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Abstract—This paper assumes a set of n mobile sensors that
move in the Euclidean plane as a swarm. Our objectives are to
explore a given geographic region by detecting spatio-temporal
events of interest and to store these events in the network until
the user requests them. Such a setting finds applications in mobile
environments where the user (i.e., the sink) is infrequently within
communication range from the field deployment. Our framework,
coined SenseSwarm, dynamically partitions the sensing devices
into perimeter and core nodes. Data acquisition is scheduled at
the perimeter, in order to minimize energy consumption, while
storage and replication takes place at the core nodes which are
physically and logically shielded to threats and obstacles. To
efficiently identify the nodes laying on the perimeter of the swarm
we devise the Perimeter Algorithm (PA), an efficient distributed
algorithm with a low communication complexity. For storage and
fault-tolerance we devise the Data Replication Algorithm (DRA),
a voting-based replication scheme that enables the exact retrieval
of events from the network in cases of failures. Our trace-driven
experimentation shows that our framework can offer significant
energy reductions while maintaining high data availability rates.
In particular, we found that when failures are less than 60%
failure then we can recover over 80% of generated events exactly.

I. INTRODUCTION

Stationary sensor networks have been predominantly used in
applications ranging from environmental monitoring [25], [23]
to seismic and structural monitoring [5] as well as industry
manufacturing [19]. Recent advances in distributed robotics
and low power embedded systems have enabled a new class
of Mobile Sensor Networks (MSNs) [6], [29] that can be
used in land [2], [7], [16], ocean [17] and air [9] exploration
and monitoring, automobile applications [11], [8], habitant
monitoring [23] and a wide range of other scenarios. MSNs
have a similar architecture to their stationary counterparts, thus
are governed by the same energy and processing limitations,
but are supplemented with implicit or explicit mechanisms
that enable these devices to move in space (e.g., motor
or sea/air current). Additionally, MSN devices might derive
their coordinates through absolute (e.g., dedicated Geographic
Positioning System hardware) or relative means (e.g., local-
ization techniques, which enable sensing devices to derive
their coordinates using the signal strength, time difference of
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arrival or angle of arrival). The absence of a stationary network
structure in MSNs makes continuous data acquisition to some
sink point a non-intuitive task as data acquisition needs to
be succeeded by in-network storage [30], [24], [1], such that
these events can later be retrieved by the user. Additionally,
the operation of MSNs is severely hampered by the fact that
failures are omnipresent, thus fault-tolerance schemes become
of prime importance in such environments.

In this paper we propose SenseSwarm', a novel framework
for the acquisition and storage of spatio-temporal events in
MSNS . In SenseSwarm, nodes have the dual role of perimeter
and core nodes (see Figure 1). Data acquisition is scheduled
at the perimeter, in order to minimize energy consumption,
while storage and replication takes place at the core nodes.
Such a setting is suited well for applications in which new
events are more prevalent at the periphery of the swarm (e.g.,
water and contamination detection) rather than for online
monitoring applications (e.g., fire detection) or applications
where new events might occur anywhere in the network. In our
setting, storage of detected events takes place at the core nodes
since these nodes are expected to feature a longer lifetime
(due to their reduced sensing activity) but are also physically
shielded to threats and obstacles that might immobilize the
sensors. In order to increase the overall fault-tolerance of our
system, we propose a data replication scheme that increases
the availability of data and thus also the accuracy of executed
queries.

For ease of exposition, let us now consider a Mars Explo-
ration scenario: Spirit was one of the two rovers deployed
by NASA in 2004 in order to perform geological analysis
of the red planet. Instead of one rover, consider a design
that consists of many cheaper rovers deployed as a swarm.
Such a design avoids the peculiarities of individual rovers,
is less prone to failures and is potentially much cheaper. The
swarm moves together and attempts to detect events of interest
(e.g., the presence of water). Let the polarized behavior of the

The term Swarm (or Flock) in this paper refers to a group of objects that
exhibit a polarized, non-colliding and aggregate motion.
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Fig. 1. SenseSwarm: Data Acquisition takes place at the virtual perimeter
while core nodes act as storage nodes for the acquired events.

swarm be provided by an explicit algorithm [22] or an implicit
mechanism (e.g., air current). The operator (on earth) then
infrequently posts the question: “Has the swarm identified any
water and where exactly?” Since the sink is located far away
from the field deployment, the swarm collects spatio-temporal
events of interest and stores them in the network until the
operator requests them. In order to increase the availability
of detected answers, in the presence of unpredictable failures,
nodes perform data replication to neighboring nodes.

