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Abstract—In highly interactive dynamic web database systems,
user satisfaction determines their success. In such systems, user-
requested web pages are dynamically created by executing a
number of database queries or web transactions. In this paper,
we model the interrelated transactions generating a web page
as workflows and quantify the user satisfaction by associating
dynamic web pages with soft-deadlines. Further, we model the
importance of transactions in generating a page by associating
different weights to transactions. Using this framework, system
success is measured in terms of minimizing the deviation from
the deadline (i.e., tardiness) and also minimizing the weighted
such deviation (i.e., weighted tardiness).

In order to efficiently support the materialization of dynamic
web pages, we propose ASETS∗, which is a parameter-free
adaptive scheduling algorithm that automatically adapts to, not
only system load, but also transactions’ characteristics (i.e.,
interdependencies, deadlines and weights). ASETS∗ prioritizes
the execution of transactions with the objective of minimizing
weighted tardiness. It is also capable of balancing the trade-
off between optimizing average- and worst-case performance
when needed. The performance advantages of ASETS∗ are
experimentally demonstrated.

I. INTRODUCTION

Web-database systems nowadays support the most prevail-
ing e-services ranging from e-banking and stock trading, to
e-commerce applications, to personalized news and weather
services. In these applications, user-requested web pages are
dynamically created from data in databases. Specifically, dy-
namic web pages are composed by a number of content
fragments which define both the layout of the page as well as
its content. A dynamic web page is generated by dynamically
materializing each individual fragment by accessing local and
remote databases and by executing lengthy code to produce
HTML. Often, the content of the fragments composing a
dynamic web page is interdependent, and that leads to de-
pendencies among the web transactions which materialize the
corresponding fragments. Moreover, different fragments might
have different importance in generating a page.

In such highly interactive applications, user satisfaction or
positive experience determines their success. Reportedly, more
than 20 billion dollars in revenue are lost every year due to
excessive delays in e-commerce web pages that lead clients to
quit their sessions without completing a purchase [7]. Given
the bursty and unpredictable behavior of web user populations,
it is therefore crucial for such systems to adapt and scale
automatically and efficiently to different workload’s settings,

prioritizing resources as needed in order to keep users satisfied
under varying workloads.

One way to quantify a user’s satisfaction is to associate
a dynamic web page with a soft-deadline which defines an
upper bound on the latency perceived by the end user accessing
that page. This can be extended to the fragment-level where
each content fragment in a dynamic web page is assigned
its own deadline. In either case, the assigned deadline is a
mapping from the service level agreements (SLAs) provided
by the dynamic content service provider to the end user.
Hence, the success of the system (i.e., the user satisfaction)
is better measured in terms of minimizing the deviation from
the deadline, that is, tardiness.

Unfortunately, minimizing tardiness is not a trivial goal,
especially under high loads or strict deadlines. This goal is
further complicated in the presence of dependencies between
different fragments in dynamic web pages. Moreover, a frag-
ment is often associated with some utility or weight which
represents its importance in generating a page. The presence
of these weights further adds to the complexity of the problem
where the goal should be further extended to minimize the
weighted tardiness. That is, transactions materializing more
important fragments should experience less tardiness than
those materializing less important ones.

In order for the service provider to meet its expected goals,
it often employs a transaction scheduler which prioritizes
the execution order of web transactions involved in the gen-
eration of dynamic web pages and their fragments. Toward
this, several off-the-shelf policies have been used for transac-
tion scheduling. However, these policies are either deadline-
oblivious, or dependency-oblivious, or both. For example,
the Earliest-Deadline-First (EDF) policy is often used for
scheduling transactions according to their deadlines. However,
EDF minimizes tardiness only if the system is lightly loaded
and when precedence constraints between transactions are
consistent with the transaction deadlines. This means that
a dependent transaction cannot have a deadline which is
earlier than the deadline of any transaction that precedes it.
Unfortunately, this is not always the case since the precedence
relationship between transaction does not necessarily lead to
precedence in the associated deadlines.

Shortest-Remaining-Processing-Time (SRPT) is another
policy which is often used for scheduling web transactions.
Although SRPT is known to outperform EDF under high loads,
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it performs far worse at light loads. Further, it is oblivious to
dependency and precedence constraints between transactions.

In this paper, we model the dependency between trans-
actions generating a web page as a set of workflows and
quantify the user satisfaction by associating dynamic web
pages with soft-deadlines. Further, we model importance of
transactions in generating a page by associating different
weights to transactions. Based on this model, we develop and
experimentally demonstrate the performance advantages of a
parameter-free adaptive scheduling policy, called ASETS∗, that
adapts to system load. ASETS∗ extends the ASETS policy [12]
by exploiting the dependency between web transactions in
order to minimize the perceived tardiness. It also leverages
the weight assigned to each transaction so that to maximize
the user satisfaction by minimizing weighted tardiness.

Specifically, ASETS∗ employs a novel adaptive policy that
integrates EDF with the Highest Density First (HDF) policy,
which is optimal for weighted transactions [2]. In the case
where all weights are equal, HDF reduces to SRPT and
ASETS∗ reduces to an integration of EDF and SRPT. In
the absence of precedence constraints, ASETS∗ operates at
transaction-level, while it operates at the workflow-level when
they exist. This allows ASETS∗ to dynamically adjust to the
workload and constantly minimize the perceived tardiness. In
that sense, ASETS∗ is a parameter-free adaptive policy that
adapts, not only to the system load, but also to the transaction
characteristics, and decides at which level to operate: i.e.,
transaction-level or workflow-level.

Finally, ASETS∗ is also capable of balancing the trade-off
between optimizing average-case and worst-case performance
when needed by utilizing an aging scheme that recognizes
deadlines.

Road-map: The rest of the paper is organized as follows: Sec-
tion II provides important background. The ASETS algorithm
and its extensions are motivated and explained in Section III,
and evaluated in Section IV. Section V discusses related work.
We conclude in Section VI.

