Foundations and Trends® in
Databases

Vol. 2, No. 3 (2009) 169-266
(© 2010 A. Labrinidis, Q. Luo, J. Xu and W. Xue
DOI: 10.1561/1900000005

Caching and Materialization
for Web Databases

By Alexandros Labrinidis, Qiong Luo,
Jie Xu and Wenwei Xue

Contents

now

the essence of knowledge

1 Introduction

2 Typical Architecture

3 How are Data Cached/Materialized?

3.1
3.2
3.3

[
[
[

Store] Location of Caching/Materialization
Store] Unit of Caching/Materialization
Store] Selecting Content for Caching/Materialization

4 Using Cached Content

4.1
4.2

[
[

Use] Query Scheduling
Use| Query Processing

5 Cache Maintenance

5.1
5.2
5.3
5.4
5.5

[
[
[
|
[

Maintain| Cache Initialization: Proactive versus Reactive
Maintain| Timing for Updates

]

]
Maintain] Processing of Updates
Maintain] Scheduling of Updates
]

Maintain| Cache Replacement Policies

171

175

179

179
182
182

184

184
186

191

191
193
199
202
203

6 Performance and Quality Metrics 205

6.1 [Metrics] QoS Metrics 205
6.2 [Metrics] QoD Metrics 208
6.3 [Metrics] Quality Contracts 211
6.4 [Metrics] Service Level Agreements 212
7 Projects 216
7.1 Browser Caches 216
7.2 Proxy Caches 217
7.3 Server-Side Caches 220
8 Related Work in Other Areas 224
8.1 General Web Caching 224
8.2 Database Caching and Materialized Views 228
8.3 Caching in Client—Server Databases 234
8.4 Caching in Distributed Databases 236
8.5 Caching in Distributed Systems 238
8.6 Industrial Products/Standards 245
9 Open Research Problems 248
9.1 Cloud Computing 248
9.2 User-Centric Computing 249
9.3 Mobile Computing 250
9.4 Green Computing 251
9.5 Non-technical Challenges 252
10 Summary 253
Acknowledgments 255

References 256

Foundations and Trends® in
Databases

Vol. 2, No. 3 (2009) 169-266 n‘w

(© 2010 A. Labrinidis, Q. Luo, J. Xu and W. Xue
DOI: 10.1561/1900000005 the essence of knowledge

Caching and Materialization
for Web Databases

Alexandros Labrinidis!, Qiong Luo?,
Jie Xu?® and Wenwei Xue*

1 Unidversity of Pittsburgh, USA, labrinid@cs.pitt.edu

2 Hong Kong University of Science and Technology, Hong Kong,
luo@cse.ust.hk

3 University of Pittsburgh, USA, zujie@cs.pitt.edu

4 Hong Kong University of Science and Technology, Hong Kong,
wwrue@cse.ust.hk

Abstract

Database systems have been driving dynamic websites since the early
1990s; nowadays, even seemingly static websites employ a database
back-end for personalization and advertising purposes. In order to keep
up with the high demand fuelled by the rapid growth of the Internet, a
number of caching and materialization techniques have been proposed
for web databases over the years. The main goal of these techniques is to
improve performance, scalability, and manageability of database-driven
dynamic websites, in a way that the quality of data is not compromised.
Although caching and materialization are well-understood concepts in
the traditional database and networking/operating systems literature,
the Web and web databases bring forth unique characteristics that war-
rant new techniques and approaches.

In this monograph, we adopt a data management point of view
to describe the system architectures of web databases, and analyze
the research issues related to caching and materialization in such
architectures. We also present the state-of-the-art in caching and mate-
rialization for web databases and organize current approaches according
to the fundamental questions, namely how to store, how to use, and
how to maintain cached/materialized web data. Finally, we associate
work in caching and materialization for web databases to similar tech-
niques in other related areas, such as data warehousing, distributed
systems, and distributed databases.

1

Introduction

Database systems have been driving dynamic websites since the early
1990s, and caching and materialization have been the major techniques
to improve the performance, scalability, and manageability of such web
databases. Different from a traditional database environment, the soft-
ware components of a web database, including web servers, database
servers, application servers, and possibly additional middleware, are
largely independent from one another, even though they work together
as a holistic system (Figure 1.1). Caching and materialization tech-
niques for such web databases consider a number of issues at dif-
ferent parts of the system and they bring interesting challenges and
opportunities.

In addition to the inherent architectural uniqueness, web databases
also come with stringent demands for near-real-time performance (at
the speed of thought) and ability to withstand high request volumes
(e.g., due to flash crowds, giving caching and materialization techniques
a pivotal role in such environments.

