted several experiments to compare the

performance of our proposed TraQIOS policy against the previ-
ously described EDF and SSTF policies. We have also compared
TraQIOS against two hybrid scheduling policies, namely, FD-SCAN
[1] and SSEDV [8].
FD-SCAN is a deadline-aware modification of the traditional el-

evator algorithm SCAN. Specifically, under FD-SCAN, the track
location of the request with the earliest feasible deadline is used to
determine the scan direction. The head seeks in the direction of that
request serving all other requests along the way until it reaches the
target track.
In SSEDV, each I/O request is assigned a priority which is de-

fined as:

Pi = αCi + (1 − α)li (4)

where Ci is the seek time to serve the I/O request, li is the amount
of time between the current time and Ri’s deadline Di, and α is a
scheduling parameter. This allows SSEDV to perform as a hybrid
between SSTF and EDF depending on the value of α. In our ex-
periments, we set α to 0.8 as suggested in [8]. Moreover, SSEDV
assigns each request a step deadline, where the step deadline as-
signed to the request number x in transaction Ti is set as:

di = Ai +
x

Ni
(Di − Ai) (5)

where Di is the deadline, Ai is the arrival time, and Ni is the total
number of I/O requests in Ti.
Disk: We simulated a disk drive as in [22, 8, 2]. The modeled

disk has 1000 cylinders where the access time of an I/O request is

790

Parameter Value Default

Scheduling policies EDF, SSTF, FD-SCAN, SSEDV, TraQIOS
Disk Cylinders 1000

Disk Average Access Time 5.8 & 9.4 mSec 9.4 mSec
Transactions 5000

Requests per Transaction 1–1000
System Utilization 0.1 – 0.99
Database Layout 100 & 1000 cylinders 1000 cylinders
Data Access (ps) 0.0 (Highly Random) & 0.8 (Highly Sequential) Random
SlackFactormax 2 – 6 4

Cache Hit Probability (ph) 0% – 50% 0%
Inaccuracy in Optimizer I/O Estimates (pl) 0% – ±50% 0%

Table 1: Simulation Parameters

defined as a + b
√

d, where a is the average rotational latency, b is
the seek factor, and d is the number of cylinders between the current
cylinder and the target cylinder. In our simulation, we set a to 4.0
mSec, whereas b is set to either 0.1 or 0.3. Setting b = 0.3 allows
an average access time of 9.4 mSec which is around the standard for
today’s workstation disk drives, whereas b = 0.1 allows an average
access time of 5.8 mSec which is the typical for disk drives used in
large server farms.
Transactions: We generated 5000 transactions where the num-

ber of I/O requests issued by each transaction is picked uniformly
from the range [1–1000]. After an I/O is served, the transaction
will wait for a think time period before generating a new request.
This interval simulates the processing performed by the transaction
on the fetched data. In order to create a workload where I/O is the
bottleneck, the think time is picked uniformly from the range [0.0–
1.0] mSec. This, in combination with the disk average access times
above, result in I/O forming 60% to 95% of the transaction total
execution time. The generated transactions arrive at the system ac-
cording to a Poisson distribution where we vary the inter-arrival
time of the Poisson distribution to simulate different utilizations.
Data Access: In the default setting, the database pages are

stored uniformly across the 1000 cylinders of the disk drive. Hence,
the address of the data block accessed by each request is generated
uniformly within that range. However, in order to examine perfor-
mance in the presence of hot spots, we experimented with settings
where the database occupy fewer cylinders. Moreover, we also sim-
ulated both random and sequential data access. Specifically, we use
a parameter ps which determines the probability for the next block
accessed by a transaction to fall on the same cylinder as the previ-
ously accessed block.
Deadlines: Each transaction Ti is assigned a deadline Di =

Ai + NiC + SlackFactori × (NiC), where for Ti, Ai is the
arrival time, Ni is the number of I/O requests , C is the average
access time, and SlackFactori is a parameter which determines
the ratio between the initial slack time of a transaction and its ex-
pected length.SlackFactori is generated uniformly over the range
[0.0–SlackFactormax], where SlackFactormax is a simulation
parameter.
Cache: In order to simulate the impact of the database buffer

pool, we introduce a simulation parameter ph which determines the
probability of a cache hit. Specifically, whenever an I/O request is
generated, a coin is tossed and if the coin value is less than ph,
then it is considered a hit and the request is served directly from
memory. We find this approach general enough so that to decouple
the performance evaluation here from the implementation details of
particular cache replacement policies (e.g., LRU, LFU, etc.).