II. BACKGROUND

A. System Model

Typically, dynamic web pages are composed of a number
of content fragments which define both the layout of the
page as well as its content. The content of each fragment is
materialized on the fly by dynamically executing a number
of transactions on local and remote databases. Often, the
contents of the fragments composing a dynamic web page are
interdependent which in turn leads to dependencies among
the corresponding web transactions. These dependencies are
expressed in terms of transaction workflows which specify
the relationship between the different transactions involved in
creating a web page as well as a partial order of transaction
execution. Specifically, in a workflow, if the output of trans-
action Tx is an input to transaction Ty (i.e., Tx → Ty), then
Ty is a dependent transaction where Ty depends on Tx, or
equivalently, Tx precedes Ty .

Clearly, the dependency property is transitive such that if
Tx → Ty and Ty → Tz , then Tz depends on Tx (i.e., Tx →
Tz). In general, a dependent transaction Ti might depend on a
set of one or more transactions. We call that set of transactions
the dependency list of Ti, and it is denoted as li. If li is the
empty set (i.e., li = φ), then Ti is an independent transaction.

An independent transaction is ready to be executed when-
ever it is submitted to the back-end database. On the other
hand, a dependent transaction is only ready for execution after
all the transactions in its dependency list are executed first.

In the general case, generating the dynamic content of a
single fragment Gi requires the execution of a set of dependent
and independent transactions. In this paper, for brevity and
without loss of generality, we assume that a fragment Gi

is generated by a single transaction Ti. That is, we view
that the set of transactions materializing a fragment as one
single (long) transaction Ti which performs all the tasks of the
original set of transactions and inherits all the dependencies of
the original transactions on transactions for other fragments.
We also assume that there is a single backend database from
which all fragments are generated.

Transaction Ti is partially characterized by a soft-deadline
di which is the pre-specified SLA of the corresponding frag-
ment Gi. In general, a transaction Ti is characterized by the
following parameters:

Definition 1: We define the characteristics of a transaction
Ti to be:

• Arrival Time (ai): The time when Ti has arrived at the
database system.

• Deadline (di): The ideal time by which Ti should finish
execution.

• Length (ri): The (remaining) processing time needed to
execute Ti. We assume that if caching or materialization
is utilized for fragments [8], then transactions’ lengths
are adjusted accordingly.

• Weight (wi): The weight associated with Ti, to reflect its
importance.

• Dependency List (li): The list of transactions that pre-
cede Ti. We assume this information is available to the
scheduler [10].

Given these parameters, at any given point of time, the slack
of a transaction Ti is defined as follows:

Definition 2: The slack si of a transaction Ti is the extra
amount of time Ti can wait before it has to execute in order
to meet the deadline di. Specifically, at any given time t, si =
di − (t + ri).

Given a set of interdependent transactions, a workflow is
defined with respect to the dependency lists. Specifically,
a workflow is defined for every transaction that does not
appear in any dependency list. The workflow for transaction
Ti includes all transactions that appear in li , and recursively
all transactions that appear in lj of each Tj ∈ li . Note that a
transaction can belong to more than one workflow.
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Fig. 1. System Model

The system model is illustrated in Figure 1. The upper
part of the figure shows the workflow-level, whereas the
lower part of the figure shows the transaction level. At the
workflow-level, arrows represent the dependency or prece-
dence constraints between transactions. At the transaction-
level, we illustrate the per-transaction properties listed above.

In Figure 1, we illustrate a web page with two workflows:
< Tl, Tm, Tn, To > and < Tl, Ti, Tj, Tk >. Each workflow
has at least one leaf transaction and a single root transaction.
For instance, in workflow < Tl, Tm, Tn, To >, Tl is the leaf
transaction and To is the root transaction.

In a workflow, a leaf is an independent transaction, whereas
the root is a dependent transaction. However, the root trans-
action does not precede any other transaction in the network
of workflows, i.e., a root transaction does not belong to any
dependency list li. For each transaction Ti in a workflow, the
arrival time ai and deadline di are available to the system once
the transaction Ti is submitted. The length of the transaction
ri is typically computed by the system based on previous
statistics and profiles of transaction execution.

B. Application Scenario

To illustrate the above concepts, consider a web application
which provides users with web pages that are tailored to their
interests and preferences. For instance, it provides users with
information about the stock market, traffic conditions, weather
conditions, etc. Further, assume that a user’s page contains four
fragments for stock market information which are as follows:
fragment 1: lists the prices for all stocks traded in the stock
market, fragment 2: lists the prices of all stocks in the user’s
portfolio, fragment 3: provides the current total value of the
user’s portfolio, and fragment 4: lists alerts on stocks that meet
certain conditions pre-specified by the user (e.g., the price of
a certain stock has changes by more than 5%).

Clearly, the content of each of the stock fragments is
dynamic. This requires running certain transactions against
the backend database so that to retrieve the most current data
needed for populating those fragments. Let’s assume these

transactions T1, T2, T3, and T4 where transaction Ti populates
the corresponding fragment Gi. These transactions clearly
exhibit some dependency and form a workflow. In particular,
T2 is dependent on T1 where T1 retrieves the current list of
stock prices and T2 joins that list with the list of stocks in the
user’s portfolio. Similarly, T3 is dependent on T2 where T3

runs some aggregate query on the output of T2. Similarly, T4

is dependent on T2 where T4 applies some predicates to filter
the output of T2.

In the scenario above, all transactions are submitted to
the database as the user logs onto the system. Moreover,
each transaction is associated with an SLA which reflects
its urgency. However, notice that the precedence relationship
between transaction does not necessarily imply a precedence
in the associated deadlines. This conflict between precedence
constraints and deadline constraints is easily illustrated by
considering the relationship between T4 and both T1 and T2.
While T4 (i.e., alerts) is dependent on both T1 and T2, T4

might in fact have an earlier deadline than both since a user
would most probably like to see the stock alerts first. Similarly,
the same conflict might also arise between T3 (i.e., portfolio
value) and both T1 and T2.