Similarly to the above visionary description, we could draw
another more realistic example in the context of an ocean mon-
itoring environment: assuming 7 independent surface drifters
floating on the sea surface and equipped with either acoustic
or radio communication capabilities, the operator infrequently
seeks to answer the query: “Has the swarm identified an
area of contamination and where exactly?” Finally, one
could utilize a swarm of car robots, such as CotsBots [2],
Robomotes [7] or Millibots [16], to construct spatio-temporal
acquisition and storage scenarios for land applications.

This paper builts upon our previous work in [28], in which
we presented the initial design of the SenseSwarm framework.
In this paper we introduce several new improvements including
a voting-based fault-tolerance scheme that increases the avail-
ability of data and thus improves fault tolerance. In particular,
our work makes the following contributions:

o« We present the Perimeter Algorithm (PA), which effi-
ciently constructs a perimeter of a MSN using a two-
phase protocol. Our algorithm has a O(n) message com-
plexity, where n is the total number of sensors instead of
O(n?), featured by the centralized algorithm.

« We devise a voting-based replication scheme to preserve
the datums (i.e., acquired events) in cases of system
failures. In particular, we devise the DRA algorithm that
replicates datums using distributed read/write quorums.

« We experimentally validate the efficiency of our proposi-
tions using a trace-driven experimental study that utilizes
real sensor readings.

The remainder of the paper is organized as follows: Sec-
tion II overviews the related research work and provides
background on our perimeter construction and fault-tolerance
scheme we present. Section III formalizes our system model
and assumptions, Section IV the PA algorithm and Section V
the DRA algorithm. Section VI presents our experimental
study and Section VII concludes the paper.

II. RELATED WORK AND BACKGROUND

This section provides an overview of predominant data
acquisition frameworks in order to highlight the unique char-
acteristics of the SenseSwarm framework. It also provides
background on the two main problems our framework ad-
dresses (i.e., the perimeter construction and the data replication
processes).

Traditional data acquisition frameworks for sensor net-
works, such as TinyDB [18] and Cougar [26], perform a
combination of in-network aggregation and filtering in order
to reduce the energy consumption while conveying data to the
sink. The MINT View framework [27] performs in-network
top-k pruning in order to further reduce the consumption of
energy. In data centric routing, such as directed diffusion [12],
low-latency paths are established between the sink and the
sensors. Contrary to our approach, all the above frameworks
have been proposed for stationary sensor networks while this
work considers the challenges of a mobile sensor network
setting. In data centric storage schemes [24], [1], data with the
same attribute (e.g., humidity readings) is stored at the same
node in the network offering therefore efficient location and
retrieval. Such an approach is supplementary to the perimeter-
based data acquisition framework we propose in this paper.
Supplementary to our framework are also the MicroHash [30]
and TINX [20] local index structures, which provide O(1)
access to data stored on the local flash media of a sensor
device. Such structures can be deployed to speed up the
retrieval of data whenever required.

The first problem our framework investigates is that of
partitioning the network into perimeter and core nodes. The
perimeter construction problem we consider has similarities
to the convex hull problem in computational geometry, which
finds applications in pattern recognition, image processing and
GIS [4]. The convex hull problem is defined as follows: given
a set of points, identify the boundary of the smallest convex
region that encloses all the points either on the boundary
or on its interior. Such a boundary is both non-intersecting
(i.e., no edge crosses any other edge) and convex (i.e., all
internal angles are less than 7). There are numerous central-
ized algorithms for computing the convex hull with varying
complexities.

Two of the most popular convex hull algorithms are the
Jarvis March [4] (or Gift Wrapping) algorithm and the Gra-
ham’s scan algorithm [4]. The main difference between the
convex hull and the perimeter problem we consider in this
work, is that the latter defines non-convex cases (i.e., internal
angles are up to 27). Non-convex cases are typical for a sensor
network context as convex angles might not be feasible due to
communication radius constraints. Additionally, convex hull
algorithms are centralized while we develop techniques to
compute the boundaries in a distributed fashion minimizing
communication and energy consumption without sacrificing
correctness. Related work in the context of sensor networks
appears in [3], where the authors present localized techniques
that enable the sensors to determine whether they belong
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Fig. 2. In SenseSwarm, data acquisition is scheduled at the perimeter while
storage and replication takes place at the core nodes.

to the boundary of some phenomenon. Yet, the underlying
assumption in the given work is that the edge sensors are not
within communication range while we consider the perimeter
to be a continuous chain of nodes. In [21], the authors devise
an algorithm that combines current and historic measurements
to trace a contour of a given value in the field (e.g., an oil
spill). The presented ideas (e.g., that of quickly arriving at the
contour) are supplementary to ideas presented in this paper.