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. E

D
F

)

0.0

0.5

1.0

1.5

2.0 EDF vs. EDF
SSTF vs. EDF
FD-SCAN vs. EDF
SSEDV vs. EDF
TraQIOS vs. EDF

Figure 4: At utilization 0.53 (cross over point), TraQIOS re-
duces tardiness by 40% compared to EDF, SSTF, and SSEDV

Inaccuracy in Transaction Length: In order to model inac-
curacies in the query optimizer estimates, we we introduce a new
parameter pl to control the percentage of deviation between the ac-
tual number of I/Os issued by a transaction and the estimated num-
ber of I/Os provided by the query optimizer. In our setting, pl is
in the range [0% – ± 50%] where a value of 0% indicates no de-
viation between the actual number of I/Os and the estimated one,
whereas at a non-zero value, the actual number of I/Os increases or
decreases accordingly.
In the next section, we present a representative sample of our

experimental results under the settings summarized in Table 1.

5. EXPERIMENTS
In this section we present the performance results under the set-

tings described in Section 4. The values reported here are the aver-
ages of at least 5 runs for each experimental setting.

5.1 Tardiness
In our first experiment, we measured the average tardiness for

the scheduling policies mentioned above as the system utilization
increases from 0.1 to 1.0, with SlackFactormax = 4.0. The re-
sults for this experiment setting are shown in Figure 4 where we
plot the performance of each policy normalized to the EDF policy.
Hence, the lower the value, the better the performance compared to
EDF. The figure shows that at low utilization, the system is able to

791

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. S

S
T

F
)

0.0

0.5

1.0

1.5

2.0

2.5 EDF vs. SSTF
SSTF vs. SSTF
FD-SCAN vs. SSTF
SSEDV vs. EDF
TraQIOS vs. SSTF

Figure 5: Performance normalized to SSTF shows the relative
performance at high utilization

meet most of the deadlines, and hence, EDF performs better than
SSTF, SSEDV, and FD-SCAN. As the utilization grows, the system
cannot meet as much deadlines. As such, SSTF and SSEDV start
to approach EDF until they both outperform it at utilization close
to 0.53.
TraQIOS on the other hand, outperforms the other policies for

all values of utilization. Notice that the maximum improvements
provided by TraQIOS is around the cross over point between EDF,
SSTF, and SSEDV, where TraQIOS reduces the average tardiness
by 40% compared to SSEDV. However, TraQIOS still improves
the performance at both ends of the utilization range. For instance,
it reduces tardiness by 10% compared to EDF at utilization 0.25.
TraQIOS also reduces tardiness by 20% compared to SSTF at uti-
lization 0.9 (as shown in Figure 5).
The reason that TraQIOS still out performs EDF at low utiliza-

tion, is that there are still intervals where the utilization increases
significantly above the average due to the fact that we are using
Poisson arrivals. At those high utilization intervals, TraQIOS au-
tomatically incorporates some SSTF-like scheduling to avoid the
domino effect of EDF. Similarly, at high utilizations, TraQIOS out-
performs SSTF as it incorporates some EDF scheduling as needed.
For SSEDV, in general, its performance follows the same pattern

as SSTF. This is because its priority function gives high weight (i.e.,
α = 0.8 as mentioned in Section 4) to the disk seek time which
brings it very close to SSTF. However, SSEDV outperforms SSTF
at lower utilization. This is due to the fact that SSEDV also consid-
ers the remaining time until a transaction’s deadline when prioritiz-
ing I/O requests. But since the seek time still dominates the priority
function, SSEDV is not able to outperform EDF or TraQIOS at low
utilization.
From Figure 4, it might seem that at high utilization, SSEDV

provides a performance similar to that of SSTF and TraQIOS. How-
ever, in order to study the performance at high utilization, we plot
the performance of all policies normalized to SSTF in Figure 5. The
figure shows that TraQIOS outperforms SSTF for all high utiliza-
tion values until when utilization is equal to 1, that is when it pro-
vides the same performance as SSTF. However, SSEDV is not able
to provide such performance since that even at high utilization, it
still gives a constant weight to the transaction deadline which hurts
its performance as it does to EDF. TraQIOS on the other hand, au-
tomatically controls the amount of EDF scheduling according to
the workload conditions.

