
KSpot: Effectively Monitoring the K Most

Important Events in a Wireless Sensor Network

Panayiotis Andreou#, Demetrios Zeinalipour-Yazti∗, Martha Vassiliadou#, Panos K. Chrysanthis‡, George Samaras#

Department of Computer Science , University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
∗ Pure and Applied Sciences, Open University of Cyprus, P.O. Box 24801, 1304 Nicosia, Cyprus

‡ Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA

p.andreou@cs.ucy.ac.cy, zeinalipour@ouc.ac.cy, cs04mv1@ucy.ac.cy, panos@cs.pitt.edu, cssamara@cs.ucy.ac.cy

Abstract— This demo presents a graphical user interface and
ranking system, coined KSpot, for effectively monitoring the
K highest-ranked answers to a query Q in a Wireless Sensor
Network. KSpot deploys state-of-the-art distributed Top-k query
processing algorithms in order to realize both snapshot queries
and historic queries minimizing the consumption of system
resources and prolonging the lifetime of the deployed sensor
network. Additionally, KSpot is user-friendly and customizable
featuring an intuitive user interface that enables a user to express
declarative SQL-like queries over any ad-hoc scenario and to
display the results graphically as opposed to the traditional
tabular representation.

To demonstrate the applicability of our system during the
conference, we will continuously identify the K conference rooms
with the highest sound level and display them such that confer-
ence attendees will be able to quickly determine the rooms with
the most active discussions. The demo will also allow attendees
to customize the system by changing the target scenario (e.g.,
by adapting the K value, the sensed parameter, etc.). Finally, we
will present KSpot’s system panel which continuously displays
the savings in energy and messages that our system yields.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) is an innovative technol-

ogy that enables users to monitor and study the physical world

at an extremely high resolution. Numerous applications have

already emerged in environmental and habitant monitoring [1],

[2], structural monitoring [3] and urban monitoring [4]. Query

processing in such ad-hoc environments is a challenging task

due to the complexities imposed by the inherent energy and

communication constraints [5], [6], [7], [8]. To this end, the

research community has proposed to take into account user-

defined parameters in order to derive the K most relevant (or

Top-K) answers quickly and efficiently. A Top-K query returns

the subset of most relevant answers, in place of all answers, for

two reasons: i) to minimize the cost metric that is associated

with the retrieval of all answers; and ii) to improve the recall

and the precision of the answer set, such that the user is

not overwhelmed with irrelevant results. Top-K Queries can

support a wide range of applications in the below categories:

i. Snapshot Top-K Queries: These refer to the current

readings of the sensor devices. An instance in this

category is a query of the type: “Find the K nodes

with the highest temperature”, or a K-Nearest Neighbor

snapshot query of the type: “Find the K closest rangers

to the fire”, or finally a continuous snapshot query of the

type: “For the next one hour continuously report the K

rooms with the highest average temperature”.

ii. Historic Top-K Queries: These refer to historic data

that is buffered locally on each sensor. Since a sensor

has limited storage capacity it can conduct the buffering

in a sliding window fashion either in main memory, for

devices with adequate SRAM such as the IMote2 [9], or

on secondary memory [10]. An instance in this category

is a query of the type: “Find the K time instances

with the highest average temperature during the last 3

months”, or a spatio-temporal query of the type: “Find

the K zebras with the most similar trajectories to zebra

X”.

For ease of exposition, let us consider the scenario in

Figure 1 where we illustrate a deployment of 9 sensors in

a 4-room building. Also, let us assume a continuous snapshot

query that aims to discover the average sound level (as a

percentage) of the k=1 rooms every one minute. In particular,

such a query can be expressed in an SQL-like syntax as

follows:

SELECT TOP 1 roomid, AVERAGE(sound)

FROM sensors

GROUP BY roomid

EPOCH DURATION 1 min

Using the logic of the TAG in-network aggregation ap-

proach [11] utilized in the TinyDB system [5], each node

could forward tuples of the form (roomid,sum,count) to

its parent every one minute. One could then easily implement

a new top-k operator at the sink (querying node) that would

derive the correct answers in a centralized manner by pruning

the answer-space (although none of the existing systems

currently supports this feature). Even if such a technique was

readily available, it is not cost effective because all tuples need

to be transferred to the querying node.

To improve the performance of the above technique the

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.54

1503

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.54

1503

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

A B

C DS5,75

S6,75 S7,78

S8,75

S1,40

S4,42

S3,75

S2,74

s1

s2 s4

s5 s6

s3

s7 s8

C,75

A,74

D,76.5

A,75

D,75D,78C,75C,75

C, 75

A, 74.5

D, 64

B, 41

A 4-room environment monitored by 9 sensors An In-Network View (V)

S9,39

s9

D,39

B,42

D,39

Room,

AVG(sound)

SINK (s0)

Fig. 1. The left figure illustrates a sensor network scenario that consists of
9 sensors {s1, ..., s9} deployed in four rooms {A, B, C, D}. The label next
to each sensor denotes the identifier of the node and the local noise level (as
a percentage). The figure on the right presents the tree of readings for the
respective query. The label next to each node indicates the local averages.