The second problem our framework investigates is that of
data replication to improve fault-tolerance. At a high level,
our proposed scheme consists of maintaining a set of identical
copies of each datum at several nodes in the network. For ease
of exposition, let us consider the example network of Figure 2,
which will be utilized throughout this paper. On the given
figure we illustrate a segment of a MSN at a specific time
7. Assume that a copy of the datum d; (i.e., data published
by node s;), has been replicated to nodes s4, S5, Sg, Si2.
Now let nodes s; permanently fail along with its one hop
neighbors (i.e., s4 and s5) at time instance 7+ 1. Since d; has
been replicated beyond these nodes then it will be feasible to
recover dj if necessary.

Our proposed solution is based on a voting-based data
replication scheme. Voting algorithms [14], [15] have been
among the most popular techniques to offer fault-tolerant
properties in distributed systems. A vote denotes the preference
of some node to replicate a specific piece of information
(i.e., a datum) to another node. Voting schemes consist of
first selecting a set of nodes where a specific datum will
be replicated (i.e., the write quorum) and another set of
nodes where a query will be conducted at, to search for
that specific datum (i.e., the read quorum). One of the major
challenges is to effectively choose the correct quorums so
that the replication process will produce consistent results in
an efficient manner. SenseSwarm’s data replication algorithm
utilizes the basic ideas of voting in conjunction with the unique
characteristics of MSN systems.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section we will formalize our basic terminology
and assumptions. The main symbols and their respective

TABLE I
Definition of Symbols

[ Symbol [ Definition ]
n Number of Sensors S = {s1, 2, ..., Sn }
m Number of attributes at each s; {a1,a2,...,am}
(s§,sY) x and y coordinates of each s;
r The communication radius of each s;
NH(s;) 1-hop (in commun. range) neighbors of s;
V(si,85) A Vector defined as (sj — s7, 57 — s})
LeftN(s;) | The predecessor of s; on the perimeter
RightN(s;) | The successor of s; on the perimeter
SP,s¢ The set of Perimeter nodes, Core nodes
Q An m-dimensional Query
e Epoch Duration (i.e., data acquisition interval)
o, 0 Perimeter Reconstruction, Replication interval
d; The datum of node s;
vf Vi The vote (preference) of s; to replicate d;
to node s;, All votes from s;

definitions are summarized in Table I.

Let R x R denote a two-dimensional grid of points in the
Euclidean plane that discretizes a given geographic area. Also
assume a Cartesian coordinate system to describe the position
of each point in the grid with coordinates (z,y). W.Lo.g, let
us initialize the n sensing devices S = {s1, 9, ..., S, } at the
lower-left n2 x nz sub-grid of R2. For ease of exposition
let n be a perfect square such that each cell contains exactly
one sensor. Each s; (¢ < n) can derive its coordinates (s, sf)
through some absolute or relative mechanism. Additionally,
each s; can be aware of its neighboring nodes, denoted as
NH(s;), using a local 1-hop broadcast. The sensing devices
are coarsely synchronized through some operating system
mechanism (e.g., similarly to TinyOS [10]) or through the
GPS and can communicate with other sensors in a uniform
radius r, ie., 1 <r < ns.

The user can specify one or more m-dimensional Boolean
queries of the type Q={q1 ®¢2 ® ... ® ¢}, where ¢; (i < m)
corresponds to some predicate such as g;=“Temperature >
100” and © denotes some binary Boolean operator. These
queries correspond to the user-defined local events of interest
and are registered at each s; either prior the deployment or
during execution. The discussion of more complex query types
is outside the scope of this paper.