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. E

D
F

)

0.0

0.5

1.0

1.5

2.0

EDF vs. EDF
SSTF vs. EDF
FD-SCAN vs. EDF
SSEDV vs. EDF
TraQIOS vs. EDF

Figure 6: At Slack Factor = 2, the cross over point between EDF
and SSTF moves to lower utilization of 0.43 where TraQIOS
reduces tardiness by up to 20%

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. E

D
F

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
EDF vs. EDF
SSTF vs. EDF
FD-SCAN vs. EDF
SSEDV vs. EDF
TraQIOS vs. EDF

Figure 7: At Slack Factor = 6, the cross over point between EDF
and SSTF moves to higher utilization of 0.75 where TraQIOS
reduces tardiness by up to 50%

5.2 Impact of Slack Factor
This set of results shows the performance of our proposed algo-

rithm under different deadline settings (i.e., under different values
of SlackFactormax). Basically, the value of SlackFactormax

determines how tight or loose are the deadlines where the lower the
value, the tighter the deadlines. Figures 6, and 7 show the results
for SlackFactormax values of 2, and 6 respectively. This is in
addition to the results of SlackFactormax = 4 presented above
in Figures 4 and 5.
The results show that TraQIOS constantly outperforms the other

algorithms under the different settings, with the maximum gain be
at the cross-over area. It is also interesting to notice that as we
increase the value of SlackFactormax (i.e., relaxed deadlines),
EDF’s good performance at low utilization is more prominent where
the magnitude of its gains compared to SSTF are higher and also
where the cross over point between the two moves further to the
right (i.e., higher utilization). The reason is that the more relaxed
the deadlines are (i.e., larger SlackFactormax), the more chances
EDF can catch up if it missed deadlines. Hence EDF can cope
with higher utilization and outperforms SSTF for a longer range of
utilization.

792

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. T

ra
Q

IO
S

 e
xp

on
en

tia
l)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

TraQIOS-exp vs. TraQIOS-exp
TraQIOS-uniform vs.TraQIOS-exp
TraQIOS-all vs.TraQIOS-exp

Figure 8: The trade-off between alternative slack budgeting
mechanisms

5.3 Alternative Schemes for Slack Budgeting
In this experiment, we evaluate the performance of three alterna-

tive schemes for setting the slack associated with each I/O request
issued by a transaction as discussed in Section 3. The three settings
are as follows:

1. Exp: is the slack budgeting scheme we proposed in Section 3
where the slack associated with each I/O request is a function

in the success rate (i.e., Si,x =
MU

i,x

Mi,x
Si),

2. All: is an alternative budgeting scheme where the slack as-
sociated with each I/O request is equal to the transaction’s
current slack (i.e., Si,x = Si), and

3. Uniform: is an alternative budgeting scheme where the slack
associated with each I/O request is inversely proportional to
the number of remaining I/O requests (i.e., Si,x = 1

Mi,x
Si).

In Figure 8 we plot the average tardiness provided by each scheme
normalized to TraQIOS-exp, hence, the lower the value the bet-
ter the relative performance. The figure shows that TraQIOS-all
outperforms TraQIOS-uniform at low utilization where TraQIOS-
all behaves more like EDF and efficiently utilizes the large adver-
tised slacks. At high utilization, TraQIOS-uniform outperforms
TraQIOS-all by advertising a small slack with each I/O request and
hence behaving like SSTF. The figure also shows that TraQIOS-
exp is able to balance the trade-off between the two extremes since
it considers the current system success ratio for slack budgeting.
This allows TraQIOS-exp to reduce tardiness by to 13% compared
to TraQIOS-all at high utilization and by up to 27% compared to
TraQIOS-uniform at low utilization.
In order to distinguish between the gains provided by our policy

for scheduling I/O requests and the gains provided by our slack
budgeting scheme, we modified the deadline-aware I/O scheduling
policies to work under our slack budgeting scheme. Specifically,
we extended EDF so that the deadline for each request is assigned
according to our exponential slack budgeting policy. Similarly, we
replaced the step deadline scheme in SSEDV with our scheme.
Figure 9 shows the performance results for the modified policies

(i.e., EDF+Budgeting and SSEDV+Budgeting) together with the
original versions as well as TraQIOS where all are normalized to

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. S

S
T

F
)

0.0

0.5

1.0

1.5

SSTF vs. SSTF
EDF vs. SSTF
EDF+Budgeting vs. SSTF
SSEDV vs. SSTF
SSEDV+Budgeting vs. SSTF
TraQIOS

Figure 9: Improving the performance of EDF and SSEDV by
augmenting them with the exponential slack budgeting scheme

Cache Hit Probability

0% 10% 20% 30% 40% 50%

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. E

D
F

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

EDF vs. EDF
SSTF vs. EDF
FD-SCAN vs. EDF
SSEDV vs. EDF
TraQIOS vs. EDF

Figure 10: Normalized Tardiness at utilization 0.8: increasing
the cache hit rate is equivalent to reducing the disk utilization

SSTF. The figure shows the significant improvement in the perfor-
mance of each policy under our proposed budgeting scheme. How-
ever, TraQIOS still outperforms the two policies since in addition
to the budgeting scheme, it also employs an adaptive I/O request
scheduling policy.

