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ABSTRACT 

Unstructured peer-to-peer (P2P) networks suffer from the increased volume of traffic 
produced by flooding. Methods such as random walks or dynamic querying managed to 
limit the traffic at the cost of reduced network coverage. In this paper, we propose a 
partitioning method of the unstructured overlay network into a relative small number of 
distinct subnetworks. The partitioning is driven by the categorization of keywords based 
on a uniform hash function. The method proposed in this paper is easy to implement 
and results in significant benefit for the blind flood method. Each search is restricted 
to a certain partition of the initial overlay network and as a result it is much more 
targeted. Last but not least, the search accuracy is not sacrificed to the least since 
all related content is searched. The benefit of the proposed method is demonstrated 
with extensive simulation results, which show that the overhead for the implementation 
and maintenance of this system is minimal compared to the resulted benefit in traffic 
reduction. 
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1. Introduction 

In modern pcer-to-peer (P2P) systems, different entities, under different authori­
tative control, arc interconnected and cooperate on equal terms, in order to offer 
services to each other, acting both as servers and as clients, thus the term peers for 
the participating entities. This "equality" of participants role gives P2P systems an 
inherent scalability and robustness, justifying the popularity of the P2P paradigm, 
as an attractive tool which promises to enable the development of global-scale, co­
operative, distributed applications. The techniques proposed in this paper apply to 
both file sharing and content distribution P2P systems. 

P2P systems arc distinguished in two main categories. In structured P2P sys­
tems all information stored in the system is indexed by employing a Distributed 
Hash Table (DHT), thus enabling efficient resource location in time (and number 
of messages) logarithmic in the number of participating peers. In structured P2P 
systems, the DHT imposes a certain order on the connectivity of the participat­
ing peers which is reflected in the structure of the overall network. The first and 
most famous structured P2P system was Chord. Others systems, such as the Pastry, 
Tapcsty, BitTorrcnt followed. The main drawback of these systems is the mainte­
nance cost of their rigid structure which limits their self-healing properties in case of 
failures, thus rendering them less robust, albeit more scalable. On the other side of 
the spectrum, we have unstructured P2P systems which employ a random overlay 
network to interconnect the participating peers. Those systems arc aptly named 
unstructured since each peer is directly and randomly connected to a small set of 
other peers, called neighbours, making the network more ad-hoc in nature. The ab­
sence of a structure makes such systems much more robust and highly self-healing 
compared to structured systems, however, at the cost of reduced scalability. 

Unstructured P2P systems employ a broadcast-like process called flooding for 
resource location. A peer looking for a file issues a query to its neighbors. The 
neighbours check whether they can satisfy the query, and, at the same time, forward 
it to their own neighbors. Since this mechanism may generate a tremendous number 
of messages, a limit has been imposed on the number of times a query may be 
forwarded, called TTL (Time-To-Live hops). Even though this addition increases 
the scalability of the method, it can greatly reduce the chances that a query is 
satisfied. In addition, another drawback of flooding is the fact that due to the 
completely decentralized nature of flooding, each peer may receive the same request 
through a number of different neighbours. 

Overlooking the definition of P2P systems, modern unstructured systems employ 
a 2-tier architecture to reduce the cost of flooding. Most unstructured P2P systems 
like Gnutella 2 [1] also employ a 2-ticr structure [20, 4]. In those systems Ultrapcers 
form a random overlay network, while Leaf nodes arc connected to Ultrapcers only. 
Each Leaf sends to the Ultrapeers it is connected to its index in a compressed form 



Hash-Based Overlay Partitioning in Unstructured Peer-to-Peer Systems 59 

Fig. 1. The Gnutella 2-tier architecture. 

(bloom filter). Ultrapcers flood queries to the overlay network on the Leaves' behalf. 
Flooding is only performed at the Ultrapeer level. 