In this monograph, we look at the entire process of caching
and materialization for web databases as a sequence of actions (or
verbs). For each action, we identify the possible options and present

171

172 Introduction

Client (Web Browswer) Web Server(s)

Fig. 1.1 10,000-feet view of a typical web-database architecture.

representative techniques and papers for each one. Specifically, we look
into the following actions, as they relate to caching and materialization
for web databases:

e Store: How is data cached/materialized, including where
and at what granularity to cache/materialize data, and how
to select the data items to cache/materialize.

e Use: How do we use cached/materialized data items to
answer new requests?

e Maintain: How are caches maintained up-to-date, including
when and how to handle updates, how to organize the cache
to answer new requests efficiently, and how to perform cache
replacement as necessary.

When presenting existing techniques on these three actions, we focus on
the performance and quality aspect (in Section 6). In brief, we examine
the following three types of evaluation metrics: (1) Quality of Service
(QoS) metrics, including response time, throughput, and availability;
(2) Quality of Data (QoD) metrics, mainly about data freshness and
accuracy, and (3) user-centric metrics, usually in the form of quality
contracts.

Among the above evaluation metrics, throughput is a major one to
consider for web databases, and one way to achieve a high through-
put is through high-performance hardware configurations. However,
enhancing system throughput using high-end configurations is not

173

always desirable; a major factor is the Total Cost of Quwnership
(TCO) [44]. TCO is the direct and hidden lifetime IT cost of purchas-
ing, operating, managing, and maintaining a computing system [31].
Example cost items include hardware, software, network communica-
tion, administration, personnel training, and technical support. For a
database-backed website, an increase in the throughput through high-
end configurations may result in the increase of all those TCO cost
items and in turn the TCO itself. Therefore, system throughput should
be considered together with TCO. In particular, transparent and adap-
tive caches are often an ideal candidate to increase system throughput
automatically with little increase on TCO.

Note that an important factor to consider in any caching and mate-
rialization technique for web databases is whether the scheme supports
database transaction semantics, even though many web applications
today work well with a weaker consistency guarantee. Eric Brewer pro-
posed the CAP Theorem [23], which states that, for any distributed
computing system, only two out of the following three key requirements
can be satisfied: Consistency, Availability, and Partition tolerance. The
theorem was later formally proved by Gilbert and Lynch [61] for both
asynchronous and partially synchronous network models. As such, in
real-world distributed web databases, where availability and scalabil-
ity are crucial, it is unavoidable to make compromises on consistency.
Therefore, caching and materialization are a good match to such sys-
tems in that they can help on both availability and partition tolerance
and can benefit from the relaxed consistency requirement. In practice,
many commercial database-backed websites today have focused their
technical development, including deploying caches throughout all lev-
els of the system, on ensuring service availability and tolerance upon
data partitioning/distribution, while sacrificing consistency to various
degrees. Well-known examples of such websites include Amazon, EBay,
and Twitter.

Roadmap: The rest of this monograph is structured into four sep-
arate components as follows:

® Architecture — this part describes a typical web-database
architecture and discusses some of the complexities intrinsic
in such setups (Section 2).

174 Introduction

e Taxonomy — this part presents the three “verbs” in detail,
along with the possible alternatives. We also give a detailed
description of a typical web-database architecture (Sec-
tions 3-5, followed by a discussion on metrics, in Section 6).

® Projects — this part describes some representative web-
database projects, while explaining the choices each project
adopted under the presented taxonomy (Section 7).

® Related work — this section presents related work from
other areas (Section 8).

We conclude this monograph with a short discussion on some open
problems and future directions.

2

Typical Architecture

As we saw in the 10,000-feet view of the typical web-database architec-
ture (Figure 1.1), we can roughly partition the whole system into three
different components: the client, the Internet, and the server.

® The client component is essentially the end-user’s computer
and web browser, which may also contain a local cache.

e The Internet component contains a plethora of different,
interconnected cogs that make possible the connection of the
client to the server. A Domain Name Server (DNS) [51] is
typically used to decode the name of the web address into
an IP address. Given this IP address, routers are used for
the client to establish a connection with the server, using the
HTTP protocol [82]. It should be noted that the IP address
of a web server can be differentiated according to the end-
user’s IP address to take advantage of server proximity (when
there are alternatives due to replication). In this environ-
ment, there are of course multiple opportunities for caching
and materialization; we describe these later.