5.4 Impact of Cache Hit Rate
In this experiment, the value of the cache hit rate parameter (ph)

is in the range of [0%–50%] as opposed to the default value of 0%.
Figure 10 shows the tardiness provided by each policy at utilization
0.8 normalized to that of EDF. Notice that the absolute tardiness
decreases for all policies with increasing ph (which is not shown in
Figure 10).
The figure shows that at low hit rate, SSTF and SSEDV outper-

form EDF, whereas at high hit rate, EDF outperforms them both.
The reason for such performance pattern is that increasing the cache
hit rate is to some extent equivalent to decreasing the disk utiliza-
tion as it reduces the amount of I/O requests submitted to the disk.
As we have already seen in the previous experiments, EDF per-
forms relatively well at low utilization, hence, it also performs well
in the presence of large cache or a highly cachable workload. For
TraQIOS, at low hit rate (i.e., high utilization), it employs some
SSTF-like scheduling which allows it to outperform EDF, whereas

793

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. E

D
F

)

0.0

0.5

1.0

1.5

2.0

EDF vs. EDF
SSTF vs. EDF
FD-SCAN vs. EDF
SSEDV vs. EDF
TraQIOS vs. EDF

Figure 11: Performance under low seek time: disk access time
= 5.8 mSec

at high hit rate (i.e., low utilization), TraQIOS adapts and becomes
mostly EDF, hence providing the same performance as EDF.

5.5 Impact of Seek Time
In this experiment, SlackFactormax is set to its default value

of 4, whereas the seek factor parameter is set to 0.1 as opposed to
the default value of 0.3 resulting in an average access time of 5.8
mSec as opposed to 9.8 mSec.
Figure 11 shows the results under this setting where all policies

exhibit the same performance as in the default setting. However,
notice that cross over point between EDF, SSTF, and SSDEV has
moved to a higher utilization of about 0.75 as opposed to 0.53 (Fig-
ure 4). The reason is that reducing the seek time has the effect
of reducing the ratio between the maximum and minimum time to
serve a request which plays an important role in shaping the perfor-
mance. In particular, the minimum service time is when the block
is on the same cylinder as the current head location, whereas the
maximum service time is when the head has to travel from the first
cylinder to the last one. For seek factor 0.3, that maximum to min-
imum ratio is 3.3, whereas at seek factor 0.1 that ratio is only 1.7.
Given the above ratios, at a low seek factor (i.e., 0.1), EDF can

serve a request which is close to its deadline yet far from the current
head location (i.e., relatively large seek time) without severely pe-
nalizing those pending requests with short seek time. In particular,
the worst delay incurred by a request will be 2×1.7 times its ser-
vice time. To the contrary, at a higher seek factor, serving a request
with a longer seek time results in a larger penalty for all the other
pending requests. By balancing the trade-off between seek time and
deadlines, TraQIOS is able to provide the best performance under
low seek time as it does under high seek time. For instance, at the
cross over point of 0.75, TraQIOS reduces latency by up to 30%.

5.6 Impact of Data Access Patterns
Clustered data access results in the same performance pattern

exhibited when reducing the seek time as explained in the above the
experiment. This is shown in Figure 12 where we use the default
seek factor (i.e., 0.3), however, the database is clustered in only 100
cylinders of the total 1000 cylinders available on the disk. Hence,
the maximum distance the disk head might travel is reduced and
accordingly the ratio between the maximum and minimum request
service time is reduced. This results in a performance similar to
that when reducing the seek time with the cross over point moving
to higher utilization of 0.75.