In addition to deadlines, each transaction Ti is also associ-
ated with a weight wi. In our example here, this weight can
reflect the subscription level of the user, for example: gold,
silver, or bronze, corresponding to how much money they paid.
It might also reflect the importance of different transactions
from the perspective of a single user. For instance, the stock
workflow might be more important to the user than the traffic
workflow, or similarly traffic might be more important than
weather conditions.

For this particular web application, as well as any other
service provider application, user satisfaction determines their
success and thus the goal is to optimize the performance for
user’s satisfaction. Transaction scheduling is one technique
for achieving that aforementioned goal. However, an efficient
transaction scheduler should consider both: 1) the transaction
properties, and 2) the relationship between different trans-
actions. In this paper, we propose such scheduling policy.
However, before delving into the details of our proposed
policy, we will first provide more insights into the desired
performance goals in a database-driven web environment.

C. Performance Goals

Ideally, the finish time fi of transaction Ti should be equal
to the sum of its arrival time ai and its length ri. However,
this will only happen if transaction Ti does not experience any
queuing delays or if it is the only transaction in the system,
which is not the norm; a transaction will typically wait for
other transactions to finish execution first, especially when the
system is under high load.

In the soft-deadline model, the system strives to finish
executing each transaction Ti before its deadline, di. However,
if Ti cannot meet its deadline, the system will still execute Ti,
but it will be “penalized” for the delay beyond the deadline
di. This delay is known as tardiness and is defined as follows:
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Definition 3: Transaction tardiness, ti, for transaction Ti is
the total amount of time spent by Ti in the system beyond
its deadline di. That is, ti = 0 iff fi ≤ di, and ti = fi − di

otherwise.

Similarly, the overall system performance is measured in
terms of average tardiness which is defined as follows:

Definition 4: The average tardiness for N transactions is:
1
N

∑N
i=1 ti.

In the case where transactions are associated with weights,
the system performance is naturally measured using weighted
tardiness which is defined as:

Definition 5: The average weighted tardiness for N trans-
actions is: 1

N

∑N
i=1 (tiwi).

Web-databases typically employ a transaction scheduler
which decides the execution order of transactions. One com-
mon and natural class of scheduling policies are called pri-
ority based policies. In a priority based policy, priority Pi

is assigned to each transaction Ti, and the highest priority
transaction is always executed first. Different schedulers con-
sider different parameters for computing the priority Pi. For
example, EDF uses 1/di as the priority, while HDF uses
wi/ri as the priority. In the next sections, we describe these
well known policies for transaction scheduling, as well as our
proposed ASETS∗ policy.

III. ASETS∗

In this section, we introduce ASETS∗, our proposed schedul-
ing algorithm. For clarity of presentation, we first describe
ASETS∗ for scheduling independent transactions in Section
III-A. Next, we extend ASETS∗ to schedule dependent transac-
tions with precedence constraints in Section III-B and present
the general case of ASETS∗ for scheduling dependent trans-
actions with associated weights in Section III-C. Finally, we
show how ASETS∗ can balance the trade off between average-
and worst-case performance in Section III-D.

A. Scheduling at the Transaction-Level

Before introducing ASETS,∗ we illustrate the trade off
between EDF and SRPT that motivated our work.

1) EDF vs SRPT: Earliest Deadline First (EDF), and Short-
est Remaining Processing Time (SRPT) are two promising
policies that have been proposed for minimizing average
tardiness. Specifically, under EDF, a transaction with an early
deadline receives a higher priority, whereas under SRPT, a
transaction with a shorter processing time is the one which
receives higher priority.

EDF guarantees that all jobs will meet their deadlines if the
system is not over-utilized. As such, the tardiness of the system
is expected to be zero since all the transactions meet their
deadlines. When the system is over-utilized, it is impossible
to finish all transactions by the specified deadlines. So some
transactions will experience tardiness. Using an EDF scheduler
in such high-load situations will have a substantial negative

d1 d2

EDF

SRPT

r1

r2

r1 r2

r1r2

T1
T2

t1

t2

(a)

r1

r2

r1 r2

r1r2

T1
T2

d1 d2

t2

t1

EDF

SRPT

(b)

t1

Fig. 2. EDF vs SRPT scheduling: (a) A case when EDF outperforms SRPT,
(b) A case when SRPT outperforms EDF

impact on the overall tardiness. This negative impact is known
as the domino effect where transactions keep missing their
deadlines in a cascaded fashion. The cause of the domino
effect is that EDF might give high priority to a transaction
with an early deadline that it has already missed, instead of
scheduling another one which has a later deadline that could
still be met. As a result, both transactions will miss their
deadlines and accumulate tardiness.

In contrast to EDF, SRPT is the best policy to use when
all transactions have already missed their deadlines. This is
because the problem of minimizing tardiness in this case is
the same as the problem of minimizing response time, for
which SRPT has been shown to be the optimal policy [11].
However, in the case when there are transactions that have not
missed their deadline yet, SRPT might run into the problem of
assigning a high priority to a short transaction that has a long
deadline instead of scheduling another one which is relatively
longer but its deadline is imminent.

Example 1: To further illustrate the difference between the
two policies, consider the example in Figure 2. The figure
shows two sets of transactions T1 and T2 with deadlines d1

and d2, and processing times r1 and r2, respectively.
In Figure 2(a), the tardiness of running the transactions

using the EDF policy (= t2) is less than that of using the SRPT
policy (= t1). The reason for SRPT’s higher tardiness is giving
higher priority to T2 which has the shorter processing time (r2)
but a longer deadline (d2). For the other set of transactions in
Figure 2(b), EDF provides higher tardiness (= t1+t2). This is
because it scheduled T1 first which is already past its deadline
leading to missing T2’s deadline as well.

As it is obvious from this example, there is no clear best
policy for scheduling transactions with deadlines that mini-
mizes tardiness under all workloads. Generally speaking, EDF
performs well at low utilization, whereas at high utilization,
SRPT performs better than EDF.

