1084-4627/09 $25.00 © 2009 IEEE
DOI 10.1109/ICDE.2009.54

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:59:23 UTC from |IEEE Xplore. Restrictions apply.

IEEE International Conference on Data Engineering

KSpot: Effectively Monitoring the K Most
Important Events in a Wireless Sensor Network

Panayiotis Andreou?, Demetrios Zeinalipour-Yazti*, Martha Vassiliadou”, Panos K. Chrysanthis?, George Samaras#

# Department of Computer Science , University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
* Pure and Applied Sciences, Open University of Cyprus, P.O. Box 24801, 1304 Nicosia, Cyprus
! Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
p-andreou@cs.ucy.ac.cy, zeinalipour@ouc.ac.cy, cs04mv1 @ucy.ac.cy, panos @cs.pitt.edu, cssamara@cs.ucy.ac.cy

Abstract— This demo presents a graphical user interface and
ranking system, coined KSpot, for effectively monitoring the
K highest-ranked answers to a query () in a Wireless Sensor
Network. KSpot deploys state-of-the-art distributed Top-k query
processing algorithms in order to realize both snapshot queries
and historic queries minimizing the consumption of system
resources and prolonging the lifetime of the deployed sensor
network. Additionally, KSpot is user-friendly and customizable
featuring an intuitive user interface that enables a user to express
declarative SQL-like queries over any ad-hoc scenario and to
display the results graphically as opposed to the traditional
tabular representation.

To demonstrate the applicability of our system during the
conference, we will continuously identify the K conference rooms
with the highest sound level and display them such that confer-
ence attendees will be able to quickly determine the rooms with
the most active discussions. The demo will also allow attendees
to customize the system by changing the target scenario (e.g.,
by adapting the K value, the sensed parameter, etc.). Finally, we
will present KSpot’s system panel which continuously displays
the savings in energy and messages that our system yields.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) is an innovative technol-
ogy that enables users to monitor and study the physical world
at an extremely high resolution. Numerous applications have
already emerged in environmental and habitant monitoring [1],
[2], structural monitoring [3] and urban monitoring [4]. Query
processing in such ad-hoc environments is a challenging task
due to the complexities imposed by the inherent energy and
communication constraints [5], [6], [7], [8]. To this end, the
research community has proposed to take into account user-
defined parameters in order to derive the K most relevant (or
Top-K) answers quickly and efficiently. A Top-K query returns
the subset of most relevant answers, in place of all answers, for
two reasons: i) to minimize the cost metric that is associated
with the retrieval of all answers; and ii) to improve the recall
and the precision of the answer set, such that the user is
not overwhelmed with irrelevant results. Top-K Queries can
support a wide range of applications in the below categories:

i. Snapshot Top-K Queries: These refer to the current

readings of the sensor devices. An instance in this
category is a query of the type: “Find the K nodes

1503

with the highest temperature”, or a K-Nearest Neighbor
snapshot query of the type: “Find the K closest rangers
to the fire”, or finally a continuous snapshot query of the
type: “For the next one hour continuously report the K
rooms with the highest average temperature”.

ii. Historic Top-K Queries: These refer to historic data
that is buffered locally on each sensor. Since a sensor
has limited storage capacity it can conduct the buffering
in a sliding window fashion either in main memory, for
devices with adequate SRAM such as the IMote2 [9], or
on secondary memory [10]. An instance in this category
is a query of the type: “Find the K time instances
with the highest average temperature during the last 3
months”, or a spatio-temporal query of the type: “Find
the K zebras with the most similar trajectories to zebra

For ease of exposition, let us consider the scenario in

Figure 1 where we illustrate a deployment of 9 sensors in
a 4-room building. Also, let us assume a continuous snapshot
query that aims to discover the average sound level (as a
percentage) of the k=1 rooms every one minute. In particular,
such a query can be expressed in an SQL-like syntax as
follows:

SELECT TOP 1 roomid, AVERAGE (sound)
FROM sensors

GROUP BY roomid

EPOCH DURATION 1 min

Using the logic of the TAG in-network aggregation ap-
proach [11] utilized in the TinyDB system [5], each node
could forward tuples of the form (roomid, sum, count) to
its parent every one minute. One could then easily implement
a new top-k operator at the sink (querying node) that would
derive the correct answers in a centralized manner by pruning
the answer-space (although none of the existing systems
currently supports this feature). Even if such a technique was
readily available, it is not cost effective because all tuples need
to be transferred to the querying node.