Another technique widely used in unstructured P2P systems today, is 1-hop 
replication. One-hop replication dictates that each peer should inform all of its im­
mediate neighbors of the files it contains. Using this information during the last hop 
propagation of a request at the Ultrapeer level, the request is forwarded exclusively 
to those last hop Ultrapcers that contain the requested file. One-hop replication 
reduces the number of messages generated only during the last hop of flooding 
[9]. However, the traffic generated during that last hop constitutes the overwhelm­
ing majority of the traffic generated during the entire flooding. Simple calculations 
show that 1-hop replication requires d times fewer messages to spread to the whole 
network compared to naive flooding, where d is the average degree of the network 
(average number of connections for each Ultrapeer). It is easy to prove that in order 
to flood an entire, randomly constructed, network that employs 1-hop replication, 
one need only reach 3/d of the peers during all hops but the last. In today's Gnutella, 
where the average degree is 30, one would need to reach 10% of the peers and then 
use 1-hop replication to forward the query to the appropriate last hop peers, in 
order to reach the entire network. 

Most of todays unstructured P2P systems implement 1-hop replication by having 
peers exchange bloom filters of their indices. A Bloom filter [3] is a space efficient way 
to represent a set of objects (keys). They employ one or more uniform hash functions 
to map each key to a position (or more than one) in an iV-sized binary array, whose 
bits are initially set to 0. Each key is mapped through each hash function to an 
array position which is set to 1. To check for the participation of some key in the 
set, the key is hashed to get its array position. If that array position is set to 1, the 
bloom filter indicates key membership. Bloom filters require much less space than 
the actual set, there is thus some loss of precision translated in the possibility of 
false positives. This means that a bloom filter may indicate membership for some key 
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that docs not belong to the set (more than one keys mapped to the same position). 
It cannot however indicate absence of a key which is in the set (false negative). 

In 2-tier unstructured P2P systems 1-hop replication is implemented among Ul-
trapcers by exchanging Bloom filters. This greatly reduces the number of messages 
since the number of Ultrapeers is much smaller than the number of Leaves. When­
ever an Ultrapeer receives a request this is forwarded only down to those Leaves that 
contain the desired information (except in the case of false positives). Fig. 1 shows a 
schematic representation of the 2-ticr architecture. The 2-ticr architecture dictates 
that the Bloom filter exchanged by Ultrapeers for 1-hop replication is actually the 
OR of all the bloom filters it receives from its Leaves as well as its own. 

The aim of the work presented in this paper is to improve the scalability of 
flooding by reducing the number of peers that need to be contacted on each re­
quest, without decreasing the probability of query success (accuracy of the search 
method) to the slightest extent. This can be accomplished due to the complete 
" unstructurencss" of today's systems. We can therefore inject a small degree of 
structure in the unstructured system, one that is small enough to avoid sacrificing 
any of the self-healing capabilities of the system but at the same time will enable a 
more clever search which will provide great message cost reduction. The proposed 
method partitions the Ultrapeer overlay network into distinct subnetworks. Using 
a simple hash-based categorization of keywords the Ultrapeer overlay network is 
partitioned into a relatively small number of distinct subnetworks, each containing 
only keywords of a specific type. In this manner, instead of providing a system with 
a way of knowing where the information is (the approach of structured P2P sys­
tems), we instead provide the system with a way of knowing where the information 
is NOT. This approach is much more preferable in the case of unstructured systems 
(Bloom filters arc also based on the same philosophy). By employing a novel index 
splitting technique each Leaf peer is effectively connected to each different subnet­
work. The search space of each individual flooding is restricted to a single partition, 
thus the search space is considerably limited. This reduces the overwhelming volume 
of traffic produced by flooding without affecting at all the accuracy of the search 
method (network coverage). Experimental results demonstrate the efficiency of the 
proposed method. 

This paper is organized as follows: Following the "Related work" Section, the 
hashed-keyword method used to partition the overlay network is presented in Sec­
tion 3. In Section 4 the simulation results are presented. We conclude in Section 5 
with some directions for future research. 