One possibility is to select the policy dynamically based
on the load of the system. However, measuring the load with
reasonable accuracy may require non-trivial resources. More
importantly, when jobs have deadlines, measuring the load
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Fig. 3. ASETS: Deciding which Transaction to execute next

does not only involve considering the processing requirements
of the transactions, but also the relationships between process-
ing times and deadlines. For example, a batch of transactions
with very low processing requirements but very tight deadlines
will lead to an overloaded condition.

2) The ASETS∗ Policy: We propose a hybrid policy for
transaction scheduling called Adaptive SRPT EDF Transaction
Scheduling (ASETS) [12]. ASETS is the core of ASETS∗ which
is a parameter-free adaptive policy that integrates the advan-
tages of both the SRPT and EDF policies and automatically
adapts to system load.

Under ASETS∗, the scheduler maintains two priority lists.
In the first list, called EDF-List, transactions are ordered
according to their deadlines as in the EDF scheduling policy.
That is the priority of each transaction in EDF-List is pi =
1/di. In the second list, called SRPT-List, transactions are
ordered according to their remaining processing time as in the
SRPT scheduling policy. That is the priority of each transaction
in SRPT-List is pi = 1/ri.

The first list, EDF-List, contains all transactions that can
still make their deadlines, if they start execution right now.

Definition 6: A transaction Ti with deadline di is included
in EDF-List iff, t + ri ≤ di, where t is the current time.

The second list, SRPT-List, contains all transactions that
already missed their deadlines.

Definition 7: A transaction Ti with deadline di is included
in SRPT-List iff, t + ri > di, where t is the current time.

Notice that each transaction starts in the EDF-List then
it might move to the SRPT-List if it misses its deadline
while waiting in the EDF-List. Given the above two lists,
at each scheduling point ASETS∗ selects for execution either
the transaction at the top of EDF-List or the one at the
top of SRPT-List. For convenience, we will call these two
transactions: T1,EDF and T1,SRPT , respectively.

Fig. 4. Example where T1,SRPT wins: (a) Top of EDF-List, (b) Top of
SRPT-List, (c) Negative impact of running T1,EDF first and (d) Negative
impact of running T1,SRPT first

To decide between T1,EDF and T1,SRPT , given their re-
maining processing and slack times, ASETS∗ utilizes a simple
greedy heuristic under, scheduling T1,EDF for execution if:

r1,EDF < r1,SRPT − s1,EDF , (1)

otherwise, T1,SRPT is the one scheduled for execution.
The premise underlying this heuristic is to schedule the

transaction with the least “negative” impact on the total tar-
diness. In particular, if T1,EDF is scheduled first, its negative
impact is to increase T1,SRPT ’s tardiness by r1,EDF . On the
other hand, if T1,SRPT is scheduled first, its negative impact is
to increase T1,EDF ’s tardiness by r1,SRPT minus the amount
of slack s1,EDF that T1,EDF currently has, as illustrated in
Figure 3.

To make it clearer, if the system has only these two
transactions (T1,SRPT , T1,EDF ), whichever order will lead
to a minimal tardiness is the order that ASETS∗ follows. In
other words, the top transaction on SRPT-List (T1,SRPT ) will
be selected if the transaction on top of EDF-List (T1,EDF )
can still meet the deadline if it ran right after T1,SRPT .
Otherwise, the top transaction on EDF-List will be selected
to run first. Next we provide two examples of T1,EDF and
T1,SRPT transactions, where T1,SRPT is selected to run first
in one example, while T1,EDF is selected to run first in the
second example.

Example 2: Figure 4 illustrates an example where the
negative impact of running T1,SRPT is less than the negative
impact of running T1,EDF first. The parameters of T1,SRPT

are: remaining processing time r1,SRPT = 3 and deadline
d1,SRPT = 3 − ε; where ε is infinitely small, while those of
T1,EDF are: remaining processing time r1,SRPT = 5, deadline
d1,SRPT = 7, and slack s1,EDF = 2.

In Figure 4(c), clearly, if T1,SRPT runs now, it will be tardy.
So, the negative impact of running T1,EDF before T1,SRPT

is to increase the tardiness by at least r1,EDF = 5. On the
other hand, running T1,SRPT first as shown in Figure 4(d),
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Fig. 5. Example where T1,EDF wins: (a) Top of EDF-List, (b) Top of
SRPT-List, (c) Negative impact of running T1,EDF first and (d) Negative
impact of running T1,SRPT first

will increase the tardiness by r1,SRPT minus whatever slack
T1,EDF has, that is to say the negative impact of running
T1,SRPT first equals to r1,SRPT −s1,EDF = 3−2 = 1. Thus,
the ASETS∗ will chose to run T1,SRPT first.

Example 3: Figure 5 shows another example for the case
when ASETS∗ will chose to run T1,EDF before T1,SRPT . The
values of the transaction parameters are shown in the figure.
Note that the difference between this example and the previous
example - where T1,SRPT got to run first- is in the parameters
of T1,EDF . In the first case, T1,EDF had some slack to
accommodate running T1,SRPT which is already tardy, while
in this example s1,EDF = 0; i.e., it can not accommodate to
let T1,SRPT run first.

Discussion: Notice that in the extreme case where all trans-
actions are past their deadlines, ASETS∗ is basically equivalent
to SRPT. In the other extreme case where all transactions
can meet their deadlines, then ASETS∗ behaves like EDF. In
the general case, where there is a mix of transactions that
have passed their deadlines and others that can still meet
their deadlines, the ASETS∗ policy employs both SRPT and
EDF. This allows our proposed hybrid policy, ASETS∗, to
outperform SRPT and EDF as it is experimentally shown in
the next section.

ASETS∗ needs only to be invoked in response to two types
of events, the arrival and the completion of a transaction. We
can use the standard balanced binary search tree as the priority
queue, which requires only a time of O(logN) to update the
priority lists. As such, ASETS∗ scales in a similar manner as
EDF and SRPT.

B. Scheduling at the Workflow-Level

In this section, we introduce the dependency-aware ASETS∗

algorithm which operates at the workflow-level, i.e., when
dependency constraints among transactions exist. In Section
III-C, we extend the basic dependency-aware ASETS∗ to
consider the case where transactions are assigned different
weights.