A SenseSwarm network is initiated by conceptually dividing
S into perimeter nodes SP and core nodes S¢ using the
algorithms we present in Section IV. This operation is periodic
and will be repeated after o time instances (see Figure 3).
Each perimeter sensor s; (¢ < n) then acquires m physical
parameters A={a1,as, ...,a,} from its environment during
every epoch e, which defines the interval after which data
acquisition re-occurs. The value for e is either dynamically
adjusted according to the dynamics of the swarm or prespeci-
fied. In a sea oil-spill detection scenario, e can be configured
to several hours as surface drifters usually float very slowly
on the sea surface. The above procedure generates spatio-
temporal tuples of the form {¢,z,y, a1, az, ..., an } locally at
each sensor. The generated tuples of interest (with respect
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Fig. 3. Outline of the SenseSwarm framework operation.

to Q) are stored in some local vector structure that will be
referred to as d; (i.e., the datum of node s;).

In order to increase the availability of d; structures, we adopt
a data replication scheme based on votes that will be presented
in Section V. A vote v] denotes the preference of sensor s;
(i.e., the publisher of some datum d;), to replicate d; to node
s; (i # j) at a given time instance. Additionally, we define v;
as the set of all votes by node s; on the given time instance.

In our approach, we assume that every ¢’ time instances
every sensor s; € SP proceeds with the replication of its local
datum d; to the votes of s;.

IV. PERIMETER CONSTRUCTION PHASE

This section describes algorithms for the construction of a
perimeter in a MSN. We first describe a centralized solution
and then our Perimeter Algorithm.

A. Centralized Perimeter Algorithm (CPA)

First note that the construction and dissemination of a
perimeter can be performed in a centralized manner, i.e., a
sink collects the coordinates of all nodes in .S, using an ad-
hoc spanning tree, and then identifies the perimeter nodes (S?)
using some straightforward geometric calculations. Finally,
the sink disseminates the ordered set S? to all nodes in S
using a spanning tree. Clearly, the first and last phase of
the CPA algorithm require the transfer of many (x,y)-pairs
between nodes. Specifically, although both phases require O(n)
messages the first phase requires the transfer of O(n?) (x,y)-
pairs (i.e., assume that the nodes are connected in a bus
topology which yields Y 7 (z):% (z,y) pairs), while the
last phase requires the transfer of O(p * n) (x,y)-pairs (i.e.,
each edge transfers the complete perimeter of size p).

B. Perimeter Algorithm (PA)

We shall next describe our distributed algorithm which
minimizes the transfer of (x, y)-pairs, thus minimizing energy
consumption. To simplify the description and w.l.o.g., assume
that we have no coincidents (i.e., two points with the same
(z,y) coordinates) and that no three points are collinear (i.e.,
lie on the same line). Although these assumptions make the
discussion easier our implementation supports them.

Algorithm 1 presents the steps of the distributed PA process
that is executed by each sensor every o time instances. In
line 4, procedure Find_Min_Coordinares(S) identifies the
sensor with the minimum y-coordinate and returns its id to the
variable s,,;,. If more than one sensors have the y-coordinate
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Algorithm 1 : Perimeter Algorithm (PA)

Input: Sensor s; (1 <14 <n), the set of sensors S

Output: An update of the set SP

1: procedure PERIMETER_ALGORITHM(S;, S)

2: minAngle=360°; // Variable initialization

3 // 1dentify Smin (node with the minimum y-coordinate in S).
4: Smin = Find_Min_Coordinates(S);

5: Disseminate(Smin, S); // Vs; € S
6.
7

8

if (s; = Smin) then
LeftN(s;)=Smin;

: else
9: LeftN(s;)=wait(); // Get token from LeftN(s;).
10: end if
11: // Find neighbor with min. polar angle from s;
12: for j=1 to |NH(s;)| do
13: if (£(LeftN(s;), si, s;)<minAngle) then
14: minAngle=£ (LeftN(s;), si, $5));
15: RightN(Si)ZSj
16: end if
17: end for

18: SP = SPJ RightN (s;); // Add RightN(s;) to perimeter.
19: Send(s;, RightN(s;)); // Send token to RightN(s;)
20: end procedure

equal to s¥ . . then the above procedure returns the one with
the minimum value in its z-coordinate. The above procedure
is achieved by constructing an aggregation tree rooted at the
given sink using TAG [19]. In particular, each s; identifies
among its children and itself the minimum s . value and
then recursively forwards the triple (Spin, Siyin, mm) to s;’s
parent. This step, has similarly to CPA, a message complexity
of O(n) but the overall number of (z,y)-pairs transmitted to
the sink is only O(n) rather than O(n?) (i.e., exactly one
pair per edge). This improvement is due to the in-network
aggregation that takes place in our approach.