2. Related work 

P2P-based resource discovery systems allow nodes participating in the system to 
share both the storage load and the query load [10]. In addition, they provide a 
robust communication overlay. 

Flooding is supported by those P2P systems that follow the unstructured ap-
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proach. Flooding, however, can generate a large volume of traffic if not carefully 
deployed, due to the duplicate messages generated during this process. Several P2P 
resource discovery algorithms appear in the literature, trying to alleviate the ex­
cessive volume of traffic produced during flooding [11]. One of the first alternatives 
proposed was random walks. Each node forwards each query it receives to a single 
neighboring node chosen at random, a method that generates very little traffic but 
suffers from reduced network coverage and long response time. As an alternative, 
multiple random walks have been proposed, where the querying node starts simul­
taneously k parallel random walkers. Although compared to a single random walk 
this method has better behavior, it still suffers from low network coverage and long-
response time compared to flooding. 

Hybrid methods that combine flooding with random walks have been proposed 
in [9]. Schemes like Directed Breadth First Search (DBFS) forward queries only to 
those peers that have provided results to past requests, under the assumption that 
they will continue to do so. Interest-based schemes aim to cluster together peers with 
similar content, under the assumption that those peers arc better suited to serve 
each other's needs. In another family of algorithms, query messages are forwarded 
selectively to part of a node neighbors based on predefined criteria or statistical 
information. For example, each node selects the first k highest capacity nodes or 
the k connections with the smallest latency to forward new queries [19]. A some­
what different approach named forwarding indices builds a structure that resembles 
a routing table at each node [6]. This structure stores the number of responses 
returned through each neighbor on each one of a preselected list of topics. Other 
techniques include query caching, or the incorporation of semantic information in 
the network [7, 15]. 

Another approach that has been used in the literature to make resource location 
in unstructured P2P systems more efficient is the partitioning of the overlay network 
into subnetworks using content categorization methods. A different subnetwork is 
formed for each content category. Each subnetwork connects all peers that pos­
sess files belonging to the corresponding category. Subnetworks arc not necessarily 
distinct. 

A system that exploits this approach is the Semantic Overlay Networks (SONs) 
[7]. SONs use a semantic categorization of music files based on the music genre they 
belong to. The main drawback of this method is the semantic categorization of the 
content. In file-sharing systems for instance, music files rarely contain information 
about the genre they belong to and when they do so, each of them probably uses a 
different categorization of music. An approach that overcomes this semantic cate­
gorization method has been proposed in [15]. In SONs, an already existing, online, 
music categorization database is used. This database adds a centralized component 
in the operation of the network. Notice that 1-hop replication can be employed in 
conjunction with this scheme, inside each subnetwork. However, the fact that each 
peer may belong to more than one subnetwork, reduces the average degree of each 
subnetwork and thus, the efficiency of the 1-hop replication. 
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Gnutella Partitions 

Ultrapeer (^J Leaf peer 

Fig. 2. Illustration of the Gnutella network and the Partitions design. 

An interesting survey on P2P resource discovery methods which emphasis to 
Grid systems is presented in [18]. 

3. Hashed-keyword overlay partitioning 

One way to reduce the cost of flooding is to partition the overlay network into 
a small number of distinct subnetworks and to restrict the search for individual 
request to one network partition. The Partitions scheme, proposed in this section, 
enriches unstructured P2P systems with appropriate data location information in 
order to enable more scalable resource discovery, while not affecting at all the self-
healing properties and the inherent robustness of these systems. More specifically, 
Partitions employ a uniform hash function to map each keyword to an integer, from 
a small set of integers. Each integer defines a different category. Thus, keywords arc 
categorized instead of content (files names). This method is more generic compared 
to the SONs method since it can be applied to any type of content (not only music 
files) and docs not require semantic categorization of content. 