KSpot system conducts the pruning locally at each sensor in

an in-network manner. This pruning goes beyond the straight-

forward and wrongful elimination of the local top-k results of

each node (an example will be presented in Section III-A).

The KSpot system presented in this demonstration im-

plements several top-k processing algorithms in order to

overcome ranking challenges for both snapshot and historic

queries. Our system consists of two software subsystems:

KSpot server and KSpot client. The KSpot server software

written in JAVA integrates distributed top-k query processing

operators to the TinyDB [5] server and also features a graphi-

cal user interface that displays the requests made by users. This

is essentially the base station through which user requests are

disseminated to the deployed sensor network. The KSpot client

software on the other hand is written in nesC and that unit

integrates local access methods and top-k query processing

functionality to a TinyOS [12] capable mote device. This is

the software running on each KSpot sensor node.

Contributions:

• KSpot enables user-friendly and customizable top-k query

execution in WSNs. We expect that this will enable a

wide range of new applications;

• KSpot seamlessly integrates state-of-the-art distributed

top-k query processing algorithms to existing data ac-

quisition software; and

• KSpot is to our knowledge the first real prototype that

addresses the query ranking problem in an in-network

manner yielding enormous savings in messaging and

energy.

To demonstrate the applicability of our system during the

conference, we will continuously identify the K conference

rooms with the highest sound level and project them on a

wall/screen (or display them on a monitor) such that confer-

ence attendees will be able to quickly determine the rooms

with the most active discussions. The demo will also allow

conference attendees to customize the system by changing

the target scenario (e.g., by adapting the K value, the sensed

parameter, etc.) Finally, we will also present KSpot’s system

panel which continuously projects the savings in energy and

messages that our system yields.

In Section II we will briefly overview the system architec-

ture of the KSpot system. In Section III we will sketch the

SELECT TOP 1 roomid, AVG(sound)FROM sensorsGROUP BY roomid
KSpot Server

Fig. 2. The System Architecture of the KSpot System.

two algorithms we have implemented for realizing snapshot

and historic queries and in Section IV we will present our

equipment and demonstration settings.

II. SYSTEM ARCHITECTURE

KSpot features a two-tier architecture that is illustrated in

Figure 2. The first tier consists of a number of wireless sensor

nodes which are positioned in predefined areas of interest

(in our case the conference rooms). The devices are loaded

with the KSpot client software running on the TinyOS [12]

operating system which enables the sensors to continuously

transmit their sensed data to the sink node.

The network interface of a KSpot client directs instructions

(i.e., queries and other commands) from the KSpot server

to the KSpot client. The local query parser of the KSpot

client internally implements a query router that disseminates

basic SELECT and GROUP-BY queries to the existing local

query processing engine while TOP-K queries are routed to a

specialized top-k query operator which is interfaced directly

on the query parser of the KSpot client.

The second tier is a graphical user interface (KSpot GUI),

which is used by users to post new queries and for displaying

the query results in a manner that highlights the ranking

properties of the executed query. In particular, the KSpot GUI

consists of three panels (see Figure 3):

i. The Configuration Panel (Figure 3, top-left), which en-

ables the user to load a new scenario from a configuration

file or to create a new scenario that can be stored in

a configuration file. Through this panel the user can

specify which nodes belong to (are clustered) in the same

physical region (e.g., Auditorium, Conference Rooms,

Coffee Stations, etc.)

ii. The Query Panel (Figure 3, bottom-left), which enables

the user to specify aggregate (AVG, MIN and MAX)

and non-aggregate SQL-like queries either graphically

or manually. The constructed query is subsequently for-

warded to a modified TinyDB instance, which has been

extended with Top-k operators for snapshot and historic

queries (described in the next section).

iii. The Display Panel (Figure 3, right), which allows a user

to load a JPG image representation of the scenario map.

Subsequently, the user can drag-and-drop the sensing

devices to the respective positions on the map. Our

system allows the user to choose among a wide range

of sensor devices, coming in various shapes and sizes,

15041504

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. KSpot’s Graphical User Interface (GUI) allows users to administer the
execution of Top-K Queries through an intuitive and declarative user interface.
The above scenario conducts a Top-3 query over a 14-node sensor network
organized in 6 clusters. The Display Panel (on the right) illustrates the three
KSpot-Bullets for the three highest-ranked sensor clusters.

in order to accommodate crowded map configurations.

