World Scientific

www.worldscientific.com

Parallel Processing Letters, Vol. 19, No. 1 (2009) 57-71 g
(© World Scientific Publishing Company \

HASH-BASED OVERLAY PARTITIONING IN UNSTRUCTURED
PEER-TO-PEER SYSTEMS*

HARRIS PAPADAKIS, PARASKEVI FRAGOPOULOUY, EVANGELOS P. MARKATOS

Foundation for Research and Technology-Hellas, Institute of Computer Science
N. Plastira 100, Vassilika Vouton, GR-70013 Heraklion, Crete, Greece
{adanar, fragopou, markatos} @ics.forth.gr

MARIOS D. DIKAIAKOS

Department of Computer Science, University of Cyprus
1678 Nicosia, Cyprus
{mdd} @cs.ucy.ac.cy

ALEXANDROS LABRINIDIS

Department of Computer Science, University of Pittsburgh
Pittsburgh, PA 15260, USA
{labrinid} @cs.pitt.edu

Received February 2008
Revised July 2008
Communicated by S.G. Akl

ABSTRACT

Unstructured peer-to-peer (P2P) networks suffer from the increased volume of traffic
produced by flooding. Methods such as random walks or dynamic querying managed to
limit the traffic at the cost of reduced network coverage. In this paper, we propose a
partitioning method of the unstructured overlay network into a relative small number of
distinct subnetworks. The partitioning is driven by the categorization of keywords based
on a uniform hash function. The method proposed in this paper is easy to implement
and results in significant benefit for the blind flood method. Each search is restricted
to a certain partition of the initial overlay network and as a result it is much more
targeted. Last but not least, the search accuracy is not sacrificed to the least since
all related content is searched. The benefit of the proposed method is demonstrated
with extensive simulation results, which show that the overhead for the implementation
and maintenance of this system is minimal compared to the resulted benefit in traffic
reduction.

Keywords: Peer-to-peer, resource location, flooding, overlay network

*This research work was carried out under the FP6 NoE CoreGRID funded by the EC (IST-2002-
004265).

fWith the Department of Applied Informatics and Multimedia, Technological Educational Insti-
tute of Crete, Greece.

57


http://www.worldscientific.com
http://forth.gr

58 H. Papadakis et al.

1. Introduction

In modern peer-to-peer (P2P) systems, different entitics, under different authori-
tative control, arc intcrconnccted and cooperate on cqual terms, in order to offer
scrvices to cach other, acting both as servers and as clients, thus the term peers for
the participating cntitics. This “cquality” of participants role gives P2P systems an
inherent scalability and robustness, justifying the popularity of the P2P paradigm,
as an attractive tool which promiscs to cnable the development of global-scale, co-
opcrative, distributed applications. The techniques proposed in this paper apply to
both file sharing and content distribution P2P systems.

P2P systems arc distinguished in two main categorics. In structured P2P sys-
tems all information stored in the system is indexed by cmploying a Distributed
Hash Table (DHT), thus enabling cfficient resource location in time (and number
of messages) logarithmic in the number of participating peers. In structured P2P
systems, the DHT imposcs a certain order on the conncctivity of the participat-
ing pcers which is reflected in the structure of the overall network. The first and
most famous structured P2P system was Chord. Others systems, such as the Pastry,
Tapcsty, BitTorrent followed. The main drawback of these systems is the mainte-
nance cost of their rigid structurc which limits their sclf-healing propertics in casc of
failurcs, thus rendering them less robust, albeit more scalable. On the other side of
the spectrum, we have unstructured P2P systems which employ a random overlay
network to interconncct the participating peers. Those systems arc aptly named
unstructured since each pcer is directly and randomly connccted to a small sct of
other peers, called neighbours, making the network more ad-hoc in naturc. The ab-
sence of a structurc makes such systems much more robust and highly sclf-hcaling
compared to structured systems, however, at the cost of reduced scalability.

Unstructured P2P systems employ a broadcast-like process called flooding for
resource location. A peer looking for a file issucs a query to its ncighbors. The
neighbours check whether they can satisfy the query, and, at the same time, forward
it to their own ncighbors. Since this mechanism may gencrate a tremendous number
of messages, a limit has been imposed on the number of times a query may be
forwarded, called TTL (Time-To-Live hops). Even though this addition increcases
the scalability of the method, it can greatly reduce the chances that a query is
satisficd. In addition, another drawback of flooding is the fact that duc to the
completely decentralized nature of flooding, cach peer may receive the same request
through a number of different neighbours.

Overlooking the definition of P2P systems, modern unstructured systems ecmploy
a 2-tier architecture to reduce the cost of flooding. Most unstructurced P2P systems
like Gnutclla 2 [1] also employ a 2-ticr structure [20, 4]. In those systems Ultrapeers
form a random overlay network, while Leaf nodces arc connected to Ultrapcers only.
Each Leaf sends to the Ultrapeers it is connected to its index in a compressed form



Hash-Based Owverlay Partitioning in Unstructured Peer-to-Peer Systems 59

Fig. 1. The Gnutella 2-tier architecture.