® The server component essentially includes multiple, differ-
ent servers that are collectively seen as the web server for

175

176 Typical Architecture

the end-user. In particular, the entry point for a cluster of
servers would normally be a load balancer or web switch that
is routing incoming web traffic to the different web servers
available in the cluster. Of course, the entry point for a sin-
gle web server is the web server itself. The web server is
responsible for handling and responding to HTTP requests
and is typically connected to an application server, that is
used to capture the logic of the web application. The appli-
cation server typically connects to a database server, which
is used to store data. As Figure 2.1 indicates, there are mul-
tiple opportunities for caching within the server component;
we describe these later as well.

This description is roughly equivalent to that of a single, small-
scale data center operation. Many companies today go beyond such
architecture in one of the two ways:

1. By replicating operations over multiple (dedicated) data
centers that are distributed geographically to decrease
the effective network “distance” to the end-users, while

browser

web switch
e JO)

proxy

/NO

routers
[] []
file data
cache cache
reverse
proxy db server I 9
Client Internet Server

Fig. 2.1 Typical web-database architecture ($ signs indicate possible location for caches at
the server).

177

increasing availability and throughput. Routing to a specific
data center is performed by exploiting DNS resolution, as
explained earlier.

2. By utilizing a Content Distribution Network (CDN), such
as the one by Akamai, where content (but not necessarily
operations) is replicated and distributed geographically.

As web services become more prevailing, the server “lines” in the
above model become more blurred, usually spanning multiple organiza-
tions. These days, it is not uncommon for a single web page downloaded
at an end-user’s browser to involve requests to multiple, different web
servers performing different functionality. For example, if we consider
the main web page of an online newspaper, that single web page may,
in turn, invoke requests to multiple web servers, for the following types
of services:

® Banner advertising — a separate web server from which
a banner image (advertisement) is downloaded. A separate
server is crucial for third-party accuracy (and honesty) in
reporting the number of times a certain ad was placed on a
site’s web pages.

e Text advertising — an HTML fragment served from another
server that contains a textual advertisement which is targeted
to the specific page and/or audience. A separate server is typ-
ical in such cases, given the prevalence of a few major text-
based advertising networks (e.g., Google AdWords,! Yahoo
SearchMarketingm,? and Microsoft adCenter?) with propri-
etary algorithms driving ad selection and placement.

e Web Analytics — a separate request (typically made through
an embedded img request), that is used to record advanced
statistics about site visitors. A separate server for the major-
ity of websites is typical just because of the convenience it
provides to low-budget web server operators (e.g., Google

L http://adwords.google.com/
2http://searchmarketing.yahoo.com/
3 https://adcenter.microsoft.com/

178 Typical Architecture

Analytics*). Such services are essentially the natural exten-
sion of the hit counters from the early days of the Web.

® Media — a content distribution network is often used to serve
media files (e.g., images, audio, or video clips), because of
size and streaming requirements. In such settings, serving
the content from the server that is located the closest to the
end-user often has a big impact.

® Data from other sources — it is common for some of the
data presented on a web page to originate from other sources.
The popularity of AJAX [6] is leading to such data “import-
ing” being done in an online fashion, with the original page
including the code to import that data from the authorita-
tive source directly, instead of just including the data as part
of the page. A characteristic example of this is stock market
information, where an online newspaper (e.g., NY Times)
typically has a fragment of the web page devoted to a sum-
mary of the stock market; this fragment uses AJAX to import
the latest values from other sources (and to continually keep
them up-to-date while the stock market is open).

e (Other online properties — given the growing trend toward
syndication, it is common to include content from other
online “properties” and therefore different web servers. For
example, an online newspaper can include content from its
associated magazine or from a news network that it belongs,
e.g., the Pittsburgh Post-Gazette website® includes in its
main web page fragments from the Associated Press news
network. Although such content could be hosted in the same
web server, this is often not the case, because of organiza-
tional boundaries. This is sometimes taken to the extreme,
when all content on a web page is drawn from other sources,
for example in a personalized web portal (e.g., iGoogle).

4http://www.google.com/analytics/
5http://www.post-gazette.com

3

How are Data Cached/Materialized?

Having described the typical web-database architecture in detail, in
this section we address the question of where to cache/materialize
web data, at what granularity, and how to select appropriate data to
cache/materialize (Figure 3.1).

3.1 [Store] Location of Caching/Materialization

Web caching can be performed at one of the following four locations:
(i) server, (ii) reverse proxy, (iii) proxy, and (iv) client. The different

Caching / Materialization

N

Store i Use t Maintain

Location Unlt Content
(where) (what granularity) (which data)

Fig. 3.1 Taxonomy for store question.