Concurrently with the above operation in line 4, each s;
updates its neighbor list N H (s;) as such an updated list will
be necessary in the subsequent steps. Note that this update
does not introduce any extra cost, as s; simply adds to N H (s;)
the neighbors that have participated in the calculation of s,,,-

In line 5, we disseminate s,,;, to all the nodes in the
network S from the sink. This has a message complexity
of O(n) and the overall number of (x,y)-pairs transmitted is
O(n), compared to O(p * n) required by CPA. The next task
is to identify the nodes on the perimeter. Before proceeding,
let us provide the following definitions:

Definition 1 [Left Neighbor of s; (LeftN(s;))]: The pre-
decessor of s; on the perimeter. The termination condition of
this recursive definition is as follows: Le ftN(Smin) = Smin,
where 57, < s (Vs; € 5,1 <j <n).

Definition 2 [Right Neighbor of s, (RightN(s;))]: The
successor of s; on the perimeter such that LeftN(s;) #
RightN (s;), if [NH(s;)] > 1.

Continuing with the description of our algorithm in lines
8-10 each s;, other than s,,;,, identifies its left neighbor.
This is achieved by waiting for a token (i.e., the identifier
of LeftN(s;)) from LeftN(s;). When the token arrives, the
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node will execute the remaining steps of the algorithm (lines
12-19). In particular, in lines 12-17, s; identifies the neighbors
with the minimum polar angle from its x-axis. The x-axis
of node s; is defined in our context to be collinear with
the vector V(LeftN(s;), s;). This ensures the correctness of
the algorithm although we omit a formal proof due to space
limitations. In line 15 we utilize the notation £(a,b,c) to
denote the angle between three arbitrary points a, b, c in the
plane. Our objective in the given block (line 13-18), is to
identify the neighbor with the minimum polar angle (which
is then coined RightN(s;)), counterclockwise starting from
7. Finally in line 19, s; transmits a token to RightN(s;)
notifying it that it is the next node on the perimeter. The
procedure between lines 12-20 continues sequentially along
the network perimeter until any s; receives the token for a
second time from its left neighbor or a timeout period expires.
At the end, every node receiving the token knows that it
belongs to SP while the rest nodes continue to belong to S°.
The identification of s, takes O(n) messages and the
token dissemination takes O(p) messages, where p the number
of the nodes on the perimeter. Thus the overall message
complexity is O(n), as p < n. In the future we plan to devise
techniques to incrementally compute the perimeter.

Example: Figure 4, illustrates the perimeter construction for
eight nodes {sy ---ss}. Assume that we have executed steps
2-5 of Algorithm 1 and that we continue with the execution
of the perimeter construction at node Sy, (i-€., S1). Smin
measures the polar angle of all the nodes in N H () to
its w-axis and subsequently derives RightN (Smmin)=2 (s3 is
not within communication range from s;). Next, $,,;, sends
a token to sy informing it that it is the next node on the
perimeter. Upon reception of the token, sy sets its z-axis
collinear with V'(s1, s2). The same idea applies to all nodes
on the perimeter until sg transmits the token to s.

V. ACQUISITION AND DATA REPLICATION PHASE

In this section we describe the second phase of the Sens-
eSwarm Framework during which the perimeter nodes SP
start acquiring information from their environment and then
replicate this information to their neighboring nodes.

Recall that the acquisition step proceeds every e time in-
stances during which each s; generates spatio-temporal tuples
of the form {¢,z,y,a1,as,...,a,,}. The generated tuples of
interest (i.e., the tuples that satisfy the predicates of Q) are
recorded in the local d; (datum) structure of each s;. Next, d;
structures are replicated to neighboring nodes according to the
algorithm we propose in this section. In particular, we propose
a data replication scheme based on votes.

The presented DRA algorithm replicates the d; structures
to w neighboring nodes (for any w > 1). If it is necessary
to recover d; then it is required to read d; structures from at
least r = v — w + 1 votes of s;, where v is the total number
of votes of s;. For instance when w = 2 and v = 4 then
r=4—-2+41=3 (i.e., 3 reads) are adequate to recover d; in
its exact form. Whenw =1landv =4thenr =4—-14+1=4
reads are necessary to recover any replicated d;. The details
of the DRA algorithm follow next.