(bloom filter). Ultrapcers flood qucrics to the overlay network on the Leaves’ behalf.
Flooding is only performed at the Ultrapeer level.

Another technique widely used in unstructured P2P systems today, is 1-hop
replication. One-hop replication dictates that cach peer should inform all of its im-
mediate neighbors of the files it contains. Using this information during the last hop
propagation of a request at the Ultrapeer level, the request is forwarded exclusively
to thosc last hop Ultrapcers that contain the requested file. Onc-hop replication
reduces the number of messages gencrated only during the last hop of flooding
[9]. However, the traffic gencrated during that last hop constitutes the overwhelm-
ing majority of the traffic generated during the entire flooding. Simple calculations
show that 1-hop replication requires d times fewer messages to spread to the whole
network compared to naive flooding, where d is the average degree of the network
(average number of conncctions for cach Ultrapeer). It is easy to prove that in order
to flood an cntire, randomly constructed, network that employs 1-hop replication,
onc nced only reach 3/d of the peers during all hops but the last. In today’s Gnutclla,
where the average degree is 30, one would nced to reach 10% of the peers and then
usc 1-hop replication to forward the query to the appropriate last hop peers, in
order to rcach the entire network.

Most of todays unstructured P2P systems implement 1-hop replication by having
peers exchange bloom filters of their indices. A Bloom filter [3] is a space cfficient way
to represent a set of objects (keys). They employ onc or more uniform hash functions
to map cach key to a position (or more than one) in an N-sized binary array, whose
bits arc initially sct to 0. Each key is mapped through cach hash function to an
array position which is sct to 1. To check for the participation of some key in the
sct, the key is hashed to get its array position. If that array position is sct to 1, the
bloom filter indicates key membership. Bloom filters require much less space than
the actual sct, there is thus some loss of precision translated in the possibility of
false positives. This means that a bloom filter may indicatec membership for some key



60 H. Papadakis et al.

that does not belong to the set (more than one keys mapped to the same position).
It cannot however indicate absence of a key which is in the set (false negative).

In 2-tier unstructured P2P systems 1-hop replication is implemented among Ul-
trapeers by cxchanging Bloom filters. This greatly reduces the number of messages
since the number of Ultrapeers is much smaller than the number of Leaves. When-
cver an Ultrapeer receives a request this is forwarded only down to those Leaves that
contain the desired information (except in the case of false positives). Fig. 1 shows a
schematic representation of the 2-tier architecturc. The 2-tier architecture dictates
that the Bloom filter exchanged by Ultrapceers for 1-hop replication is actually the
OR of all the bloom filters it receives from its Leaves as well as its own.

The aim of the work presented in this paper is to improve the scalability of
flooding by reducing the number of peers that need to be contacted on cach re-
quest, without decrecasing the probability of query success (accuracy of the scarch
method) to the slightest extent. This can be accomplished due to the complete
”unstructurencss” of today’s systems. We can thercfore inject a small degree of
structure in the unstructured system, onc that is small cnough to avoid sacrificing
any of the sclf-healing capabilitics of the system but at the same time will cnable a
more clever scarch which will provide great message cost reduction. The proposed
mecthod partitions the Ultrapeer overlay network into distinct subnetworks. Using
a simplc hash-based categorization of keywords the Ultrapeer overlay network is
partitioned into a relatively small number of distinct subnetworks, cach containing
only keywords of a specific type. In this manner, instcad of providing a system with
a way of knowing where the information is (the approach of structured P2P sys-
tems), we instead provide the system with a way of knowing where the information
is NOT. This approach is much morc preferable in the case of unstructured systems
(Bloom filters arc also based on the same philosophy). By employing a novel index
splitting technique cach Leaf peer is effectively connected to cach different subnet-
work. The scarch spacce of cach individual flooding is restricted to a single partition,
thus the scarch space is considerably limited. This reduces the overwhelming volume
of traffic produced by flooding without affecting at all the accuracy of the scarch
method (network coverage). Experimental results demonstrate the cfficiency of the
proposcd method.

This paper is organized as follows: Following the "Reclated work” Scction, the
hashed-keyword method used to partition the overlay network is presented in Scc-
tion 3. In Scction 4 the simulation results are presented. We conclude in Scction 5
with some dircctions for future rescarch.

2. Related work

P2P-basced resource discovery systems allow nodes participating in the system to
share both the storage load and the query load [10]. In addition, they provide a
robust communication overlay.

Flooding is supported by those P2P systems that follow the unstructured ap-



Hash-Based Owverlay Partitioning in Unstructured Peer-to-Peer Systems 61

proach. Flooding, however, can generate a large volume of traffic if not carcfully
deployed, due to the duplicate messages generated during this process. Several P2P
resource discovery algorithms appear in the literature, trying to alleviate the ex-
cessive volume of traffic produced during flooding [11]. Onc of the first alternatives
proposced was random walks. Each node forwards cach query it reccives to a single
ncighboring node chosen at random, a method that gencrates very little traffic but
suffers from reduced network coverage and long responsc time. As an alternative,
multiple random walks have been proposed, where the querying node starts simul-
tancously k parallel random walkers. Although compared to a single random walk
this method has better behavior, it still suffers from low network coverage and long
response time compared to flooding.