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. E

D
F

)

0.0

0.5

1.0

1.5

2.0

EDF vs. EDF
SSTF vs. EDF
FD-SCAN vs. EDF
SSEDV vs. EDF
TraQIOS vs. EDF

Figure 12: Performance under clustered data access: database
occupies 10% of available disk cylinders

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

vs
. S

S
T

F
)

0.0

0.5

1.0

1.5

2.0

2.5 EDF vs. SSTF
SSTF vs. SSTF
FD-SCAN vs. SSTF
SSEDV vs. EDF
TraQIOS vs. SSTF

Figure 13: Performance under highly sequential data access

In Figure 13, we show the results for an experimental setting
where the database is distributed over the disk 1000 cylinders, how-
ever the data access is highly sequential. In particular, we set the
data access parameter ps to 0.8 so that whenever a transaction is-
sues a request, a coin is tossed and if the coin value if less than 0.8,
then the accessed block is on the same cylinder as the last blocked
accessed by that transaction. Figure 13 shows that under such pat-
tern seek-time-aware policies (i.e., SSTF, SSDEV, and TraQIOS)
remarkably outperform EDF. This is manifested by the cross over
point between EDF and SSTF moving to a low utilization of 0.45
as opposed to 0.53 in default setting (Figure 4).
The reason is that under SSTF, the head makes very short moves

between the successive sequential requests issued by a transaction,
say Ts. Hence, by the time Ts issues a new sequential request, the
head will most likely be very close to that cylinder sequentially ac-
cessed by Ts. This is in contrast to EDFwhich might move the head
far away from that cylinder. Hence, under this setting, TraQIOS
employs more SSTF-like scheduling which allows it to provide the
best performance where it reduces tardiness by up to 40%.

5.7 Impact of Inaccuracy in I/O Length
In all the previous experiments, we have assumed that the actual

number of I/O requests generated by transaction Ti is equal to the
number of I/O requests estimated by the query optimizer (i.e.,Ni).

794

Inaccuracy in Number of I/Os

0% 10% 20% 30% 40% 50%

A
ve

ra
ge

 T
ar

di
ne

ss
 (

tim
e

un
its

)

0

10

20

30

40

50

60

EDF
SSTF
FD-SCAN
SSEDV
TraQIOS

Figure 14: Average increase in tardiness vs. inaccuracy in
Transaction I/O Length (inaccuracy uncorrelated with trans-
action length)

Inaccuracy in Number of I/Os

0% 10% 20% 30% 40% 50%

A
ve

ra
ge

 T
ar

di
ne

ss
 (

tim
e

un
its

)

0

10

20

30

40

50

60

EDF
SSTF
FD-SCAN
SSEDV
TraQIOS

Figure 15: Average increase in tardiness vs. inaccuracy in
Transaction I/O Length (inaccuracy correlated with transac-
tion length)

In this experiment, we study the performance in the presence of
inaccuracy in the query optimizer estimates. Specifically, in this
experiment, the actual number of I/O requests generated by a trans-
action deviates from the estimated number by a certain percentages
which simulates the inaccuracy of the query optimizer. However,
the scheduling policy still assumes the estimated number of I/O re-
quests and computes its priority accordingly. Notice that this will
only affect the performance of SSEDV and TraQIOS since they are
the two policies which utilize the estimated number of I/Os.
In Figure 14, we plot the performance at utilization 0.8 where the

inaccuracy is in the range [0% – ±50%]. In order to account for
the randomness in inaccuracy across multiple experimental runs,
we also report the confidence interval for a 95% confidence level
where the lower the confidence interval, the closer the expected
tardiness to the reported average.
The figure shows that the average tardiness provided by both

SSEDV and TraQIOS increases with increasing the inaccuracy. It
also shows a wider confidence interval in reported tardiness for
both policies with increasing the inaccuracy. However, that in-
crease in tardiness is insignificant to the performance especially to
TraQIOS which still outperforms the other policies. For instance,

Disk Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
ra

ns
ac

tio
n

M
is

s
R

at
io

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

EDF
SSTF
FD-SCAN
SSEDV
TraQIOS

Figure 16: Performance under the Miss Ratio metric

at 0% inaccuracy, compared to SSTF, TraQIOS reduces tardiness
by 36% compared to 29% reduction at 50% inaccuracy.
The negligible degradation in performance though of the high

inaccuracy in estimations is due to several reasons including the
distribution of inaccuracies, and the impact of the other parameters
involved in the priority function. However, the most important rea-
son is the fact that for priority scheduling, it is the relative order
of priority values that matters the most not the exact values. For
example, in an extreme case where the actual number of I/Os is
always higher than the estimated one, the relative order of transac-
tion priorities will be the same using either the estimated or actual
numbers. However, inaccuracies might result in a significant prob-
lem when it leads to priority reversals. For instance, when long
transactions are missestimated to be short and vice versa.
In order to study such priority reversal extreme scenario and to

stress test our proposed TraQIOS policy, we repeated this experi-
ment where we set the inaccuracy in estimation to be inversely cor-
related with the actual transaction length with a correlation factor
of -0.5. Hence, there is a higher probability for a short transaction
to be assigned positive error, leading to an estimated number of
I/Os higher than the actual one. Similarly, long transactions are as-
signed negative errors with a higher probability than negative ones.
Figure 15 shows the performance under such setting where the in-
crease in tardiness is more significant with the increase in inac-
curacy. However, under this highly unrealistic scenario, TraQIOS
still achieves the best performance compared to the other policies
since Ni is only one of several parameters involved in the priority
function.