To improve the performance of the above technique the

IEEE
computer
® psouety



$1,40 C,75 |SINK(0)  Room,
ﬁ "’ E A, 74.5 AVG(sound)
'“QS4,42 D, 64
$2,74 T \ B, 41 TR
e 53,75*\\
e e EARER G
S6,75 $7,78 S9,39 A74 |7 | AT5 [t D,39
° | ) (0 ()
C] ® Si.75 D]

—

SELECT TOP 1
roomid, AVG(sound)
FROM sensors
GROUP BY roomid

A 4-room environment monitored by 9 sensors An In-Network View (V)

Fig. 1. The left figure illustrates a sensor network scenario that consists of
9 sensors {s1, ..., 89} deployed in four rooms {A, B, C, D}. The label next
to each sensor denotes the identifier of the node and the local noise level (as
a percentage). The figure on the right presents the tree of readings for the
respective query. The label next to each node indicates the local averages.

KSpot system conducts the pruning locally at each sensor in
an in-network manner. This pruning goes beyond the straight-
forward and wrongful elimination of the local top-k results of
each node (an example will be presented in Section III-A).

The KSpot system presented in this demonstration im-
plements several top-k processing algorithms in order to
overcome ranking challenges for both snapshot and historic
queries. Our system consists of two software subsystems:
KSpot server and KSpot client. The KSpot server software
written in JAVA integrates distributed top-k query processing
operators to the TinyDB [5] server and also features a graphi-
cal user interface that displays the requests made by users. This
is essentially the base station through which user requests are
disseminated to the deployed sensor network. The KSpot client
software on the other hand is written in nesC and that unit
integrates local access methods and top-k query processing
functionality to a TinyOS [12] capable mote device. This is
the software running on each KSpot sensor node.

Contributions:

o KSpot enables user-friendly and customizable top-k query
execution in WSNs. We expect that this will enable a
wide range of new applications;

o KSpot seamlessly integrates state-of-the-art distributed
top-k query processing algorithms to existing data ac-
quisition software; and

o KSpot is to our knowledge the first real prototype that
addresses the query ranking problem in an in-network
manner yielding enormous savings in messaging and
energy.

To demonstrate the applicability of our system during the
conference, we will continuously identify the K conference
rooms with the highest sound level and project them on a
wall/screen (or display them on a monitor) such that confer-
ence attendees will be able to quickly determine the rooms
with the most active discussions. The demo will also allow
conference attendees to customize the system by changing
the target scenario (e.g., by adapting the K value, the sensed
parameter, etc.) Finally, we will also present KSpot’s system
panel which continuously projects the savings in energy and
messages that our system yields.

In Section II we will briefly overview the system architec-
ture of the KSpot system. In Section III we will sketch the

By

KSpot Server

Fig. 2. The System Architecture of the KSpot System.

two algorithms we have implemented for realizing snapshot
and historic queries and in Section IV we will present our
equipment and demonstration settings.

II. SYSTEM ARCHITECTURE

KSpot features a two-tier architecture that is illustrated in
Figure 2. The first tier consists of a number of wireless sensor
nodes which are positioned in predefined areas of interest
(in our case the conference rooms). The devices are loaded
with the KSpot client software running on the TinyOS [12]
operating system which enables the sensors to continuously
transmit their sensed data to the sink node.

The network interface of a KSpot client directs instructions
(i.e., queries and other commands) from the KSpot server
to the KSpot client. The local query parser of the KSpot
client internally implements a query router that disseminates
basic SELECT and GROUP-BY queries to the existing local
query processing engine while TOP-K queries are routed to a
specialized top-k query operator which is interfaced directly
on the query parser of the KSpot client.