Hybrid mecthods that combinc flooding with random walks have been proposed
in [9]. Schemes like Directed Breadth First Scarch (DBFS) forward querics only to
thosc peers that have provided results to past requests, under the assumption that
they will continue to do so. Interest-based schemes aim to cluster together peers with
similar content, under the assumption that thosc pcers arc better suited to serve
cach other’s needs. In another family of algorithms, query messages arc forwarded
sclectively to part of a node ncighbors based on predefined criteria or statistical
information. For example, cach node sclects the first & highest capacity nodes or
the k£ conncctions with the smallest latency to forward new querics [19]. A some-
what different approach named forwarding indices builds a structurc that resembles
a routing table at cach node [6]. This structurc stores the number of responses
rcturned through cach ncighbor on cach onc of a preselected list of topics. Other
techniques include query caching, or the incorporation of secmantic information in
the network [7, 15].

Another approach that has been used in the literature to make resource location
in unstructured P2P systems more cfficient is the partitioning of the overlay network
into subnectworks using content catcgorization methods. A different subnetwork is
formed for cach content category. Each subnetwork connccts all peers that pos-
sess files belonging to the corresponding category. Subnetworks arc not necessarily
distinct.

A system that exploits this approach is the Semantic Overlay Networks (SONs)
[7]. SONSs usc a scmantic categorization of music files based on the music genre they
belong to. The main drawback of this method is the semantic catcgorization of the
content. In file-sharing systems for instance, music files rarcly contain information
about the genre they belong to and when they do so, each of them probably uscs a
different catcgorization of music. An approach that overcomes this semantic cate-
gorization mcthod has been proposed in [15]. In SONs, an alrcady cxisting, online,
music categorization database is usced. This databasc adds a centralized component
in the operation of the network. Notice that 1-hop replication can be employed in
conjunction with this scheme, inside each subnetwork. However, the fact that cach
peer may belong to more than one subnetwork, reduces the average degree of cach
subnetwork and thus, the cfficiency of the 1-hop replication.



62 H. Papadakis et al.

Gnutella Partitions

Fig. 2. Illustration of the Gnutella network and the Partitions design.

An interesting survey on P2P resource discovery methods which cmphasis to
Grid systems is presented in [18].

3. Hashed-keyword overlay partitioning

Onc way to reduce the cost of flooding is to partition the overlay network into
a small number of distinct subnetworks and to restrict the scarch for individual
request to onc network partition. The Partitions scheme, proposed in this scction,
cnriches unstructured P2P systems with appropriate data location information in
order to cnable more scalable resource discovery, while not affecting at all the sclf-
healing propertics and the inherent robustness of these systems. More specifically,
Partitions employ a uniform hash function to map cach keyword to an intcger, from
a small sct of integers. Each integer defines a different category. Thus, keywords arc
categorized instead of content (files names). This method is more generic compared
to the SONs method since it can be applied to any type of content (not only music
files) and docs not require semantic catcgorization of content.

The keyword categorics arc exploited in a 2-tier architecture, where nodes op-
crate as Ultrapcers and/or Leaves. The partitioning of the network is performed as
follows (scc Fig. 2):

e Each Ultrapcer is randomly and uniformly assigned responsibility for a sin-
gle keyword category. Ultrapeers responsible for the same category form a
random subnetwork. As a conscquence, the network overlay is partitioned
into a small number of distinct subnetworks, cqual to the number of avail-
ablc catcgorics.

e Lcaves randomly conncct to onc Ultrapeer per subnetwork. Each Leaf sends
to cach Ultrapcer it is connected to all its keywords, in the form of a bloom
filter, that belong to the Ultrapeer’s catcgory. Thus, an innovative index
splitting tcchnique is used. Instcad of cach Leaf sending its entire index
(keywords) to cach Ultrapeer it is connected to, cach Leaf splits its index



Hash-Based Owverlay Partitioning in Unstructured Peer-to-Peer Systems 63

Gnutella {o]1]1]o]1{o[o[o]1]o]

"abcde" "fghl]” "kKimnop” "qrstu” "vwxyz"

category-hash: 2 | category-hash:1 | category-hash: 3 | category-hash: 2 [category-hash:3
bloom-hash: 4 bloom-hash: 8 bloom-hash: 1 bloom-hash: 2 bloom-hash: 8

Partitions

Y
[elofefofofo[o]o]t]o] - [ofo[t]o]1[o]o]ofofo| |o]t]o[o[o[o]o]o]1]o]

category: 1 category: 2 category:3

Fig. 3. Gnutella and Partitions bloom filters.