5.8 Transaction Miss Ratio
For the sake of completeness, in addition to the previously re-

ported tardiness results, in Figure 16 we measure the miss ratio
provided by the different studied policies under our default experi-
mental settings. However, notice that under our performance model
a transaction is still executed to completion even after it passes its
deadline. This performance model is different from the one used
in RTDBMS where transactions have hard deadlines and a transac-
tion is dropped if it misses the deadline. This difference in perfor-
mance measuring might lead to results different from those in the
RTDBMS literature.
Figure 16 shows that TraQIOS provides a very acceptable per-

formance under our miss ratio measure. For instance, as utilization
approaches 1.0, it reduces miss ratio by 50% compared to EDF
while it increases it by only 12% compared to FD-SCAN. This in-

795

crease in miss ratio is for the sake of providing a tardiness 60%
less than that of FD-SCAN at the same utilization point of 1.0 (as
shown in Figure 4.

6. RELATED WORK
Disk scheduling is known to be an NP-complete problem. Thus,

several heuristics [13] have been proposed to approximate the sched-
uling problem where the objective is mainly to optimize throughput
or per request latency. Examples of these policies include SCAN,
Shortest Seek Time First (SSTF), and Shortest Positioning Time
First (SPTF).
Besides optimizing disk throughput, scheduling disk access un-

der hard deadlines has received considerable attention which re-
sulted in extending the traditional Earliest Deadline First (EDF)
policy for scheduling transactions to schedule I/O requests. Exam-
ples of such policies include FD-SCAN [1] and SCAN-EDF [21].
However, these policies try to maximize the number of I/O requests
meeting their deadlines as opposed to tardiness. Moreover, they
work at the request level where the deadline of each request has
to be explicitly specified as opposed to our problem in this paper
where the deadline is specified at the transaction level.
In addition to EDF, several other scheduling policies for trans-

actions have been proposed that attempt to maximize success rate
in the presence of hard deadlines and explicit transaction priori-
ties in Real-time Database Management Systems (RTDBMS). For
instance, the work in [2] proposes prioritizing transactions accord-
ing to the Least Slack policy where I/O requests generated by a
transaction inherit its assigned priority. Moreover, it proposes poli-
cies for scheduling lock access based on the transaction specified
priority. Meanwhile, notice that in our model, we are assuming a
traditional database system where there is no notion of transaction
priority and priorities are only assigned at the I/O-level to requests
which already hold locks. That is based on the assumption that all
transactions are of the same importance and the goal is to sched-
ule I/O requests to minimize tardiness as opposed to maximizing
success rate.
Minimizing tardiness in the presence of soft deadlines has been

addressed by several research efforts in various types of multi-user
systems. For example, the theoretical problem of scheduling jobs
with the objective of minimizing tardiness has been addressed in
[28, 19] which propose a parametrized offline scheduling policy
for solving the single machine tardiness problem. Minimizing tar-
diness has also been studied in database systems (e.g., [7, 5, 25,
24, 26, 10]). For example, the work in [25, 24] proposes to limit
the number of concurrent transactions within the DBMS by using
an external scheduling mechanism which dispatches transactions
according to an EDF-like policy. Also, the work in [26, 10] pro-
poses a CPU scheduling policy for Web and in-memory database
systems where transactions are assigned priorities using a hybrid
policy which combines the advantages of the EDF policy together
with the Shortest Job First policy or High Density First policy de-
pending on whether or not transactions are associated with weights
or importance.
The work in [28, 19] motivated the parameter-free online SAAB

policy for minimizing tardiness in a wireless data broadcasting en-
vironment [20] as well as our parameter-free online TraQIOS pol-
icy proposed in this paper. However, the problem of scheduling
transaction I/O requests addressed by TraQIOS is particularly dif-
ferent from that of CPU and broadcast scheduling. Specifically, the
priority assigned by TraQIOS accounts for the fact that the cost of
each I/O request is dynamic and it depends on the sequence of I/O
requests already served since that sequence determines the current
head location. Moreover, [19] and [20] studied scheduling inde-