The second tier is a graphical user interface (KSpot GUI),
which is used by users to post new queries and for displaying
the query results in a manner that highlights the ranking
properties of the executed query. In particular, the KSpot GUI
consists of three panels (see Figure 3):

i. The Configuration Panel (Figure 3, top-left), which en-
ables the user to load a new scenario from a configuration
file or to create a new scenario that can be stored in
a configuration file. Through this panel the user can
specify which nodes belong to (are clustered) in the same
physical region (e.g., Auditorium, Conference Rooms,
Coffee Stations, etc.)

ii. The Query Panel (Figure 3, bottom-left), which enables
the user to specify aggregate (AVG, MIN and MAX)
and non-aggregate SQL-like queries either graphically
or manually. The constructed query is subsequently for-
warded to a modified TinyDB instance, which has been
extended with Top-k operators for snapshot and historic
queries (described in the next section).

iii. The Display Panel (Figure 3, right), which allows a user
to load a JPG image representation of the scenario map.
Subsequently, the user can drag-and-drop the sensing
devices to the respective positions on the map. Our
system allows the user to choose among a wide range
of sensor devices, coming in various shapes and sizes,

1504

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:59:23 UTC from |IEEE Xplore. Restrictions apply.



ration Pane! Ealicli]

| @2 sensors e, [ SR

&

Load Floor Plan
Clear Floor Plan
Display Clusters
Lock Design
Save Screenshat

© KSpor Diply Panel ==

ContRoomB v ‘

Display soanar Savocontiy | Load contiy

@ KSpot Query Panel

¥ Select Query Type (CurrentHisoric)

Lo |

¥ Soloct Topi¢

Seloct number o sigiicant overts:

¥ Select Atributes and Agpregates.

Atribute SELECT AVG  MIN
cuser

st 0 v ]
tomporatre = ]
ot ] 3 ]

> CroateFiters.

¥ Show Query Text

SELECT TOP 3 cluster, AVG(sound)
FROM sensors

GROUP BY cluster

WITH HISTORY

Fig. 3. KSpot’s Graphical User Interface (GUI) allows users to administer the
execution of Top-K Queries through an intuitive and declarative user interface.
The above scenario conducts a Top-3 query over a 14-node sensor network
organized in 6 clusters. The Display Panel (on the right) illustrates the three
KSpot-Bullets for the three highest-ranked sensor clusters.

in order to accommodate crowded map configurations.
Note that the Display Panel links together nodes of the
same cluster using a black line. Additionally, the panel
highlights the K-highest ranked clusters by utilizing a red
bullet, coined the KSpot Bullet, which projects the rank of
the given cluster at any given time instance. Subsequently,
the KSpot bullets are continuously re-ranked such that
the user is informed about the K highest ranked answers
instantaneously.

III. Tor-K QUERY PROCESSING IN KSPOT

Top-k Query Processing has been studied in a variety
of contexts including middleware systems, web accessible
databases, stream processors, peer-to-peer systems and other
distributed systems. The wave of centralized top-k query
processing algorithms was succeeded in recent literature by
distributed and in-network algorithms for historic queries
(namely TPUT [13], TJA [14], TPAT [15]) and snapshot
queries (namely MINT [16], FILA [17] and BABOLS [18]).

The KSpot system proposed in this work integrates algo-
rithms from both classes of queries. The rationale behind this
separation is the fact that there exists no universal algorithm
that is optimized for both classes of queries, rather there is
a pool of data processing algorithms for each class. KSpot
intelligently exploits this by executing a different query pro-
cessing algorithm based on the query semantics. In particular,
it implements our TJA algorithm for realizing historic queries
and our MINT algorithm for realizing snapshot queries. Both
classes and their execution strategies are further described in
the next subsections.