The keyword categories arc exploited in a 2-ticr architecture, where nodes op-
crate as Ultrapeers and/or Leaves. The partitioning of the network is performed as 
follows (sec Fig. 2): 

• Each Ultrapeer is randomly and uniformly assigned responsibility for a sin­
gle keyword category. Ultrapeers responsible for the same category form a 
random subnetwork. As a consequence, the network overlay is partitioned 
into a small number of distinct subnetworks, equal to the number of avail­
able categories. 

• Leaves randomly connect to one Ultrapeer per subnetwork. Each Leaf sends 
to each Ultrapeer it is connected to all its keywords, in the form of a bloom 
filter, that belong to the Ultrapecr's category. Thus, an innovative index 
splitting technique is used. Instead of each Leaf sending its entire index 
(keywords) to each Ultrapeer it is connected to, each Leaf splits its index 
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Fig. 3. Gnutella and Partitions bloom filters. 

based on the defined categories and constructs a different bloom filter for 
each keyword category. Each bloom filter is then sent to the appropriate Ul-
trapeer. An illustration of this technique can be found in Fig. 3. It is shown 
in this figure that while in Gnutella there is one bloom filter for all keywords, 
in Partitions there is one bloom filter for each one of the three keyword cat­
egories. For example, keywords "abcdc", "fghij", "klmnop", "qrstu", and 
"vwxyz" arc mapped to positions 4, 8, 1, 2, and 8 of the Gnutella bloom 
filter. These same keywords arc mapped to the same positions but in differ­
ent bloom filters in the Partitions design. Keywords "abcdc" and "qrstu" 
arc mapped to the category 2 bloom filter (positions 4 and 2 respectively), 
keyword "fghij" is mapped to the category 1 bloom filter (position 8) while 
keywords "klmnop" and "vwxyz" arc mapped to the category 3 bloom filter 
(positions 1 and 8 respectively). 

Fig. 2 illustrates schematically the Partitions design and its main structural dif­
ference to the Gnutella architecture. It can be easily seen in this figure that the 
Ultapccr layer in Partitions is separated into a certain number of distinct subnet­
works and that each Leaf node is connect to one Ultrapeer per subnetwork. 

We should emphasize that in this design Ultrapcers arc de-coupled from their 
content, meaning that peers operating as Ultrapccrs will have to also operate as 
Leaves at the same time in order to share their own content, which spans several 
categories. Furthermore, even though in this design each Leaf connects to more than 
one Ultrapccrs, the volume of information it collectively transmits to all of them is 
roughly the same since each part of its index is sent to a single Ultrapeer. 

The Partitions scheme is demonstrated in Fig. 2. The unstructured overlay net-
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work is partitioned into distinct subnetworks, one per defined category. A search 
for a keyword of a certain category will only flood the appropriate subnetwork and 
avoid contacting Ultrapecrs in any other network partition. The benefit of this is 
two-fold. First, it reduces the size of the search for each individual request. Secondly, 
it allows each Ultrapeer to use all its Ultrapeer connections to connect to other Ul­
trapecrs in the same network partition, increasing the efficiency of 1-hop replication 
at the Ultrapeer level. One-hop replication dictates that each Ultrapeer contains an 
index of the contents of its neighbouring Ultrapeers (including the contents of their 
Leaves). 

There are, however, two drawbacks to this design. The first one is due to the fact 
that each Leaf connects to more than one Ultrapeers, one per content category. Even 
though each Leaf sends the same amount of index data to the Ultrapeers collectively 
upon connection as before, it requires more keepalivc messages to ensure that its 
Ultrapeer connections are still active. Keepalivc messages however arc very small 
compared to the average Gnutella protocol message. In addition, query traffic is 
used to indicate liveliness most of the time, thus avoiding the need for keepalivc 
messages. Experimental results presented in the next section demonstrate that the 
maintenance cost of this design due to the extra keepalivc messages is minimal and 
is outweightcd by the benefit in message reduction. 