A. Data Replication Algorithm (DRA)

The objective of the DRA algorithm is to construct a data
replication configuration which will present to each s; an
energy efficient plan on how to replicate its local d; struc-
tures. A data replication configuration is an energy efficient
(read,write)-combination that dictates how many read and
writes operations are necessary per d;, such that a d; structure
can be preserved in cases of failures. It is important to notice
that if energy conservation was not important then we could
have opted for a scheme that replicates each d; to the entire
network.

Algorithm 2 presents the details of the DRA algorithm.
For ease of exposition, we will again utilize Figure 2 to
demonstrate the operation of DRA. Let us focus on the
perimeter sensor sj (although a similar discussion applies
to the other perimeter nodes as well.) The DRA algorithm
starts in the first step by discovering an adequate number
of votes (candidate neighbors) for each perimeter sensor s;
(lines 2-6). This is done by probing the 1-hop core node
neighbors of s1, (NH(s1)), which are s; and s5 (line 3). If
the number of neighboring nodes, | N H (s1)| is lower than a
user-defined threshold vmin (for our discussion let vmin=4)
then s expands its neighbors by incorporating more multi-hop
nodes (line 5). That results in the increase of the N H (sq) set
(i.e., sg and s1o are added to N H (s;)). Besides the identifier
of each neighbor, s; also stores the hop count for each of
them (i.e., (s4,1), (s5,1), (s6,2), (512,2)) so that it can later
decide which set of neighbors will produce the most energy-
efficient replication strategy. Since the number of candidates in
NH(s1) is 4, thus the vmin requirement has been satisfied,
sy utilizes all of these 4 nodes including itself (i.e., v;=5).
Next, s; proceeds with the selection of a subset of v; for data
replication. This is done by utilizing a voting process that
operates as follows (we denote |v;| as v for brevity):

In Step 2 we define two integers, r (number of read
operations) and w (number of write/replicate operations) with
the following properties:

r+w>v, v>r>1, v>w>v/2
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Algorithm 2 : Data Replication Algorithm (DRA)

Input: A sensor s; € S?, a threshold parameter vmin, representing
the minimum number of votes a sensor must register.
Output: The data replication configuration (r,w) of s;.
1: procedure DRA(s; € S?)
2: > Step 1: Find neighbors of s; € S°
NH(s;) < Find hop-1 neighbors of s, that belong to S°
if (NH(s;)| < vmin) then
NH (s;) < recursively expand neighbors
end if
> Step 2: Define possible read write (r,w)-combinations
RW={(r, w): v>w>v/2, v>r>1, r+w>v}, where
v=|NH(s;)|
9: > Step 3: Eliminate redundant (r,w)-combinations
10: RW'={(r,w): (r,w)e RW, r+w=v+1}
11: > Step 4: Rank the (r,w) in RW’ according to f

AN AR

12: (re,we)— max;<|rw| f (i, wi)

13: > Step 5: Replicate the information to neighbors

14: v; = select(NH (s;),w;) // select a set of w, neighbors
15: notifyse., (s, d;) // replicate d; to these w, neighbors

16: end procedure

We then create the RW -set of eligible (r,w)-combinations
(line 8). In our example, since w needs to be in the range 5 >
w > 2.5 then w € {3,4,5}. Furthermore, since r+w > v then
r > v —w and consequently the following (r,w)-combinations
are valid: RW={(1,5), (2,5), (3,5), (4,5), (5,5), (2,4), (3,4),
4.4), (5.4), (3.3), (43), (5.3)}.

In Step 3 of the voting process, we aim to eliminate
redundant (r,w)-combinations in the RW set. To under-
stand the intuition behind this elimination consider the (1,5)-
combination. Since w=5 (i.e., all sensors hold a replica of
datum d;) then it is redundant to read more replicas than one
(ie., (2,5),(3,5), -+ ,(5,5) are redundant). Although all of
these combinations can recover d; in cases of failures, they
do not have the same energy requirements and should thus be
excluded from the RW set. For instance the (2,5)-combination
requires 1 read more than the (1,5)-combination and should
thus be eliminated. The elimination of redundant combinations
yields RW'={(1,5), (2,4), (3,3)}.

The objective of Step 4 is to further prune the RW' set
in order to derive the (r,w)-combination that requires the
least possible energy, but this operation is not straightforward.
On the one hand, having more w operations involved in the
replication process increases the overall fault-tolerance. On
the other hand, more w operations would also incur additional
messaging and consequently would require more energy. The
negative effect of more w operations is particularly more
apparent in cases where nodes have a hop distance from s;
that is larger than 1 (i.e., are not 1-hop neighbors).