179

180 How are Data Cached/Materialized?

location options (i)—(iv) are ordered in increasing order of distance
between the cache and the database-backed website.

Figure 2.1 shows the different locations of web caching. As explained
in the previous section, a server denotes all machines “responsible” for
a database-backed website, including the database server, the applica-
tion server and the web server. We use the two terms “database-backed
website” and “database-driven website” interchangeably in this mono-
graph. A reverse prozy is set up by the server, or is owned by a Content
Delivery Network (CDN) and contracted to be used by the server. It is
also called a CDN cache or a web portal. A prozxy is set up for a group
of Internet users, e.g., by an Internet Service Provider (ISP), and is
also called a forward proxy or an edge server. Finally, a client denotes
a machine where the user’s web browser is located. A client cache is
also called a browser cache. We discuss these options in detail in the
next paragraphs.

e Server Caches: Database-backed websites today often have
a multi-tier architecture to improve scalability. Based on this
architecture, we further classify a server-side cache into one
of the following three types: (i) a database cache, (ii) a mid-
tier cache, and (iii) a web server cache.

— Database Cache: A database cache contains material-
ized database views. These views are managed by the
same DBMS instance as the original database tables.

— Mid-Tier Cache: A mid-tier cache contains material-
ized views stored at the application server. This cache
is usually a DBMS with some extensions for caching
purposes. This DBMS can either be the same instance
or one different from the database server. For the pur-
poses of this monograph we are interested primarily
in the caching/materialization of data.

In addition to raw database data, web application
servers perform in-memory caching of program-
ming language-level objects, such as Enterprise
JavaBeans (EJBs), that are derived from the back-
end database [79].

3.1 [Store] Location of Caching/Materialization 181

— Web Server Cache: A web server cache contains web
pages or fragments. A web fragment is part of a
web page, e.g., an HTML segment wrapped around
database query results. A web page is also called a
document and a fragment called an object.

— Combination of Server-Side Caches: A multi-tier
server-side cache that combines all three types of the
server-side caches is possible.

e Reverse Proxy: We categorize existing approaches to
reverse proxy caching into single cache and multi-cache. The
former considers caching on an individual reverse proxy,
while the latter on multiple proxies as a group. The caches in
the group are usually reverse proxies that belong to the same
organization, e.g., a content delivery network. As a whole,
they serve the caching needs of one or more websites.

® Proxy: Proxy caches have been widely used throughout the
Internet to improve client response time and reduce server
workload.

e Client Caches: In comparison with the large number of
publications on server-side or proxy caching, there is less
existing work on client-side caching for web databases. One
reason is that client-side caching benefits only clients and
browser caches are already sufficient for the purpose.

Typically, the local client cache has been a file cache, which
has been used to store static files, usually images. Increas-
ingly, browser cases are being used for caching data, primarily
driven by the “AJAX effect”. AJAX! basically provides the
ability to update fragments of a web page without the need
to refresh the entire page. This, on the one hand, enables
interactive, data-driven web applications and, on the other
hand, opens up an entire spectrum of location caching and
materialization options, not previously available.

Lhttp://en.wikipedia.org/wiki/Ajax_(programming).

182 How are Data Cached/Materialized?

3.2 [Store] Unit of Caching/Materialization

Data in a web cache are organized into logical units of certain granu-
larity. A cache unit is the finest granularity of cached data for cache
management. A web cache can contain four types of units: (i) raw data,
(ii) views, (iii) fragments, and (iv) pages.

e Raw Data: Raw data refers to the base data originally
stored as tables in a database. In other words, the whole
or a subset of tables in the original database is replicated in
the cache. This is called table-level caching.

® Views: Instead of storing raw data, another alternative is to
store the results of queries, in other words to store views. In
general, views include materialized views, query results, and
horizontal or vertical partitions of database tables. Caching
of views is often referred to as query-level caching. The type
of views stored has a big impact on reusability; we elaborate
this in the next section.

e Fragments (or WebViews [102]): Fragment-level caching
refers to the caching of dynamic web fragments. A fragment
is loosely defined as any part of an HTML page. We are typ-
ically interested in fragments that contain data which were
queried from a database, although other types of fragments
are also possible [131].

e Pages: Page-level caching refers to the caching of entire
web pages, no matter a page is dynamic or static. Most
multi-cache approaches to reverse proxy caching employ
page-level caching. Current browsers also typically employ
object-level caching, be it an entire page or embedded objects
within a page (i.e., an image, a video clip, etc.).