In order to accommodate dependency between transactions
in a workflow, a simple yet naive way to extend ASETS∗ is
to add a third Wait queue in addition to the EDF-List and
the SRPT-List. A transaction Ti is added to the Wait queue if
it is still waiting for the execution of one the transactions
that precede it (i.e., li �= φ). The rest of the transactions
that are ready to execute are placed normally either in the
EDF-List or SRPT-List. Under this approach, which we call
Ready, a transaction Ti would move from the Wait queue to
the appropriate queue, i.e., EDF-List or SRPT-List, once all
the transactions in its dependency list li finish execution.

Under the Ready approach, the scheduler is oblivious to any
information on the dependent transactions which are concealed
in the Wait queue. This leads to partially-informed scheduling
decisions which are merely based on the transactions in both
the EDF-List and SRPT-List. However, the Wait queue might
contain a valuable transaction with an urgent deadline and/or
high utility which ideally should be leveraged to boost the
priority of those transactions which precede it in the workflow.

Toward a well-informed scheduling decision in the presence
of dependency, transactions in the EDF-List and SRPT-List
should inherit the most valuable characteristics of transactions
in their respective workflows. To achieve this, we extend
ASETS∗ so that it considers workflows rather than transactions.
Specifically, at each scheduling point, for a workflow KA,
we make the distinction between the following two special
transactions:

Definition 8: The Head Transaction (Thead,A): is a transac-
tion that belongs to workflow KA and is ready for execution
(i.e., lhead,A = ∅).

In other words, the head transaction is the first transaction
in the workflow which is ready for execution. This is either
because it initially had an empty dependency list or because
all the transactions on its dependency list have been executed.
The head transaction of the workflow changes over time.

Definition 9: The Representative Transaction (Trep,A): is
a virtual transaction which captures the properties of the
remaining transactions in workflow KA.

A representative transaction Trep,A is characterized by the
following parameters:

• Deadline (drep,A): The minimum (earliest) deadline
among all the remaining transactions in KA.

• Remaining Processing Time (rrep,A): The minimum re-
maining processing time among all the pending transac-
tions in KA.

• Weight (wrep,A): The maximum weight among all the
remaining transactions in KA.

The representative transaction allows ASETS∗ to see beyond
the EDF-List and SRPT-List into the Wait queue. This allows
ASETS∗ to recognize any valuable dependent transactions
and in turn adjust the priority of its corresponding head
transaction. In particular, ASETS∗ decides if a workflow KA

should be placed in the EDF-List or the SRPT-List according
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Fig. 6. Example of dependency: (a) Top of EDF-List and (b) Top of SRPT-
List

to its corresponding representative transaction Trep,A, where
a workflow KA is placed in EDF-List iff Trep,A can still meet
the deadline if it starts execution now. Otherwise, it is placed
in the SRPT-List. Formally, a workflow KA is placed in the
EDF-List iff t + rrep,A ≤ drep,A, where t is the current time,
rrep,A is the processing time of the representative transaction
of workflow KA, and drep,A is its deadline. Otherwise, KA is
inserted in the SRPT-List. Moreover, the EDF-List and SRPT-
List are sorted based on the representative deadline drep,A and
the representative processing time rrep,A, respectively.

In order to decide which transaction to run, we consider the
negative impact of the head transaction of the workflow at the
top of EDF-List (say KA) and that of the workflow at the top
of SRPT-List (say KB).

In general, the negative impact of running workflow KA on
workflow KB is calculated as the negative impact of running
the head transaction of KA (Thead,A) on the representative
transaction of KB (Trep,B). The intuition behind that is that
the representative transaction represents the most important
transactions in a workflow, while the transaction that will
actually get to run is the head transaction. Clearly running
the head transaction of workflow KA has negative impact on
all transactions of workflow KB . However, the representative
transaction, could be used to represent (or estimate) the
maximum negative impact on the workflow. More precisely,
the negative impact of running workflow KA before workflow
KB is to increase the tardiness of the representative transaction
of B (i.e., Trep,B) by rhead,A minus whatever slack Trep,B

has. Thus, workflow KA runs first iff rhead,A − srep,B ≤
rhead,B − srep,A.

Example 4: Let KA and KB be the two winner workflows
of EDF-List and SRPT-List, respectively, as illustrated in
Figure 6. Both KA and KB consist of two transactions.
The figure shows the deadline and the remaining processing
time values of each transaction. As shown in the figure, the
head transactions of KA and KB are Thead,A and Thead,B ,
respectively. Also the representative transactions of A and B

1: Input: A set of transactions with precedence constraints
and different weights

2: Output: The id of the transaction to run until next schedul-
ing point

3: BEGIN
4: for all newly arrived transactions Ti do
5: for all Workflows Ai that Ti belongs to do
6: Adjust Ai’s parameters (if needed) and place it in

the appropriate queue (EDF-List or HDF-List).
7: end for
8: end for
9: WF1,EDF ← Top(EDF-List)

10: T1,EDF,h ← Head(WF1,EDF )
11: T1,EDF,r ← Representative(WF1,EDF )
12: WF1,HDF ← Top(HDF-List)
13: T1,HDF,h ← Head(WF1,HDF )
14: T1,HDF,r ← Representative(WF1,HDF )
15: negative-impact of WF1,EDF ← (r1,EDF,h ∗ w1,HDF )
16: negative-impact of WF1,HDF ← ((r1,HDF,h −

s1,EDF,r) ∗ w1,EDF )
17: if negative-impact of WF1,EDF < negative-impact of

WF1,HDF then
18: return id of T1,EDF,h

19: else
20: return id of T1,HDF,h

21: end if
22: END

Fig. 7. The ASETS∗ Algorithm

are Trep,A and Trep,B , respectively. Thus, the negative impact
of running KA first is calculated as: rhead,A−srep,B = 2−2 =
0. That is, the processing time of Thead,A minus the slack of
Trep,B . On the other hand, the negative impact of running KB

first is calculated as: rhead,B −srep,A = 3−0 = 3. Thus, KA

gets to run first, which means that Thead,A is to run until it
finishes execution, or a new transaction arrives in the system.