In the fourth step of the DRA algorithm, we rank the
remaining RW’'={(1,5), (2,4), (3,3)} combinations using a
ranking function f(, ., and choose the one with the highest
score. In particular, the local ranking proceeds as follows:

o Calculate the number of broadcast messages (nbmy,. ,))
that would be required for the replication process of the
remaining (r,w)-combinations € RW’ using the hop-
count information gathered during lines 2-6 of DRA. Nor-

malize nbm, ., to [0..1] using the following function:
nbm’(T w) = = min(nbmy(r.w)) /10M (1, )

o Calculate the replication spreading factor (rsf(;.,)) by
normalizing the w of each combination to [0..1] using
formula w/max(Vw € RW").

o Calculate the rank of each (r,w)-combination by sum-
ming the number of broadcast messages and replica-
tion spreading factor parameters: f(,.,) = nbm’(nw) +
rs f(,,,w). 2

The results of the ranking on our example are summarized
in Table II. The presented results indicate that the (1,5)-
combination has the highest rank in the f function and
consequently that plan is utilized for the replication of d;.

TABLE II
Ranking the (r,w)-combinations of R’ during the fourth step of DRA

l (ryw) [ nbm(r,w) nbm/(ryw) [ Tsf('r,w) [ f('r,'w) ‘

(1,5) 4 1.0 1.0 2.0
2.4) 5 0.8 0.8 1.6
(3,3) 4 1.0 0.6 1.6

In the final fifth step of DRA, s; proceeds with the repli-
cation of d; to the identified neighboring nodes. In particular,
in line 14 s; selects w, neighbors from its N H(s;) list and
stores these results in the v; set. Each s; then proceeds with
the replication of d; to the identified w, nodes in line 15. This
completes the operation of the DRA algorithm.

Theorem 1: The DRA algorithm guarantees that a datum d;
can be recovered if the number of reads (r) from the votes
of s; is at least v — w, + 1 (v > w,), where v denotes the
number of all votes and w, the number of writes during the
replication of d;.

Proof: Let us select first two sets, R and W, such that |R| =
ry and |W| = w, (R,W C v;) as dictated by DRA. Since
wy; > v/2 then d; has been replicated to more than half of
the nodes assigned a vote by node :. Now, considering that
re + w; > v, we must have RN W # (). Hence any read
operation is guaranteed to read the value of at least one copy
which has been updated by the latest write [

VI. EXPERIMENTAL EVALUATION

In this section we present our experimental evaluation of
the SenseSwarm framework.

A. Experimental Methodology

We adopt a trace-driven experimental methodology in which
a real dataset from n sensors is fed into our trace-driven
simulator. Our methodology is as follows:

Sensing Device: We use the energy model of Crossbow’s
research sensor device TelosB [5] to validate our ideas. TelosB
is a ultra-low power wireless sensor equipped with a 8 MHz

Znbm/,

(ryw and rsf(;. ,,,) are the two most prominent parameters for select-
ing the best (r,w)-combination. However, one could also consider parameters

like capacity required to store the datums and recovery performance.
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MSP430 core, IMB of external flash storage, and a 250Kbps
Chipcon (now Texas Instruments) CC2420 RF Transceiver that
consumes 23mA in receive mode (Rx), 19.5mA in transmit
mode (Tx), 7.8mA in active mode (MCU active) with the
radio off and 5.1uA in sleep mode. Our performance measure
is Energy, in Joules, that is required at each discrete time
instance to resolve the query. The energy formula is as
following: Energy(Joules) = Volts x Amperes x Seconds.
For instance the energy to transmit 30 bytes at 1.8V is:
1.8V x 23 % 1073 A x 30 * 8bits/250kbps = 39u.J.

Dataset: We utilize a real dataset from Intel Berkeley Re-
search [13]. This dataset contains data that is collected from
58 sensors deployed at the premises of the Intel Research in
Berkeley between February 28th and April 5th, 2004. The
motes utilized in the deployment were equipped with weather
boards and collected time-stamped topology information along
with humidity, temperature, light and voltage values once
every 31 seconds. The dataset includes 2.3 million readings
collected from these sensors. We use 10,000 readings from
the 54 sensors that had the largest amount of local readings
since some of them had many missing values.