Note that the Display Panel links together nodes of the

same cluster using a black line. Additionally, the panel

highlights the K-highest ranked clusters by utilizing a red

bullet, coined the KSpot Bullet, which projects the rank of

the given cluster at any given time instance. Subsequently,

the KSpot bullets are continuously re-ranked such that

the user is informed about the K highest ranked answers

instantaneously.

III. TOP-K QUERY PROCESSING IN KSPOT

Top-k Query Processing has been studied in a variety

of contexts including middleware systems, web accessible

databases, stream processors, peer-to-peer systems and other

distributed systems. The wave of centralized top-k query

processing algorithms was succeeded in recent literature by

distributed and in-network algorithms for historic queries

(namely TPUT [13], TJA [14], TPAT [15]) and snapshot

queries (namely MINT [16], FILA [17] and BABOLS [18]).

The KSpot system proposed in this work integrates algo-

rithms from both classes of queries. The rationale behind this

separation is the fact that there exists no universal algorithm

that is optimized for both classes of queries, rather there is

a pool of data processing algorithms for each class. KSpot

intelligently exploits this by executing a different query pro-

cessing algorithm based on the query semantics. In particular,

it implements our TJA algorithm for realizing historic queries

and our MINT algorithm for realizing snapshot queries. Both

classes and their execution strategies are further described in

the next subsections.

A. Snapshot Top-K Query Processing

A snapshot query refers to the current readings of sensor

devices. The below query provides an example of such a query:

SELECT TOP K roomid, AVERAGE(sound)

FROM sensors

GROUP BY roomid

The KSpot system utilizes the MINT algorithm [16] to

efficiently address this class of queries by constructing an in-

network hierarchy of views, where ancestor nodes in the rout-

ing hierarchy maintain a superset view of their descendants.

In particular, the MINT algorithm is divided in three phases:

1) The Creation Phase, executed during the first acquisition

of readings from the distributed sensors. This phase

results in n distributed views Vi (i ≤ n);

2) The Pruning Phase, during which each sensor si locally

prunes Vi and generates V ′

i
(⊆ Vi). V ′

i
contains only the

tuples that are among the final top-k results; and

3) The Update Phase, executed once per epoch, during

which si updates its parent node with V ′

i
.

Note that in-network pruning of tuples problem is chal-

lenging as all tuples need to recursively percolate up to the

sink. In particular, a naive local greedy pruning strategy may

easily discard tuples that will finally be among the k highest-

ranked answers. To understand this problem consider again

the example of Figure 1 and assume that each node naively

eliminates any tuple below its local top-1 result. Obviously,

such a strategy will lead to the erroneous answer (D, 76.5F),
while the correct answer is (C, 75F). This problem occurred

because (D, 39F) was eliminated by s4. In order to avoid

this, MINT utilizes a set of descriptors γ which are utilized

to bound above the attributes in V0 and subsequently enable a

powerful pruning framework.

B. Historic Top-K Query Processing

A historic query refers to the case where each sensor can

buffer sensor readings locally in a sliding window fashion

(either in main memory or on flash). When the query refers to

horizontally fragmented data, in which case the pruning can

be conducted locally, the KSpot system extends the snapshot

query described previously by conducting a local search and

filtering in the respective history window before transmitting

the results upwards in the query tree hierarchy. The below

query provides an example of such as query:

SELECT TOP K roomid, AVERAGE(sound)

FROM sensors

GROUP BY roomid

WITH HISTORY {interval}

On the contrary, when the query refers to data that is

vertically fragmented over the n sensors, in which case the

pruning can only be conducted when the readings from all n

sensors are combined, the KSpot system implements our TJA

algorithm. An example of such a query is the following: “Find

the K time instances with the highest average temperature

15051505

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

during the last 3 months.” The TJA algorithm implemented

in the KSpot system works in the following three phases:

1) The Lower Bound phase, in which the sink collects the

union of the top-k results from all nodes in the network

(denoted as Lsink={l1, l2, . . . , lo}, o ≥ K),

2) The Hierarchical Joining phase, in which each node uses

Lsink for eliminating any tuple that has a value below

the least ranked item in Lsink,

3) The Clean-Up phase, in which the final top-k results are

identified.

IV. DEMONSTRATION SETTINGS

A. Equipment

For the actual demo at the conference we will use a set

of 15 MICA2 sensors equipped with the MTS310 sensor

boards. MICA2 features a low power processor and a radio

module operating at 868/916 MHz enabling data transmission

at 38.4Kbits/s with a outdoor range of 150 meters. MICA2

is supported by the TinyOS operating system that enables

users to develop applications using the nesC language which

was used to develop the KSpot client. Furthermore, MICA2

supports an expansion connector for attaching various sensor

boards. We utilize the MTS310 sensor board which supports

a sensor board with a variety of sensing modalities. These

modalities include 2-Axis Accelerometer, 2-Axis Magnetome-

ter, Light, Temperature, Acoustic, and Sounder.