The second drawback arises from the fact that each subnetwork contains infor­
mation for a specific keyword category. Requests however may contain more than 
one keywords and each search results should match all of them. Since each Ultrapeer 
is aware of all keywords of its Leaves that belong to a specific category, it may for­
ward a request to some Leaf that contains one of the keywords but not all of them. 
This fact reduces the efficiency of the 1-hop replication at the Ultrapeer level and 
at the Ultrapeer to Leaf query propagation. This drawback is balanced in two ways. 
The first is that even though the filtering is performed using one keyword only, 
Leaves' bloom filters contain keywords of one category, which makes them more 
sparse, thus reducing the probability of a false positive. Furthermore, the most rare 
keyword can be used to direct the search, further increasing the effectiveness of the 
search method. 

4. Simulation results 

In this section, we present the results from the simulations we conducted, in order 
to measure both the efficiency of the Partitions scheme in terms of cost of flooding 
(in messages) and maintenance cost. The first metric measures the traffic load of 
the flooding process in the entire network, while the second metric focuses on the 
load experienced by a(ny) single Ultrapeer. We performed several simulations, vary­
ing the number of Leaves per Ultrapeer and the number of categories/subnetworks. 
In addition, apart from the Gnutella and the Partitions scheme, we also run sim­
ulations on a modified version of the Partitions scheme, called Replication. The 
only difference between Partitions and Replication is the fact that Leaves send a 
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complete (containing all keywords, regardless of category) bloom filter to all the Ul-
trapcers they connect to. In both cases, Partitions and Replications, wc measured 
the operational (messages for flooding) and the maintenance (kccpalivc messages) 
costs. 

In all simulations, we assumed a Leaf population of 2 million, a number reported 
by Lime Wire Inc [2]. Each peer contains a number of files (and hence keywords) 
derived from a distribution also obtained from real-world measurements [13]. Each 
Ultrapeer in the Gnutella network serves, on average, 30 Leaves, a number obtained 
from real-world measurements [17]. In addition, wc also performed simulations for 
10 and 60 Leaves per Ultrapeer. Each Ultrapeer in the Partitions design serves a 
number of Leaves equal to the number of categories/subnetworks multiplied by the 
number of Leaves per Gnutella Ultrapeer. Since each Leaf sends each Ultrapeer 
a fraction of its keywords (namely, a fraction equal to the number of categories), 
this results in a roughly similar number of keywords in a Partitions Ultrapeer as 
in a Gnutella Ultrapeer. The number appearing next to each scheme name in the 
legend of the graphs denotes the number of full indices stored in each Ultrapeer. 
For instance, Gnutella 30 is the classic Gnutella algorithm (each Ultrapeer serves 
30 Leaves). In Partitions 10, each Ultrapeer serves 100 Leaves, receiving one-tenth 
of each one's index, thus adding up to 10 full indices. In all schemes, each Ultrapeer 
has 30 Ultrapeer-ncighbours. Finally, we have used a Zipf-likc distribution for the 
popularity of keywords, both in the peers' filenames and in the queries. The end-
result is the one reported in [17], with Leaves having, on average, a 3% full bloom 
filter and a Gnutella Ultrapeer with 30 Leaves having a 65% full bloom filter. The 
size of the bloom filter array is the same as the one used in Gnutella today, which 
is 2 to the power of 16 (65536). The percentage of fullness of the bloom filter is the 
probability that an one-keyword query will be forwarded to a Leaf or a last-hop 
Ultrapeer. Figs 4(a) and 5(a) show the efficiency of the Partitions and Replication 
scheme, respectively, in reducing the cost of the flooding. 