C. ASETS∗: The General Case

In this section, we generalize the ASETS∗ policy to handle
the general case where transactions are assigned independent
weights.

As discussed in Section II-B, some transactions might be
more important than others from the users’ perspective. Thus,
when transactions are assigned different weights, the right
performance metric becomes the average weighted tardiness
and the objective is then to minimize the average weighted
tardiness, as defined in Definition 5.

Recall that ASETS∗ is essentially a hybrid policy between
EDF and SRPT policies. However, this is the case when all
transactions are equally weighted. The first question then is:
what is the natural extension of EDF and SRPT whenever
transactions are assigned different weights? In the extreme
case under high system utilization, when all transactions have
already missed their deadlines, the Highest Density First
(HDF) policy is known to be optimal [2]. HDF assigns a
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priority to each transaction that equals to its weight divided by
its remaining processing time, that is pi = wi/ri. Given this
priority assignment, if all weights are equal, HDF reduces to
SRPT. On the other hand, if all transactions can still meet the
deadline, EDF is still the optimal policy. Because there is no
tardiness at all, the weight does not play any role, since the
final average weighted tardiness is zero.

Thus, in the general case, ASETS∗ is a hybrid policy that
integrates EDF and HDF. It reduces to an integration of
EDF and SRPT in the case where all weights are equal. In
that sense, ASETS∗ is a parameter-free adaptive policy that
adapts, not only to the system load, but also to the transaction
characteristics, and decides at which level to operate: i.e.,
transaction-level or workflow-level.

The general ASETS∗ policy employs two lists: the EDF-
List and the HDF-List (which reduces to SRPT-List in case all
weights are equal). The representative transaction is used as
described in Section III-B to determine whether a workflow
belongs to the EDF-List or to the HDF-List.

In the general ASETS∗ policy, the heuristic for deciding
which winner to run is modified to reflect the fact that trans-
actions are of different weights. Specifically, we need to scale
the magnitude of the negative impact incurred by a workflow
KA by the weight of that workflow (i.e., wrep,A). Thus, we
calculate the negative impact as before, then multiply it by
the weight of the workflow, where the workflow inherits the
maximum weight of its transactions. The algorithm pseudo-
code is illustrated in Figure 7. In the Figure, the Head()
function takes a workflow reference as an input and returns the
Head transaction of that workflow, while Representative()
function takes a workflow reference as input and returns the
representative transaction.

D. Balancing the Trade-off between Average- and Worst-case
Performance

Some applications might require the scheduling policy to
balance the trade-off between average- and worst-case perfor-
mance. For such applications, ASETS∗ can be easily modified
to achieve that required balance. In particular, SRPT suffers
from starvation. Starvation can be handled using an aging
scheme that schedules the longest transaction after some time.
However, in our case, there is a natural aging scheme captured
by the missed deadline. That is, the oldest transaction is the
one that has the earliest deadline. Hence, our simple balance-
aware ASETS∗ would periodically run the transaction with
the highest weight to deadline ratio which we call Told . By
running Told , probably earlier than when it is scheduled to
run according to ASETS∗, we minimize the starvation of
high utility transactions and in turn improve the worst-case
performance. However, this is expected to come at the expense
of an increase in the overall average weighted tardiness (i.e.,
average-case performance). To balance the trade-off between
the average- and worst-case performance, the frequency of
selecting and running Told is controlled via an activation rate
parameter.

Parameter Meaning Value
li transaction

length
Zipf(α) over [1 - 50]

α skewness of
job length
distribution

0.5

k slack factor [0.0 - kmax]
ai arrival time Poisson process

with arrival rate =
SystemUtilization

AvgTransactionLength

SystemUtilization [0.1 - 1.0]
Weight [1 - 10]

TABLE I

SUMMARY OF EXPERIMENTAL PARAMETERS

In this paper, we distinguish two possible types of activation
rates: time-based and count-based. Using the time-based acti-
vation rate means that every P t time units, a Told transaction
is selected and executed. While using the count-based period
means that a Told transaction runs every P c scheduling points.
In Section IV-F we study how this balance-aware ASETS∗

performs for different values of the activation rate parameter.

IV. PERFORMANCE EVALUATION

We have conducted multiple experiments to evaluate the
performance of our proposed scheduling policies. We describe
the settings for these experiments in Section IV-A and the
experimental results in Section IV-B.

A. Experimental Setup

Testbed: We created an RTDBMS simulator using C++.
The simulator takes as input the system parameters, and gen-
erates the workload based on these parameters. The workload
is a set of transaction properties; i.e., processing requirements,
deadlines, dependencies, etc. We conducted several experi-
ments to evaluate the performance of our proposed policies
and compare them to other policies that were all implemented
in our developed simulator.

Policies: At transaction level, we compared the ASETS∗

policy against the previously described EDF and SRPT poli-
cies. For completeness, we have also compared it against the
traditional First Come First Served (FCFS) and the Least Slack
(LS) policy [1], where under LS, the priority of transaction
Ti is set to 1/si. At the workflow level, when all weights
are equal, we compared ASETS∗ against Ready described in
Section III-B.

As for ASETS∗ in the general case, i.e., at the workflow level
when weights are different, we compared ASETS∗ against EDF
and HDF. We finally demonstrate the worst- and average-case
performance of the balance-aware ASETS∗, which balances the
trade-off between the worst- and average-case performance.

Transactions/Queries: We created a transaction workload
similar to those in [5], [1]. Specifically, we generated 1000
transactions where the transaction length li is generated ac-
cording to a Zipf distribution over the range [1–50] time units
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with the default Zipf parameter for skewness (α) set to 0.5
and it is skewed toward short transactions.

Workload: Transactions were generated first as described
above, then based on a desired system utilization; arrival times
of transactions were assigned according to a Poisson process.
The arrival rate of the Poisson distribution is set equal to
SystemUtilization ÷ AvgTransactionLength, where
SystemUtilization is a simulation parameter that takes the
values 0.1, 0.2, 0.3, ... 1.0 .