bascd on the defined categories and constructs a different bloom filter for
cach keyword category. Each bloom filter is then sent to the appropriate Ul-
trapcer. An illustration of this technique can be found in Fig. 3. It is shown
in this figure that while in Gnutclla there is onc bloom filter for all keywords,
in Partitions there is one bloom filter for cach onc of the three keyword cat-
cgorics. For cxample, keywords “abcede”, “fghij”, “klmnop”, “qrstu”, and
“vwxyz” arc mapped to positions 4, 8, 1, 2, and 8 of the Gnutclla bloom
filter. These same keywords arc mapped to the same positions but in differ-
cnt bloom filters in the Partitions design. Keywords “abede” and “qrstu”
arc mapped to the category 2 bloom filter (positions 4 and 2 respectively),
keyword “fghij” is mapped to the category 1 bloom filter (position 8) while
keywords “klmnop” and “vwxyz” arc mapped to the category 3 bloom filter
(positions 1 and 8 respectively).

Fig. 2 illustrates schematically the Partitions design and its main structural dif-
ference to the Gnutella architecture. It can be casily scen in this figurc that the
Ultapcer layer in Partitions is separated into a certain number of distinct subnet-
works and that each Leaf node is connect to onc Ultrapeer per subnetwork.

We should cmphasize that in this design Ultrapcers arc de-coupled from their
content, meaning that peers operating as Ultrapceers will have to also operate as
Leaves at the same time in order to sharc their own content, which spans sceveral
categorics. Furthermore, cven though in this design each Leaf connects to more than
onc Ultrapcers, the volume of information it collectively transmits to all of them is
roughly the same since cach part of its index is sent to a single Ultrapceer.

The Partitions scheme is demonstrated in Fig. 2. The unstructured overlay net-



64 H. Papadakis et al.

work is partitioned into distinct subnetworks, onc per defined category. A scarch
for a keyword of a certain category will only flood the appropriate subnetwork and
avoid contacting Ultrapecrs in any other network partition. The benefit of this is
two-fold. First, it reduces the size of the search for cach individual request. Sccondly,
it allows cach Ultrapcer to usc all its Ultrapcer conncctions to connect to other Ul-
trapeers in the same network partition, increasing the cfficiency of 1-hop replication
at the Ultrapcer level. One-hop replication dictates that each Ultrapeer contains an
index of the contents of its neighbouring Ultrapeers (including the contents of their
Lcaves).

Therc arc, however, two drawbacks to this design. The first onc is duc to the fact
that cach Leaf connects to more than onc Ultrapeers, onc per content category. Even
though cach Leaf sends the same amount of index data to the Ultrapeers collectively
upon conncction as before, it requires more keepalive messages to ensurce that its
Ultrapcer connections are still active. Keepalive messages however arc very small
comparcd to the average Gnutclla protocol message. In addition, query traffic is
uscd to indicate liveliness most of the time, thus avoiding the need for keepalive
messages. Experimental results presented in the next section demonstrate that the
maintcnance cost of this design duc to the extra keepalive messages is minimal and
is outweighted by the bencefit in message reduction.

The sccond drawback arises from the fact that cach subnetwork contains infor-
mation for a specific keyword category. Requests however may contain more than
one keywords and cach scarch results should match all of them. Since cach Ultrapcer
is aware of all keywords of its Leaves that belong to a specific category, it may for-
ward a request to some Leaf that contains onc of the keywords but not all of them.
This fact reduces the cfficiency of the 1-hop replication at the Ultrapceer level and
at the Ultrapeer to Leaf query propagation. This drawback is balanced in two ways.
The first is that cven though the filtering is performed using onc keyword only,
Leaves’ bloom filters contain keywords of onc category, which makes them more
sparse, thus reducing the probability of a false positive. Furthermore, the most rarc
keyword can be used to direct the scarch, further increasing the cffectivencss of the
scarch method.

4. Simulation results

In this scction, we present the results from the simulations we conducted, in order
to measurc both the cfficicncy of the Partitions scheme in terms of cost of flooding
(in messages) and maintcnance cost. The first metric measures the traffic load of
the flooding process in the entire network, while the sccond metric focuses on the
load cxperienced by a(ny) single Ultrapcer. We performed several simulations, vary-
ing the number of Leaves per Ultrapeer and the number of categorics/subnetworks.
In addition, apart from the Gnutclla and the Partitions scheme, we also run sim-
ulations on a modified version of the Partitions scheme, called Replication. The
only difference between Partitions and Replication is the fact that Leaves send a



Hash-Based Owverlay Partitioning in Unstructured Peer-to-Peer Systems 65

complete (containing all keywords, regardless of catcgory) bloom filter to all the Ul-
trapcers they connect to. In both cases, Partitions and Replications, we measured
the opcrational (messages for flooding) and the maintcnance (keepalive messages)
costs.