4 .1 . Keyword-based queries 

Wc can see that the drawback of filtering using only one keyword is balanced by the 
fact that the sparser Leaf indices (since they contain only one keyword category) 
produce less false positives, but mainly outweighed by the message reduction due 
to the partitioning of the network and therefore the reduction of the search space. 
In addition, it follows from the results that the benefits of being able to filter using 
all keywords in a query when forwarding to the Leaf layer (Replication scheme) 
is small compared to the increased maintenance cost. We would like to emphasize 
that each Partitions bloom filter (i.e. containing keywords of a certain category) 
has the length of a Gnutella bloom filter. Thus, one can roughly think of all the 
bloom filters of a single Partitions leaf as a (distributed) Gnutella bloom filter of 10 
times the length (due to the 10 category types). However the bandwidth needed to 
transfer such a bloom filter is not 10 times that of a Gnutella bloom filter, mainly 
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Fig. 4. Keyword-based queries, Gnutella vs Partitions, (a) Number of messages generated in one 
flood, (b) Ultrapeer maintenance load, (c) Ultrapeer query load, (d) Total Ultrapeer traffic load. 

because sparser bloom filters arc compressed more efficiently. 
Another interesting observation is the fact that Gnutella 10 outperforms 

Gnutella 30, even though the Ultrapeer layer is 3 times bigger. This is easily ex­
plained by the fact that the Ultrapcers' bloom filters are more empty (since they 
contain the aggregate bloom filters of only 10 Leaves instead of 30). This means 
that the filtering during the last hop of flooding is more accurate, increasing the 
efficiency of 1-hop replication. 

We then focus on the traffic load experienced by a single Ultrapeer. In all cases 
we simulated three hours in the life of a single Ultrapeer, with Leaves coming and 
going. Each time a Leaf is connecting to the Ultrapeer, it sends its index information, 
which is propagated by the Ultrapeer to its 30 Ultrapeer neighbors. In addition, we 
assumed that, periodically (every 10 seconds), each Ultrapeer receives a small kecp-
alivc message from each Leaf and replies with a similar message to each one of 
them, unless a query and a reply were exchange during the specified period. For 
each communication taking place, we measured the incoming or outgoing traffic 
in bytes, in order to estimate the bandwidth requirements. We used a keep-alive 
message size of 50 bytes and a query message size of 80 bytes, as indicated by the 
Gnutella Protocol Specification. In addition, for every 1400 bytes for each message 
sent, we added 40 bytes for the TCP and IP header. 

We have used the code by Lime Wire [2], the most popular Gnutella client, 
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to construct the bloom filter of each Leaf. For each peer, we then extracted a 
number of files (equal to the number of files assigned to that peer) from a list 
of filenames obtained from the network by a Gnutella crawler developed in our 
lab. Those filenames were fed to the LimcWirc bloom filter generation code, which 
produced the corresponding bloom filter in compressed form, i.e., the way it is sent 
over the network by LimcWirc servants. Thus, we constructed the actual bloom 
filter, although what we really needed was just its size (and the ratio of "fullness"). 

We run three types of simulations measuring (1) the maintenance traffic (bloom 
filter and keep-alive messages exchange), (2) the query traffic and (3) the total 
traffic. In the last case, we observed the nearly total lack of keep-alive messages, 
due to the implicit use of query traffic for indication of livencss. In all the graphs 
presented, the x axis corresponds to the number of partitions (keyword categories). 

Figs 4(b) and 5(b) show the increase in the maintenance load when employ­
ing our scheme. As expected, the maintenance load in the Replications scheme 
increases linearly with the number of available partitions. This is because, the num­
ber of Leaves each Ultrapeer has to serve also increases linearly with the number of 
partitions. We can see that this is not the case with the Partitions scheme, where, 
even though the number of Leaves per Ultrapeer also increases, the size of the index 
submitted by each Leaf decreases. 
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Fig. 6. Hash-based queries, Gnutella vs Partitions, ((a) Number of messages generated in one 
flood, (b) Ultrapeer maintenance load, (c) Ultrapeer query load, (d) Total Ultrapeer traffic load. 