A. Snapshot Top-K Query Processing

A snapshot query refers to the current readings of sensor
devices. The below query provides an example of such a query:

SELECT TOP K roomid, AVERAGE (sound)
FROM sensors
GROUP BY roomid

The KSpot system utilizes the MINT algorithm [16] to
efficiently address this class of queries by constructing an in-
network hierarchy of views, where ancestor nodes in the rout-
ing hierarchy maintain a superset view of their descendants.
In particular, the MINT algorithm is divided in three phases:

1) The Creation Phase, executed during the first acquisition
of readings from the distributed sensors. This phase
results in n distributed views V; (2 < n);

2) The Pruning Phase, during which each sensor s; locally
prunes V; and generates V; (C V;). V// contains only the
tuples that are among the final top-k results; and

3) The Update Phase, executed once per epoch, during
which s; updates its parent node with V.

Note that in-network pruning of tuples problem is chal-
lenging as all tuples need to recursively percolate up to the
sink. In particular, a naive local greedy pruning strategy may
easily discard tuples that will finally be among the & highest-
ranked answers. To understand this problem consider again
the example of Figure 1 and assume that each node naively
eliminates any tuple below its local top-1 result. Obviously,
such a strategy will lead to the erroneous answer (D, 76.5F),
while the correct answer is (C, 75F). This problem occurred
because (D,39F) was eliminated by s4. In order to avoid
this, MINT utilizes a set of descriptors v which are utilized
to bound above the attributes in Vj and subsequently enable a
powerful pruning framework.

B. Historic Top-K Query Processing

A historic query refers to the case where each sensor can
buffer sensor readings locally in a sliding window fashion
(either in main memory or on flash). When the query refers to
horizontally fragmented data, in which case the pruning can
be conducted locally, the KSpot system extends the snapshot
query described previously by conducting a local search and
filtering in the respective history window before transmitting
the results upwards in the query tree hierarchy. The below
query provides an example of such as query:

SELECT TOP K roomid, AVERAGE (sound)
FROM sensors

GROUP BY roomid

WITH HISTORY {interval}

On the contrary, when the query refers to data that is
vertically fragmented over the n sensors, in which case the
pruning can only be conducted when the readings from all n
sensors are combined, the KSpot system implements our TJA
algorithm. An example of such a query is the following: “Find
the K time instances with the highest average temperature

1505

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:59:23 UTC from |IEEE Xplore. Restrictions apply.



during the last 3 months.” The TJA algorithm implemented
in the KSpot system works in the following three phases:

1) The Lower Bound phase, in which the sink collects the
union of the top-k results from all nodes in the network
(denoted as Lgini={l1,12,...,lo}, 0 > K),

2) The Hierarchical Joining phase, in which each node uses
Lgini for eliminating any tuple that has a value below
the least ranked item in Lg;nk,

3) The Clean-Up phase, in which the final top-k results are
identified.

IV. DEMONSTRATION SETTINGS
A. Equipment

For the actual demo at the conference we will use a set
of 15 MICA2 sensors equipped with the MTS310 sensor
boards. MICA2 features a low power processor and a radio
module operating at 868/916 MHz enabling data transmission
at 38.4Kbits/s with a outdoor range of 150 meters. MICA2
is supported by the TinyOS operating system that enables
users to develop applications using the nesC language which
was used to develop the KSpot client. Furthermore, MICA2
supports an expansion connector for attaching various sensor
boards. We utilize the MTS310 sensor board which supports
a sensor board with a variety of sensing modalities. These
modalities include 2-Axis Accelerometer, 2-Axis Magnetome-
ter, Light, Temperature, Acoustic, and Sounder.

Our base station is a MIB520 gateway which provides
USB connectivity from the KSpot server to the MICA/MICA2
family of sensors. When attaching a single sensor on the
gateway, it functions as the base station (sink) by collecting all
results from the network. In addition to data transfer, MIB520
also provides the programming interface.