In all simulations, we assumed a Leaf population of 2 million, a number reported
by LimeWire Inc [2]. Each peer contains a number of files (and hence keywords)
derived from a distribution also obtained from real-world measurcments [13]. Each
Ultrapcer in the Gnutella network serves, on average, 30 Leaves, a number obtained
from real-world mecasurements [17]. In addition, we also performed simulations for
10 and 60 Lecaves per Ultrapeer. Each Ultrapeer in the Partitions design scerves a
number of Leaves cqual to the number of categorics/subnetworks multiplied by the
number of Leaves per Gnutella Ultrapeer. Since cach Leaf sends cach Ultrapeer
a fraction of its keywords (namcly, a fraction cqual to the number of categorics),
this results in a roughly similar number of keywords in a Partitions Ultrapcer as
in a Gnutella Ultrapcer. The number appcaring next to cach scheme name in the
legend of the graphs denotes the number of full indices stored in cach Ultrapeer.
For instance, Gnutclla 30 is the classic Gnutella algorithm (cach Ultrapeer scrves
30 Leaves). In Partitions 10, cach Ultrapeer serves 100 Leaves, receiving onc-tenth
of cach one’s index, thus adding up to 10 full indices. In all schemes, cach Ultrapeer
has 30 Ultrapcer-ncighbours. Finally, we have used a Zipf-like distribution for the
popularity of keywords, both in the peers’ filenames and in the queries. The end-
result is the one reported in [17], with Leaves having, on average, a 3% full bloom
filter and a Gnutclla Ultrapcer with 30 Leaves having a 65% full bloom filter. The
size of the bloom filter array is the same as the one used in Gnutella today, which
is 2 to the power of 16 (65536). The percentage of fullness of the bloom filter is the
probability that an onc-keyword query will be forwarded to a Leaf or a last-hop
Ultrapcer. Figs 4(a) and 5(a) show the cfficiency of the Partitions and Replication
scheme, respectively, in reducing the cost of the flooding.

4.1. Keyword-based queries

We can sce that the drawback of filtering using only onc keyword is balanced by the
fact that the sparser Leaf indices (since they contain only onc keyword category)
producc less false positives, but mainly outweighed by the message reduction duc
to the partitioning of the network and thercfore the reduction of the scarch space.
In addition, it follows from the results that the bencfits of being able to filter using
all keywords in a query when forwarding to the Leaf layer (Replication schemce)
is small comparcd to the increcased maintcnance cost. We would like to emphasize
that cach Partitions bloom filter (i.c. containing kcywords of a certain category)
has the length of a Gnutella bloom filter. Thus, one can roughly think of all the
bloom filters of a single Partitions lcaf as a (distributed) Gnutella bloom filter of 10
times the length (duc to the 10 category types). However the bandwidth needed to
transfer such a bloom filter is not 10 times that of a Gnutclla bloom filter, mainly



66 H. Papadakis et al.

0 " T - 7 Gnutella 10 ——
x % % a Gnutella 30 —v—
- 60 Q 60
g =
€ 50t it 8 sof 1
@ Gnutella 10 —+—
g 40 Gnutella 30 v E 40 ¢ -2 a7
§ Q Pangella (153 - - § - -
30t artitions - 30 o .
g 5 Partitions 30 - - £ o .
R Partitions 60 ---©--- E 20 |
g or g §. o . . |
w 10l ‘\;i\i\i\;l - g 10 + "g*?} P ';% JRSS R ——"
0 Bl i 1 i :
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 S50 60 70 80 90
Number of partitions Number of partitions
330 XK Gnujella 10— 350 ek “Gnulella 10 ===
) Gnutella 30 v Gnutella 30 v
7 300r Gnutella 60 % g 300 Gnutella 60 -
§ Partitions 10 -~ & g Partitions 10 -G
< 250 | Partitions 30 ---@-- < 250 Partitions 30 ---@---
2 Partitions 60 ---©--- ° Partitions 60 ---&---
g 200} 2 200}
z &
2 150+ £ 150
& g S
g 100t © é 100 |
£ n N
S 80 g - Sos0r W g I
i B Y p g a-. o
0 Rlah, o I 0 5958 - g i
0 10 20 30 40 S0 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Number of partitions Number of partitions

Fig. 4. Keyword-based queries, Gnutella vs Partitions. (a) Number of messages generated in one
flood. (b) Ultrapeer maintenance load. (c) Ultrapeer query load. (d) Total Ultrapeer traffic load.

because sparser bloom filters are compressed more cfficiently.

Another interesting observation is the fact that Gnutella 10 outperforms
Gnutella 30, cven though the Ultrapeer layer is 3 times bigger. This is casily cx-
plained by the fact that the Ultrapeers’ bloom filters are more empty (since they
contain the aggregate bloom filters of only 10 Leaves instcad of 30). This mcans
that the filtering during the last hop of flooding is morc accurate, increasing the
cfficiency of 1-hop replication.