Our base station is a MIB520 gateway which provides

USB connectivity from the KSpot server to the MICA/MICA2

family of sensors. When attaching a single sensor on the

gateway, it functions as the base station (sink) by collecting all

results from the network. In addition to data transfer, MIB520

also provides the programming interface.

B. Demo Plan

At the conference site, and prior our demonstration, we will

design a floor plan in an external CAD tool. This will yield

a JPG image which will be loaded directly into the KSpot

GUI. We will then position one or more sensors at various

key positions throughout the conference (e.g., Auditorium,

Conference Rooms, Coffee Stations, etc.) and configure the

KSpot interface to display them accordingly. In particular, we

will drag-n-drop the displayed sensors to the correct positions

on the pre-loaded JPG plan (note that our sensing devices

do not support GPS, thus topological information cannot be

inferred automatically).

For the server, we will use a laptop and a projector which

will present the ranking of pre-specified rooms on a screen

or a white wall, such that conference attendees will have the

opportunity to determine the rooms with the highest activity

in discussions (i.e., sound level) at a glance. Additionally,

conference attendees will have the ability to issue new Top-K

queries to the network using KSpot’s Query Panel. As soon

as a query is issued, the audience will have the ability to

view the rooms that present the highest Top-K ranking based

on their provided criterion. Furthermore, conference attendees

will have the ability to experiment with the System Panel

which continuously displays network statistics that illustrate

the efficiency of the KSpot system with regards to the number

and size of the communication messages transmitted through

the sensor network.

ACKNOWLEDGMENTS

This work was supported in part by the Open University of

Cyprus under the project SenseView, the US National Science

Foundation under the project AQSIOS (#IIS-0534531), the

European Union under the projects mPower (#034707) and

IPAC (#224395).

REFERENCES

[1] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler,
“An analysis of a large scale habitat monitoring application,” in ACM

SenSys, 2004.
[2] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi, “Implementing soft-

ware on resource-constrained mobile sensors: experiences with impala
and zebranet,” in ACM MobiSys. NY, USA: ACM, 2004, pp. 256–269.

[3] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon, “Health monitoring of civil infrastructures using wireless
sensor networks,” ACM IPSN, pp. 254–263, 2007.

[4] R. Murty, A. Gosain, M. Tierney, A. Brody, A. Fahad, J. Bers, and
M. Welsh, “CitySense: A Vision for an Urban-Scale Wireless Network-
ing Testbed,” TR-13-07, Harvard University, 2007, Tech. Rep.

[5] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

[6] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks,” SIGMOD Rec., vol. 31, pp. 9–18, 2002.

[7] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks,” in
ACM MobiCom ’00. New York, NY, USA: ACM, 2000, pp. 56–67.

[8] A. Sharaf, J. Beaver, A. Labrinidis, and K. Chrysanthis, “Balancing
energy efficiency and quality of aggregate data in sensor networks,”
VLDB, 2004.

[9] “Crossbow technology inc., http://www.xbow.com/.”
[10] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A.

Najjar, “Microhash: An efficient index structure for flash-based sensor
devices,” USENIX FAST, 2005.

[11] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: a tiny
aggregation service for ad-hoc sensor networks,” OSDI, 2002.

[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” ASPLOS, 2000.

[13] P. Cao and Z. Wang, “Efficient top-K query calculation in distributed
networks,” ACM PODC, pp. 206–215, 2004.

[14] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. Tso-
tras, M. Vlachos, N. Koudas, and D. Srivastava, “The threshold join
algorithm for top-k queries in distributed sensor networks,” VLDB’s
DMSN, pp. 61–66, 2005.

[15] H. Yu, H. Li, P. Wu, D. Agrawal, and A. El Abbadi, “Efficient Processing
of Distributed Top-k Queries,” Dexa), 2005.

[16] D. Zeinalipour-Yazti, P. Andreou, P. Chrysanthis, and G. Samaras,
“MINT Views: Materialized In-Network Top-k Views in Sensor Net-
works,” IEEE MDM, pp. 182–189, 2007.

[17] M. Wu, J. Xu, X. Tang, and W. Lee, “Monitoring top-k query in wireless
sensor networks,” IEEE ICDE, 2006.

[18] B. Babcock and C. Olston, “Distributed top-k monitoring,” ACM SIG-

MOD, pp. 28–39, 2003.

15061506

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