pendent jobs, whereas under TraQIOS, I/O requests are generated
by user transactions which created the need for our slack budgeting
schemes so that to map the transaction global deadline to a per-
request intermediate deadline.
The z/OS workload manager (WML) [18] also recognizes the

need for optimizing I/O access so that to meet higher level SLAs.
Specifically, the WML approach is based on monitoring perfor-
mance and accordingly adjusting transactions priorities. Though of
the simplicity of that approach, it tends to be more reactive rather
than proactive where priorities are only adjusted at the end of a
sampling cycle. Moreover, WML sets priority at the transaction
level rather than at the request level, hence, all requests from the
same transaction are assigned the same priority regardless of the
accessed block location. As such, it misses opportunities for opti-
mizing I/O access by interleaving requests from different transac-
tions to minimize seek time as in by SSTF and TraQIOS.
The closest work to ours is SSEDV [8], which we consider as

part of our evaluation. SSEDV appeared in the context of RTDBMS
where it studied the scheduling of I/O operations in order to max-
imize transaction success rate. Meanwhile, in this paper, we ar-
gue that minimizing transaction tardiness (i.e., amount of deviation
from deadline) is a more appropriate performance goal in online
interactive systems.

7. CONCLUSIONS
We introduce TraQIOS, a novel SLA-aware I/O scheduling pol-

icy for database transactions. Traditional I/O scheduling policies
optimize for per-request deadlines or disk seeks in a transaction-
oblivious fashion. Traditional DBMS transaction scheduling poli-
cies, on the other hand, are oblivious to I/O optimizations. TraQIOS
extends the impact of SLA-aware transaction scheduling policies to
the I/O subsystem.
The key idea underlying TraQIOS is to use on-line, SLA-aware

slack budgeting and advertisements for I/O requests in each trans-
action to guide dynamic adaptation between a policy that optimizes
disk seeks and an earliest deadline first policy. Our adaptive I/O
scheduling policy exploits available slack for a given transaction
to accommodate more urgent requests, while improving disk seeks
under high I/O utilization.
In our experiments, we evaluated the sensitivity of TraQIOS to

different workload settings including utilization, deadlines, cache,
disk characteristics, data access patterns, and inaccuracies in query
optimizer estimates. In all the conducted experiments, TraQIOS
significantly outperforms the existing I/O scheduling schemes.

Acknowledgments: We would like to thank the anonymous re-
viewers for their thoughtful and constructive comments. The first
author is supported in part by the Ontario Ministry of Research
and Innovation Postdoctoral Fellowship. This work is also par-
tially supported by NSF under project AQSIOS (IIS-0534531) and
Career award (IIS-0746696). Finally, partial support has also been
provided by Early Researcher Award (ERA), Ontario Centers of
Excellence (OCE), NSERC, IBM Research, IBM CAS, and Intel.

8. REFERENCES
[1] R. K. Abbott and H. Garcia-Molina. Scheduling I/O requests

with deadlines: A performance evaluation. In RTSS, 1990.
[2] R. K. Abbott and H. Garcia-Molina. Scheduling real-time

transactions: a performance evaluation. TODS,
17(3):513–560, 1992.

[3] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P. E. O’Neil. A critique of ANSI SQL isolation
levels. In SIGMOD, 1995.

796

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[5] K. P. Brown, M. J. Carey, and M. Livny. Managing memory
to meet multiclass workload response time goals. In VLDB,
1993.

[6] G. Buttazzo, M. Spuri, and F. Sensini. Value vs. deadline
scheduling in overload conditions. In RTSS ’95.

[7] M. J. Carey, R. Jauhari, and M. Livny. Priority in DBMS
resource scheduling. In VLDB, 1989.

[8] S. Chen, J. A. Stankovic, J. F. Kurose, and D. F. Towsley.
Performance evaluation of two new disk scheduling
algorithms for real-time systems. Real-Time Systems,
3(3):307–336, 1991.

[9] A. Fekete, E. J. O’Neil, and P. E. O’Neil. A read-only
transaction anomaly under snapshot isolation. SIGMOD
Record, 33(3):12–14, 2004.

[10] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis,
and K. Pruhs. Adaptive scheduling of web transactions. In
ICDE, 2009.

[11] C. Hall and P. Bonnet. Getting priorities straight: Improving
linux support for database I/O. In VLDB, 2005.