We then focused our attention to the query traffic load. Measurements conducted 
in our lab showed that, on the average, each Ultrapeer generates 36 queries per hour 
(i.e., queries initiated by itself or its Leaves). This adds up to approximately 2000 
queries per second generated anywhere in the Gnutella network. In addition, we 
observed a large number of Gnutella queries in order to find the distribution of the 
number of keywords in each query. Thus, according to those observations, during the 
simulations we assumed that 20% of the queries contain one keyword, 30% contain 
two, another 20% contain three and finally a 30% contain four keywords. In our 
simulation, we assumed that the aim of each flood (both in Gnutella and Partitions) 
is to reach the entire network, or produce a fixed number of results, whichever is 
achieved first. As we mentioned before, a flood that aims to reach the entire network 
would need to reach ^ t h of the Gnutella's network (or a Partitions' subnetwork) 
during all hops of flooding except the last thanks to the 1-hop replication. This 
means that the Ultrapeer in our simulations has a probability of 0.1 to receiving 
each query. In addition, every time this docs not occur, it has another opportunity 
to receive the query during the last hop, depending on its bloom filter (in case the 
searched keywords match in the bloom filter). Should the Ultrapeer receive a query, 
it is assumed to propagate it to its Leaves, again depending on their bloom filters. 
Figs 4(c) and 5(c) show the comparison in the traffic load of Gnutella, Partitions 
and Replication. 
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Fig. 7. Hash-based queries, Partitions vs 
flood, (b) Ultrapeer maintenance load, (c) 

Replication, (a) Number of messages generated in one 
Ultrapeer query load, (d) Total Ultrapeer traffic load. 

Finally, Figs 4(d) and 5(d) show the total traffic load experienced by a single 
Ultrapeer. From these figures it is evident that Partitions outperform Gnutella in 
operational costs, in all cases. 

4.2. Hash-based queries 

All the results presented above regard keyword-based queries. However, there is a 
large number of queries in P2P networks in general which arc not keyword-based. 
These arc the hash-based queries. Those queries arc looking for a file with a spe­
cific MD5 or SHA-1 hash value instead of one that contains some keywords in its 
filename. The main use of such queries is the location of alternate sources for down­
load for a file that is already being transferred (and was probably located using 
keyword-based queries). Those alternate sources can be used for swarm download­
ing, that is downloading different parts of the same file from multiple sources, in 
parallel. Hash-based queries can also have other uses, such as locating illegal content 
(copyrighted material, illegal pornography, etc.) which usually exists in the system 
under misleading filenames. Another important use of hash-based queries is the de­
tection of false results, to avoid downloading some content only to realize that it 
was something completely different than what its name indicated. 

Depending on the uses of hash-based queries of interest to the system, the fre­
quency of such queries may vary from low up to consisting the majority of the 
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queries. Those queries can be thought of as one-keyword queries (the single key­

word being the hash value in the query). Since our system especially excels in 

one-keyword queries, we conducted the same measurements as before, including 

hash-based queries in the experiments. Since the previous experiments contained a 

percentage of hash-based queries equal to 0, in the results presented below wc have 

assumed a frequency equal to 50% (one hash-based query per normal query). This 

will give us the behavior of the system on the other side of the spectrum, since as 

wc said the actual frequency of the hash-based queries depends on the importance 

of their uses for each system. Figs 6 to 7 show the results of the new experiments. 

5. C o n c l u s i o n s 

In this paper, wc have described a novel approach to reducing the message costs 

of querying in unstructured networks. The method exploits the part i t ioning of ran­

dom overlay networks into a small number of distinct subnetworks based on easily 

applicable rules. The method allows for the categorization of any type of content. 

Extensive simulations have been performed and demonstrated tha t the benefits ob­

tained from our scheme can be as high as an order of magnitude compared to the 

Gnutella flooding. 
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