We then focus on the traffic load cxperienced by a single Ultrapeer. In all cascs
we simulated three hours in the life of a single Ultrapeer, with Leaves coming and
going. Each timc a Leaf is connecting to the Ultrapeer, it sends its index information,
which is propagated by the Ultrapeer to its 30 Ultrapcer ncighbors. In addition, we
assumcd that, periodically (every 10 scconds), cach Ultrapeer receives a small keep-
alive message from cach Leaf and replics with a similar message to cach onc of
them, unless a query and a reply were exchange during the specified period. For
cach communication taking place, we mcasurcd the incoming or outgoing traffic
in bytes, in order to cstimate the bandwidth requirecments. We used a keep-alive
message size of 50 bytes and a query message size of 80 bytes, as indicated by the
Gnutclla Protocol Specification. In addition, for every 1400 bytes for cach message
sent, we added 40 bytes for the TCP and IP hcader.

We have used the code by LimeWire [2], the most popular Gnutella client,



Hash-Based Overlay Partitioning in Unstructured Peer-to-Peer Systems 67

3 e Replication 10 —— = 1000 Replication 10 ——
Replication 30 —v— 2 900 Replication 30 -- X
. 30 : Replication 60 - 1] 800 | Replication 60 -
2 1 Partitions 10 g Partitions 10 -
S 25 | Partitions 30 ---@--- g 700} Partitions 30" - :
x Partitions 60 -~ 2 Partitions 60 - --©---
2 2 8 e00f e
g g _
g g 500
g 15 E 400t
3 10} E af P -
[ 5 % 200 | Ed
L X e
s 100 o eal -
0 L f 0 BN G W ’
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Number of partitions Number of partitions
120 T T T T 1 T r r v
Replication 10 —+— 000 Replication 10 —+—
. ° Replication 30 - 900 Replication 30 v~ -
@ 100 F ¢ Replication 60 - 2 sl Replication 60 -
E : Partitions 10 -3 @ Partitions 10
< i Partitions 30 --#-- < 700} Partitions 30" ---m--
g 80 . Partitions 60 ---@--- E 600 Partitigns'60 - --o--
K] 1 k-] I
§' 60 + E 500
ol 400
g 40r a0l
100 | B8 oo
0 = 0 3 |, ., = S
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Number of partitions Number of partitions

Fig. 5. Keyword-based queries, Partitions vs Replication. (a) Number of messages generated in
one flood. (b) Ultrapeer maintenance load. (c) Ultrapeer query load. (d) Total Ultrapeer traffic
load.

to construct the bloom filter of cach Leaf. For cach pcer, we then cxtracted a
number of files (cqual to the number of files assigned to that peer) from a list
of filenames obtained from the network by a Gnutella crawler developed in our
lab. Thosc filenames were fed to the LimeWire bloom filter gencration code, which
produced the corresponding bloom filter in compressed form, i.c., the way it is sent
over the network by LimeWire servents. Thus, we constructed the actual bloom
filter, although what we really nceded was just its size (and the ratio of ”fullness”).

We run three types of simulations measuring (1) the maintcnance traffic (bloom
filter and keep-alive messages cxchange), (2) the query traffic and (3) the total
traffic. In the last case, we obscrved the nearly total lack of keep-alive messages,
duc to the implicit usc of query traffic for indication of livencss. In all the graphs
presented, the x axis corresponds to the number of partitions (keyword categorics).

Figs 4(b) and 5(b) show the incrcasc in the maintcnance load when employ-
ing our scheme. As cxpected, the maintenance load in the Replications scheme
increascs lincarly with the number of available partitions. This is because, the num-
ber of Leaves cach Ultrapeer has to serve also increascs lincarly with the number of
partitions. We can sce that this is not the case with the Partitions scheme, where,
cven though the number of Leaves per Ultrapeer also increascs, the size of the index
submitted by cach Leaf decrcascs.



68 H. Papadakis et al.

70 T T g T y y T 0 . -
T ¥ ¥ m s Gnutella 10 —+— .
60 | xSt 3 80 Gnutella 30 -y~
= - o g Gnutella 60. -+-x-
§ S 70°F Partitions 10 - ©
S Sor g &0 P,anifgons 30 -
x = r . itions 60 - -© -
Y Gnutella 10 + 8 Partitions 60 ---o
g 40 Gnutella 30 o § 50
g Gnutella 60 % -
30 - Partitions 10 -5~ £ 407t o T
g =) Partitions 30 --—-&-- T o -
g 20 | Partitions 60 -~~~ E 30 -
3 = o -
“ o} 8 g Vo w
, oy 5| B X _
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Number of partitions Number of partitions
300 T ——————
[P Gnutella-10-———k 300 TRRRTIRTTTT T Ghilela 10
- Gnutella 30 v — Gnutella 30 — -
2 250 Gnutella 60 - Q@ 250 Gnutella 60 ~-x--
2] Partitions 10 8- Q Partitions 10
E ol Partitions 30 4 Partitions 30 ----
'§ Partitions 60 -§ 200 . Partitions. 60+
2 150 | € 150}
& £
g oo} E 100 F o i
@ .y _
‘% 50 | W g so | ROo-0o T
3 -G i3~;“f'l"’l """"""""" o Ll.-’
0 e Y & 0 R R R
0 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Number of partitions Number of partitions

Fig. 6. Hash-based queries, Gnutella vs Partitions. ((a) Number of messages generated in one
flood. (b) Ultrapeer maintenance load. (c) Ultrapeer query load. (d) Total Ultrapeer traffic load.