[12] S. Iyer and P. Druschel. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in
synchronous I/O. In SOSP, 2001.

[13] E. G. C. Jr. and M. Hofri. On the expected performance of
scanning disks. SIAM J. Comput., 11(1):60–70, 1982.

[14] B. Kao and H. Garcia-Molina. Subtask deadline assignment
for complex distributed soft real-time tasks. In ICDCS, 1994.

[15] B. Kao and H. Garcia-Molina. Deadline assignment in a
distributed soft real-time system. IEEE Trans. Parallel
Distrib. Syst., 8(12):1268–1274, 1997.

[16] V. C. S. Lee, K. yiu Lam, B. Kao, K.-W. Lam, and S. lun
Hung. Priority assignment for sub-transaction in distributed
real-time databases. In RTDB, 1996.

[17] D. T. McWherter, B. Schroeder, A. Ailamaki, and
M. Harchol-Balter. Priority mechanisms for OLTP and
transactional web applications. In ICDE, 2004.

[18] A. S. Meritt, J. A. Staubi, K. M. Trowell, G. S. Whistance,
and H. M. Yudenfriend. z/OS support of the IBM
TotalStorage enterprise storage server. IBM Systems Journal,
42(2):280–301, 2003.

[19] P. S. Ow and T. E. Morton. The single machine early/tardy
problem. Manage. Sci., 35(2):177–191, 1989.

[20] A.-D. Popescu, M. A. Sharaf, and C. Amza. SLA-aware
adaptive on-demand data broadcasting in wireless
environments. InMDM, 2009.

[21] A. L. N. Reddy, J. C. Wyllie, and R. Wijayaratne. Disk
scheduling in a multimedia I/O system. TOMCCAP,
1(1):37–59, 2005.

[22] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27(3):17–28, 1994.

[23] B. Schroeder and M. Harchol-Balter. Web servers under
overload: How scheduling can help. ACM Trans. Inter. Tech.,
2006.

[24] B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum.
Achieving class-based QoS for transactional workloads. In
ICDE, 2006.

[25] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum, and
A. Wierman. How to determine a good multi-programming
level for external scheduling. In ICDE, 2006.

[26] M. A. Sharaf, S. Guirguis, A. Labrinidis, K. Pruhs, and P. K.
Chrysanthis. ASETS: A self-managing transaction scheduler.
In ICDE Workshops, 2008.

[27] R. M. Sivasankaran, J. A. Stankovic, D. F. Towsley,
B. Purimetla, and K. Ramamritham. Priority assignment in
real-time active databases. VLDB J., 5(1):19–34, 1996.

[28] A. P. J. Vepsalanen and T. E. Morton. Priority rules for job
shops with weighted tardiness costs. Manage. Sci.,
33(8):1035–1047, 1987.

APPENDIX

A. COMPUTING I/OREQUEST PRIORITY
In order to ensure that a global schedule is optimal, every lo-

cal schedule has to be optimal as well so that no improvement is
achieved when exchanging the order of two tasks in the schedule.
Hence, assume two I/O requests R1 and R2 with costs C1 and C2

respectively. Further, assume that S1 is the current slack of R1 and
S2 is the current slack of R2. Finally, assume that time required to
move the head from the block requested byR1 to the one requested
by R2 is L.
In a scheduleX, where R1 is followed by R2, the total tardiness

(EX) is computed as follows:

EX = max(0,−S1) + max(0, C1 + L − C2 − S2)

Similarly, for an alternative schedule Y , where R2 is followed
by R1, the total tardiness (EY) is computed as follows:

EY = max(0,−S2) + max(0, C2 + L − C1 − S1)

For EX to be less than EY , then:

1

C1 + L − C2
(
−max(0,−S1)

C2 + L − C1
+ max(0, 1 − S1

C2 + L − C1
))

has to be greater than

1

C2 + L − C1
(
−max(0,−S2)

C1 + L − C2
+ max(0, 1 − S2

C1 + L − C2
))

where the first term represents the priority assigned to R1 and the
second term is the priority assigned to R2.
In general, in order to compare Ri to any arbitrary request, we

substitute L and C2 with the expected seek time C. Hence, the
priority of Ri is computed as:

1

Ci
(
−max(0,−Si)

2C − Ci

+ max(0, 1 − Si

2C − Ci

))

or equivalently:

Pi =

⎧⎨
⎩

1
Ci

Si ≤ 0

1
Ci

(1 − Si

2C−Ci
) 0 < Si ≤ 2C − Ci

0 Si > 2C − Ci

(6)

797

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