Swarm Simulation: In order to introduce motion to our sensor
network we have derived synthetic spatial coordinates for the
n sensors using the Craig Reynolds algorithm [22], which is
widely used in the computer graphics community. Using this
algorithm we generated 100 individual scenes and during each
scene a sensor obtains 100 readings (i.e., o=0'=100). In order
to simulate failures we make the assumption that there is a
X% independent probability that a node fails at any given
timestamp.

B. Perimeter Cost Evaluation

In the first experimental series we investigate the efficiency
of our distributed PA algorithm compared to the centralized
CPA algorithm. Figure 5, presents the aggregate cost (i.e.,
for the whole network and for all 10,000 timestamps) of
the two algorithms for 4 different network sizes 54, 150,
300 and 500. These networks were derived from the initial
dataset of 54 nodes using replication of the sensor readings to
different initial coordinates. We observe that the PA algorithm
consumes in all cases between 85%-89% less energy than the
CPA algorithm. This is attributed to the fact that during the
computation of s,,;,, the PA algorithm intelligently percolates
only one (z,y)-pair to the sink rather than all of them.
Additionally, we observe that the performance gap between
the two algorithms grows substantially with the size of the
network. Specifically, for n=54 the total energy difference
between the two algorithms was 163 Joules while for n=500
the total energy difference was 2,208 Joules.

C. Replication Phase Evaluation

In the final experimental series, we evaluate the fault-
tolerance accuracy of our two replication algorithms.

In the first experiment we measure the absolute fault-
tolerance accuracy of the Data Replication Algorithm (DRA).

Perimeter Construction Performance with Different Network Sizes

3000 T T T T
Centralized Perimeter Algorithm (CPA) /74

2500 - Perimeter Algorithm (PA) EZE&H |

2000
3
>
> 1500
(9]
(=
i}

1000

500 ;
0 F 7 ) KO «,%z é«\
54 150 300 500
Network Size (n)

Fig. 5. Evaluating the energy consumption of the Perimeter Algorithm.

To accomplish this, we compare DRA against a version
that does not employ any replication strategy, coined No-
Replication Algorithm (NRA). We execute both algorithms
on each of the individual scenes generated by our swarm
simulator. During each one of the 100 individual scenes, we
randomly select a sensor node to be the sink. As soon as
the sink is selected, it registers 10 random queries each of
which requesting events detected by different sets of perimeter
sensors. In order to measure the accuracy of each of the
algorithms, we measure the average ratio of detected events
over the total number of events requested by the 10 queries.

Figure 7, illustrates the fault-tolerance accuracy of the two
algorithms over an increasing failure rate. We observe that
in all cases DRA maintains a competitive advantage of ~19-
48% over NRA. This is due to the voting-based replication
strategy utilized by DRA. Note that we have configured DRA
with vmin=3 (i.e., 3 votes). Since, in DRA, detected events
are replicated to 3 neighboring nodes, even if a node fails, its
detected events are easily obtained by its votes thus ensuring
a higher level of accuracy. We also observe that with a 60%
failure rate the accuracy of both algorithms starts to decrease
rapidly. This is expected at such high failure rates as large
segments of the query routing tree become inaccessible by the
sink.

We have finally measured the number of extra communica-
tion messages that DRA requires during replication. We dis-
covered that on average, DRA requires approximately 90+32
extra messages (i.e., has a message complexity of O(n)).

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces and formalizes a novel perimeter-
based data acquisition framework for mobile sensor networks,
coined SenseSwarm. SenseSwarm dynamically partitions
the sensing devices into perimeter and core nodes. Data
acquisition is scheduled at the perimeter, with the invocation
of the PA algorithm, while storage and replication takes place
at the core nodes, with the invocation of the DRA algorithm.
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Absolute Fault Tolerance
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Fig. 6. Evaluating the absolute fault-tolerance accuracy (that measures the
percentage of datums that can be recovered) for the DRA and NRA algorithms.

Our trace-driven experimentation with realistic data shows
that our framework offers tremendous energy reductions
while maintaining high data availability rates. In particular,
we found that even with 60% system failures we can recover
over 80% of generated events exactly. In the future we plan
to study other geometric shapes besides MBRs, different
sink selection strategies for in-network replication and also
techniques to incrementally maintain the perimeter rather
than reconstructing it in every iteration.
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