We then focused our attention to the query traffic load. Mcasurements conducted
in our lab showed that, on the average, cach Ultrapcer generates 36 querics per hour
(i.c., querics initiated by itsclf or its Leaves). This adds up to approximately 2000
queries per sccond generated anywhere in the Gnutella network. In addition, we
obscrved a large number of Gnutclla querics in order to find the distribution of the
number of keywords in cach query. Thus, according to thosc obscrvations, during the
simulations we assumed that 20% of the querics contain onc keyword, 30% contain
two, another 20% contain thrce and finally a 30% contain four keywords. In our
simulation, we assumed that the aim of cach flood (both in Gnutclla and Partitions)
is to rcach the entire network, or produce a fixed number of results, whichever is
achicved first. As we mentioned before, a flood that aims to recach the entire network
would need to rcach ﬁth of the Gnutella’s network (or a Partitions’ subnetwork)
during all hops of flooding cxcept the last thanks to the 1-hop replication. This
means that the Ultrapeer in our simulations has a probability of 0.1 to recciving
cach query. In addition, cvery time this does not occur, it has another opportunity
to receive the query during the last hop, depending on its bloom filter (in casc the
scarched keywords match in the bloom filter). Should the Ultrapeer receive a query,
it is assumed to propagate it to its Leaves, again depending on their bloom filters.
Figs 4(c) and 5(c) show the comparison in the traffic load of Gnutclla, Partitions
and Replication.



Hash-Based Owverlay Partitioning in Unstructured Peer-to-Peer Systems 69

30 r —— T 600 T v T 3
Replication 10 —+— — Replication 10 —+——-
o Replication 30 v a Replication 30 -
~ 25} ° Replication 60 - 2 500} Replication 60 .~
3 1 Partitions 10 -3 g Partitions 10" - -&
2 a Partitions 30 ---@--- g Partitions 30 ---@-~
x 20 Partitions 60 ---©--- § 400 | Partittons 60 ---0---
P v
[ c
8 15} g 300}
2 5}
a £ ey T
g 10} g 200} X e
S X
L o5t E- 100 f x
0 L ; : 5 o S . B
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Number of partitions Number of partitions
80 T T T T T v T T o
© Replication 10—+ 600 Replication 10 —+—"
70} Replication 30 v - Replication 30 -
@ . Replication 60 - 2 500 Replication 60 .
Q 60 - Partitions 10 & E Partitions 10 -
< Partitions 30 ---&-- < Partitions 30 ---&--
° | Partitions 60 ---o--- o 400 Partitions 60 - -©--- 1
s 50 8 -
I T
,,S 40 E 300 |
S 30} el
g § 200 X T
g ol =
£ E
5 0l | 5 1o}
° + = ey | 0 = - N
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 S0
Number of partitions Number of partitions

Fig. 7. Hash-based queries, Partitions vs Replication. (a) Number of messages generated in one
flood. (b) Ultrapeer maintenance load. (c) Ultrapeer query load. (d) Total Ultrapeer traffic load.

Finally, Figs 4(d) and 5(d) show the total traffic load experienced by a single
Ultrapcer. From these figures it is evident that Partitions outperform Gnutclla in
operational costs, in all cascs.

4.2. Hash-based queries

All the results presented above regard keyword-based querics. However, there is a
large number of querics in P2P nctworks in gencral which are not keyword-based.
These arc the hash-based querics. Those querics arc looking for a file with a spe-
cific MD5 or SHA-1 hash valuc instcad of onc that contains some keywords in its
filename. The main usc of such queries is the location of alternate sources for down-
load for a file that is alrcady being transferred (and was probably located using
keyword-based querics). Those alternate sources can be used for swarm download-
ing, that is downloading different parts of the same file from multiple sources, in
parallcl. Hash-based querics can also have other uscs, such as locating illegal content
(copyrighted material, illegal pornography, ctc.) which usually cxists in the system
under mislecading filenames. Another important usc of hash-based querics is the de-
tection of false results, to avoid downloading some content only to recalize that it
was something completely different than what its name indicated.

Decpending on the uscs of hash-based querics of interest to the system, the fre-
quency of such queries may vary from low up to consisting thc majority of the



70 H. Papadakis et al.

querics. Those querics can be thought of as onc-keyword querics (the single key-
word being the hash value in the query). Since our system cspecially cxcels in
onc-keyword querics, we conducted the same mecasurements as before, including
hash-based querics in the experiments. Since the previous experiments contained a
percentage of hash-based querics cqual to 0, in the results presented below we have
assumed a frequency cqual to 50% (once hash-based query per normal query). This
will give us the behavior of the system on the other side of the spectrum, since as
we said the actual frequency of the hash-based queries depends on the importance
of their uscs for cach system. Figs 6 to 7 show the results of the new experiments.