Deadlines: Each transaction is assigned a deadline di =
ai + li + ki × li where ki is a factor that determines the ratio
between the initial slack time of a transaction and its length.
ki is generated uniformly over the range [0.0–kmax], where
kmax is a simulation parameter with default value of 3.0.

Workflows: We generated workflows using two parame-
ters: the maximum workflow length and the maximum number
of workflows. The maximum workflow length sets an upper
bound on how long the workflow could be. The maximum
number of workflows sets an upper bound on the number
of workflows a transaction might belongs to at one time.
The actual workflow length, and number of workflows are
uniformly drawn between one and the corresponding upper
bound. We varied the maximum workflow length from three
to ten, and varied the maximum number of workflows from
one to ten.

Weights: Each transaction is assigned a weight randomly
drawn between one and ten.

The values of performance metrics reported in the next
section (i.e., average-tardiness, average weighted-tardiness and
maximum weighted-tardiness) are the averages of five runs
for each experiment setting. We have conducted multiple
experiments to examine all possible parameters values that
are summarized in Table IV-A. In all our experiments, ASETS∗

policy significantly outperformed the other scheduling policies
and exhibited the same performance as the sample of repre-
sentative results presented below.

B. Experimental Results

We first present the performance evaluation of ASETS∗

at the transaction level (Section IV-C). Then, Section IV-
D presents the evaluation of ASETS∗ at the workflow level
while all weights are equal. The evaluation of ASETS∗ in the
general case is given in Section IV-E. Finally, the evaluation
of balance-aware ASETS∗ is demonstrated in Section IV-F.

C. ASETS∗ at the Transaction Level

In our first experiment, we measured the average tardiness
for the five scheduling policies mentioned above as the system
utilization increases from 0.1 to 1.0, with Zipf’s parameter
α = 0.5 and kmax = 3.0.

The results for that experiment setting are shown in Figures
8 and 9. Figure 8 shows the average tardiness at low utilization
while Figure 9 shows the average tardiness at high utilization
(we split the utilization across two figures to zoom in for better
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Fig. 9. Avg Tardiness under High System Utilization (α = 0.5)

understanding of the system behavior). Specifically, at low
utilization (Figure 8), the system is able to meet most of the
deadlines, and hence, EDF performs better than SRPT. As the
utilization grows, the system cannot meet all the deadlines,
and SRPT starts to approach EDF until it outperforms it at
utilization 0.6.

ASETS∗ on the other hand, outperforms both EDF and
SRPT for all values of utilization. Notice that the maximum
improvements provided by ASETS∗ is around the cross-over
point between EDF and SRPT where it reduces the average
tardiness by up to 30%. This is further illustrated in Figure 10,
where we plot the average tardiness of ASETS∗ normalized to
that of EDF as well as SRPT.

Figure 10 also shows that ASETS∗ outperforms EDF even
at very low utilization values. The reason is that though
the overall average utilization is low, there are still intervals
where the utilization increases significantly above the average
due to the fact that we are using Poisson arrivals. At those
high utilization intervals, ASETS∗ automatically incorporates
some SRPT scheduling to avoid the domino effect of EDF.
Similarly, at high utilization, ASETS∗ outperforms SRPT as it
incorporates some EDF scheduling as needed.

The next set of results shows the performance of our
proposed algorithm under different deadline settings. Specif-
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Fig. 11. Normalized Average Tardiness (kmax = 1)

ically, we compared the performance of ASETS∗ to SRPT
and EDF under different values of kmax. Figures 11, 12,
and 13 show the results for kmax values of 1, 2, and 4,
respectively. These are in addition to the results of kmax = 3
presented above in Figure 10. These results show that ASETS∗

constantly outperforms the other two algorithms under the
different settings, with the maximum gain be at the cross-
over area. It is also interesting to notice that the cross-over
point moves further to the right (i.e., higher utilization) as we
increase the value of kmax. The reason is that the more loose
the deadlines are (larger kmax) the more chances EDF has to
catch up if it missed deadlines. Hence, EDF can cope with
higher utilization and outperforms SRPT for a longer range of
utilization.

Finally, we examined the performance of ASETS∗ under
different transaction length distribution skewness, while fixing
the deadline slackness parameter kmax = 3.0. Specifically
we changed the Zipf skewness parameter α. We omit the
plots here due to space limitations. We encountered the same
behavior that ASETS∗ constantly outperforms both SRPT and
EDF under all utilizations. We also observed that the more
skewed the transaction length distribution, the earlier (i.e.,
at lower utilization) the cross-over point between EDF and
SRPT. This is because the deadline is relative to the transaction
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Fig. 12. Normalized Average Tardiness (kmax = 2)

Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 T
ar

di
ne

ss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ASETS* vs EDF
ASETS* vs SRPT

Fig. 13. Normalized Average Tardiness (kmax = 4)

length. Thus, the more skewed the distribution of transaction
lengths, the tighter the deadlines, which leads to a higher level
of system utilization, and this lets SRPT take the lead earlier.

D. ASETS∗ at the Workflow Level

In this section, we present a sample of the results evaluating
the performance of ASETS∗. In Figure 14, we compare the
average tardiness of ASETS∗ to that of Ready. The results show
that ASETS∗ outperforms Ready by improving the average
tardiness between 28% and 57%. In this experiment, the
maximum number of workflows was set to one. Similarly,
maximum workflow length was set to five in this experiment.

We also conducted several experiments with different values
for the maximum workflow length and maximum number of
workflows. In all cases we found similar and even better per-
formance than the presented sample, i.e., ASETS∗ outperforms
Ready under all cases. The percentage improvement in average
tardiness was 44% on average.

E. ASETS∗: the General Case

In this section, we demonstrate the performance of ASETS∗

in the general case. Recall from Section III-C that ASETS∗

handles the case when both precedence constraints exist, and
each transaction is assigned a weight. The objective here
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Fig. 15. Average Weighted Tardiness of ASETS∗: The General Case

is to minimize the weighted average tardiness as defined in
Section III-C.