B. Demo Plan

At the conference site, and prior our demonstration, we will
design a floor plan in an external CAD tool. This will yield
a JPG image which will be loaded directly into the KSpot
GUI. We will then position one or more sensors at various
key positions throughout the conference (e.g., Auditorium,
Conference Rooms, Coffee Stations, etc.) and configure the
KSpot interface to display them accordingly. In particular, we
will drag-n-drop the displayed sensors to the correct positions
on the pre-loaded JPG plan (note that our sensing devices
do not support GPS, thus topological information cannot be
inferred automatically).

For the server, we will use a laptop and a projector which
will present the ranking of pre-specified rooms on a screen
or a white wall, such that conference attendees will have the
opportunity to determine the rooms with the highest activity
in discussions (i.e., sound level) at a glance. Additionally,
conference attendees will have the ability to issue new Top-K
queries to the network using KSpot’s Query Panel. As soon
as a query is issued, the audience will have the ability to
view the rooms that present the highest Top-K ranking based
on their provided criterion. Furthermore, conference attendees
will have the ability to experiment with the System Panel

which continuously displays network statistics that illustrate
the efficiency of the KSpot system with regards to the number
and size of the communication messages transmitted through
the sensor network.

ACKNOWLEDGMENTS

This work was supported in part by the Open University of
Cyprus under the project SenseView, the US National Science
Foundation under the project AQSIOS (#I1IS-0534531), the
European Union under the projects mPower (#034707) and
IPAC (#224395).

REFERENCES

[1] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler,
“An analysis of a large scale habitat monitoring application,” in ACM
SenSys, 2004.

[2] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi, “Implementing soft-
ware on resource-constrained mobile sensors: experiences with impala
and zebranet,” in ACM MobiSys. NY, USA: ACM, 2004, pp. 256-269.

[3] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon, “Health monitoring of civil infrastructures using wireless
sensor networks,” ACM IPSN, pp. 254-263, 2007.

[4] R. Murty, A. Gosain, M. Tierney, A. Brody, A. Fahad, J. Bers, and
M. Welsh, “CitySense: A Vision for an Urban-Scale Wireless Network-
ing Testbed,” TR-13-07, Harvard University, 2007, Tech. Rep.

[5] S.R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122-173, 2005.

[6] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks,” SIGMOD Rec., vol. 31, pp. 9-18, 2002.

[7] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks,” in
ACM MobiCom '00. New York, NY, USA: ACM, 2000, pp. 56-67.

[8] A. Sharaf, J. Beaver, A. Labrinidis, and K. Chrysanthis, “Balancing
energy efficiency and quality of aggregate data in sensor networks,”
VLDB, 2004.

] “Crossbow technology inc., http://www.xbow.com/.”

[10] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A.
Najjar, “Microhash: An efficient index structure for flash-based sensor
devices,” USENIX FAST, 2005.

[11] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: a tiny
aggregation service for ad-hoc sensor networks,” OSDI, 2002.

[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” ASPLOS, 2000.

[13] P. Cao and Z. Wang, “Efficient top-K query calculation in distributed
networks,” ACM PODC, pp. 206-215, 2004.

[14] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. Tso-
tras, M. Vlachos, N. Koudas, and D. Srivastava, “The threshold join
algorithm for top-k queries in distributed sensor networks,” VLDB'’s
DMSN, pp. 61-66, 2005.

[15] H. Yu, H. Li, P. Wu, D. Agrawal, and A. El Abbadi, “Efficient Processing
of Distributed Top-k Queries,” Dexa), 2005.

[16] D. Zeinalipour-Yazti, P. Andreou, P. Chrysanthis, and G. Samaras,
“MINT Views: Materialized In-Network Top-k Views in Sensor Net-
works,” IEEE MDM, pp. 182-189, 2007.

[17] M. Wu, J. Xu, X. Tang, and W. Lee, “Monitoring top-k query in wireless
sensor networks,” IEEE ICDE, 2006.

[18] B. Babcock and C. Olston, “Distributed top-k monitoring,” ACM SIG-
MOD, pp. 28-39, 2003.

1506

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:59:23 UTC from |IEEE Xplore. Restrictions apply.