5. Conclusions

In this paper, we have described a novel approach to reducing the message costs
of querying in unstructurced nctworks. The method exploits the partitioning of ran-
dom overlay networks into a small number of distinct subnetworks based on casily
applicable rules. The method allows for the catcgorization of any typc of content.
Extensive simulations have been performed and demonstrated that the benefits ob-
tained from our scheme can be as high as an order of magnitude compared to the
Gnutcella flooding.

References

(1] Gnutclla 0.6 protocol specification.
http://rfc-gnutclla.sourceforge.net /developer /stable/index.html

[2] Limecwire Inc. http://www.limewirc.com

[3] B.H. Bloom. Spacc/time trade-offs in hash coding with allowable crrors. Communi-
cations of the ACM, 13(7):422-426, 1970.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker. Making gnutclla-like
P2P systems scalable. Proc. ACM SIGCOMM 2003 Conf. on Applications, Tcchnolo-
gics, Architectures, and Protocols for Computer Communication, pp. 407-418, 2003.

[5] V. Cholvi P. Felber, E. Bicrsack. Efficient scarch in unstructured peer-to-peer net-
works. Proc. 16th ACM Symposium on Parallclism in Algorithms and Architecturcs,
2004.

[6] A. Crespo, H. Garcia-Molina. Routing indices for peer-to-peer systems. Int. Conf. on
Distributed Computing Systems (ICDCS’02), Vicnna, Austria, 2002.

[7] A. Crespo, H. Garcia Molina. Scmantic overlay networks for P2P Systems. Int. Conf.
on Agents and Peer-to-Peer Computing (AP2PC 2004), New York, USA, 2004.

[8] A. Fisk. Gnutclla Ultrapcer Query Routing, v. 0.1. LimeWire Inc. 2003.

[9] C. Gkantsidis, M. Mihail, A. Saberi. Hybrid scarch schemes for unstructured peer-to-
peer networks. IEEE INFOCOM 2005, Miami, USA, 2005.

[10] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker. Scarch and replication in unstructured
peer-to-peer networks. Int. Conf. on Supercomputing (SC 2002), Baltimore, USA,
2002.

[11] C. Papadakis P. Fragopoulou E. Athanasopoulos M. Dikaiakos, A. Labrinidis, E.
Markatos. A feedback-based approach to reduce duplicate messages in unstructured
peer-to-peer networks. Proc. of the CorcGRID Integration Workshop, 2005.

[12] A. Ratnasamy, P. Francis, M. Handlcy, R.M. Karp, S. Shenker. A scalable content-
addressable network. ACM SIGCOMM 2001, pp. 161-172.


http://rfc-gnutclla.sourceforgc.net/dcvclopcr/stablc/indcx.html
http://www.limcwirc.com

[13]

(14]

[16]

(17]

(18]

[19]
[20]
(21]

(22]

Hash-Based Owverlay Partitioning in Unstructured Peer-to-Peer Systems 71

R. Rejaic, S. Zhao, D. Stutzbach. Characterizing files in the modern Gnutella network:
A mecasurcment study. Proc. SPIE/ACM Multimedia Computing and Networking,
2006.

A. Rowstron, P. Druschel. Pastry: Scalable, decentralized object location and routing
for large-scale peer-to-peer systems. Proc. of the 18th IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware 2001), Heidelberg, Germany,
Nov. 2001.

K. Sripanidkulchai, B. Maggs, H. Zhang. Efficiecnt content location using interest-
bascd locality in peer-to-peer Systems. IEEE INFOCOM 2003, San Franciso, USA,
2003.

I. Stoica, R. Morris, D. Karger, M. Frans Kaashock, H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for Internct applications. SIGCOMM’01, San
Dicgo, California, USA, August 2001.

D. Stutzbach, R. Rejaic. Characterizing the two-tier gnutella topology. Proc. of the
ACM SIGMETRICS, Poster Session, 2005.

P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M. Pennancn,
K. Popov, V. Vlassov, S. Haridi. Pcer-to-Peer Resource Discovery in Grids: Models
and Systems. Future Generation Computer Systems 23, 864-878, 2007.

D. Tsoumakos, N. Roussopoulos. A Comparison of pcer-to-peer scarch methods. Int.
Workshop on the Web and Databases (WebDB 2003), San Dicgo, USA, 2003.

B. Yang, H. Garcia-Molina. Improving scarch in peer-to-peer networks. Proc. of the
22nd Intcrnational Conference on Distributed Computing Systems (ICDCS02), 2002.
B. Yang, H. Garcia-Molina. Designing a super-peer network. Proc. Int. Conference
on Data Engincering (ICDE 2003), pp. 49-60, 2003.

B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhca, A.D. Joscph, J.D. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Sclected Arcas in Communications, vol. 22(1), Jan. 2004.



Copyright of Parallel Processing Letters is the property of World Scientific Publishing Company
and its content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.