In Figure 15, the average tardiness of ASETS∗ is compared
to that of EDF and HDF. EDF is handling low system
utilization better, while HDF is the optimal policy under high
system utilization. As can be seen from the figure, ASETS∗

outperforms both EDF and HDF under all system utilization,
combining the advantages of both algorithms (as was the case
for ASETS∗ compared to EDF and SRPT).

F. ASETS∗: Balance-aware

Finally, we show the trade-off between worst- and average-
case performance of ASETS∗ (balance-aware). Note that
ASETS∗ here is working at the workflow level, with different
weights being assigned to the transactions. We ran this ex-
periment for different activation rate values. We changed the
time-based activation rate from 0.002 to 0.01, and the count-
based activation rate from 0.02 to 0.1. Same behavior was
obtained in both cases, we present here the time-based case
only to avoid repetition.

Figure 16 shows the maximum weighted tardiness of
ASETS∗ (balance-aware) in comparison to that of ASETS∗. The
maximum weighted tardiness reflects the worst-case perfor-
mance. We plot different values as the activation rate increases.
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Fig. 17. Average Weighted Tardiness of ASETS∗ (balance-aware)

We see that ASETS∗ (balance-aware) decreases the maximum
weighted average tardiness over ASETS∗. As expected, the
improvement increases as the activation rate increases.

Clearly the reason behind this behavior is that the lower
the activation rate, the less number of transactions that get to
run out of ASETS∗ order. Thus, the worst case performance is
closer to that of ASETS∗, while it deviates (improves) as the
activation rate increases.

On the other hand, Figure 17 shows the average weighted
tardiness of ASETS∗ (balance-aware) and that of ASETS∗ for
the same activation rate variation. Again, as expected, balance-
aware ASETS∗ increases the average weighted tardiness, and
the gap increases as the activation-rate increases. However,
the increase is up to 5% (at activation-rate of 0.01) while the
improvement in the maximum weighted tardiness is up to 27%
at same activation rate, with the minimum improvement 7%.

V. RELATED WORK

Our proposed novel parameter-free adaptive scheduling pol-
icy for web-transactions builds on previous work on Web-
Databases and Real-Time scheduling. In this section, we
review this work and contrast it with ours.

Previous research efforts have proposed several hybrid ap-
proaches for scheduling web-requests and real-time transac-
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tions (e.g., [13], [3], [5], [6], [4]). However, these approaches
have mainly focused on maximizing the hit-ratio (i.e., the num-
ber of transactions that meet their deadlines) or maximizing the
system gain when each transaction is associated with a value,
which could represent the popularity of a web-page. Below,
we discuss some of these hybrid approaches since they share
some features with our proposed ASETS∗ policy.

For instance, the work in [3] studies the performance of
algorithms that use deadlines only, values only, or a mix of
both in assigning transaction priorities. Specifically, it studies
the Highest Value First (HVF) and the Highest Density First
(HDF) policies. It also proposes a hybrid policy called MIX
which uses a linear combination between the value and the
absolute deadline in order to maximize the hit-ratio. Although
it seems similar to our proposed ASETS∗, there are two main
distinctions. First, ASETS∗ automatically adapts to different
workloads, switching between HDF and EDF while MIX
statically combines both of them using a system parameter.
Second, ASETS∗ optimizes for average weighted tardiness,
while MIX optimizes for Hit-Value Ratio.

Also, toward maximizing the hit-ratio, the work in [5]
proposes a hybrid algorithm to schedule real-time transactions.
The algorithm divides transactions into two sets, one to be
scheduled using EDF, and another to be scheduled randomly
where the size of each list is determined based on feedback
of the achieved hit-ratio. The work in [5] further extends
the proposed approach to maximize system gain (weighted
hit-ratio) when transactions are associated with values. In
[4], another hybrid approach is proposed to schedule web-
broadcasts. [4] proposes MIA which is a hybrid approach
between SRPT and EDF that also considers the popularity of
broadcast items to maximize the total system gain.

Scheduling real-time transactions under precedence con-
straints (i.e., at the workflow level) was studied in [13]. It was
shown in [13] that EDF is optimal if precedence constraints are
consistent. They also provided general necessary and sufficient
conditions for scheduling under precedence constraints.

Previous work has also studied the interaction between
transaction scheduling and concurrency control as in [9] while
ASETS∗ assumes query-transactions only. Also the trade-off
between QoS and QoD was studied in [7]. ASETS∗ captures
this trade-off by optimizing for weighted average-tardiness.

VI. CONCLUSIONS

This work was motivated by the need for an adaptive
parameter-free scheduling policy that automatically adapts to
different load settings for web-databases. In this paper we
modeled the interrelated transactions generating a web page
as workflows and quantified user satisfaction by associating
dynamic web pages with soft-deadlines. Further, we modeled
importance of transactions in generating a web page by asso-
ciating different weights to transactions. Finally, we proposed
a new scheduling algorithm called ASETS∗. ASETS∗ is a
parameter-free adaptive scheduling algorithm which integrates
EDF and HDF/SRPT. ASETS∗ prioritizes the execution of
web-transactions with the objective of minimizing weighted

tardiness. Also, we demonstrated how ASETS∗ is capable
of balancing the trade-off between optimizing average- and
worst-case performance.

We evaluated ASETS∗ at the different operation levels ex-
perimentally and showed that our proposed policy significantly
outperforms the best known scheduling policies in terms of
average tardiness or average weighted tardiness by up to 57%.
Further, we showed that the balance-aware ASETS∗ policy
improves the worst-case performance by up to 27% at the
expense of increasing the average case performance by 5% at
maximum, which demonstrates the trade-off between worst-
case and average-case performance.

In conclusion, it should be noted that ASETS∗ and its
extensions are not limited to web-databases, but they could
be applied in any Real-Time system with soft-deadlines where
minimizing tardiness is the right metric.
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