3.3 [Store] Selecting Content for Caching/Materialization

Traditional caching approaches will cache every query result and decide
when the cache is full on which item to evict using a cache replacement
algorithm; these are discussed in Section 5.5.

3.3 [Store] Selecting Content for Caching/Materialization 183

Materialization goes a step beyond traditional caching, as it often
implies an additional commitment: the “promise” to keep the material-
ized results up-to-date, by refreshing the materialized version if updates
occur on the source data. In such a setting, it is important to select
which data to keep materialized: the main concern in this case is time
(to process the updates) and not space, as is the case with traditional
caching.

Labrinidis and Roussopoulos [105, 107] first studied the approach
of adaptively selecting WebViews to materialize, based on both perfor-
mance and freshness metrics. To address the online selection problem
(i.e., selecting which WebViews to materialize to strike the balance
between the performance and data freshness), Labrinidis and Rous-
sopoulos [107] propose an adaptive algorithm, OVIS(#). Given the user-
specified data freshness threshold 6, OVIS(#) operates in two modes:
passive and active. In the passive mode, OVIS(0) collects statistics and
monitors the freshness degree for the served data. When it periodically
goes into the active mode, it distinguishes between two cases based
upon the observed freshness value. When the observed freshness degree
is higher than the threshold 6, OVIS(0) identifies a freshness surplus
and materializes more WebViews to improve response time. On the
other hand, when the observed freshness degree is less than the thresh-
old 0, the algorithm identifies a freshness deficit and stops materializing
WebViews to increase the freshness value. Which views are selected to
change the materialization policy is decided by greedy algorithms to
guarantee that OVIS(#) meets the response-time constraint.

In general, the selection problem is closely related to the mainte-
nance policy or policies available. For example, the OVIS(0) algorithm
assumes a recomputation-based update model, and as such it can allow
for some updates to be unapplied. This would not have been possible
with an incremental-based update model. For more details on these
options, see Section 5.

4

Using Cached Content

In this section we deal with the “use” verb as it related to caching
and materialization for web databases. In particular, we first describe
query scheduling, i.e., how to determine the proper order of execut-
ing user requests, and then describe query processing, i.e., what alter-
natives existing when processing user requests in conjunction with
cached/materialized data (Figure 4.1).

4.1 [Use] Query Scheduling

For cases where caching or materialization cannot provide a (quick)
answer to a user request, the request often get “translated” to one ore
more queries submitted to the back-end database. Given the inherent
interactive nature of most web applications, there is significant pres-
sure for executing such queries in an efficient manner. As such, query
scheduling becomes an important issue.

Query scheduling has been studied extensively in the context of
traditional database systems and of real-time (database) systems [1, 77,
130]. In the context of web servers, in general, and web-databases, in

184

4.1 [Use] Query Scheduling 185

Caching / Materialization I

Store Use Maintain
Query Query
Scheduling Processing

Fig. 4.1 Taxonomy for use question.

particular, there are two defining characteristics that scheduling policies
need to address:

® the need to handle overload — web traffic can exhibit
bursty behavior (e.g., flash crowds), so handling overload
gracefully is crucial.

® the need to consider updates — web databases need to be
online, handling both queries and updates, while respecting
the end-user’s desire for interactivity (i.e., real-time perfor-
mance).

A flash crowd on the Web, also referred to as the slashdot effect, is
used to describe the phenomenon when a website catches the attention
of a large number of people, and gets an unexpected and overload-
ing surge of traffic. The term originates from a 1973 English language
novella by science fiction author Larry Niven, one of a series about
the social consequence of inventing an instantaneous, practically free
transfer booth that could take one anywhere on Earth in milliseconds
(i.e., teleporting). One consequence not foreseen by the builders of the
system was that with the almost instantaneous reporting of newswor-
thy events, tens of thousands of people worldwide along with criminals
would flock to the scene of anything interesting, hoping to experience
or exploit the instant disorder and confusion so created. More info at
http://en.wikipedia.org/wiki/Flash_crowd.

Schroeder and Harchol-Balter’s work [147] is one of the first works
to identify smart scheduling as a way to alleviate the negative effects

186 Using Cached Content

of overload in web servers and propose using the Shortest-Remaining-
Processing-Time (SRPT) first policy as the solution. Recently, Guirguis
et al. [67] have proposed a parameter-free policy, called ASETS that
works best for scheduling web transactions (that have deadlines) under
any workload condition, including overload situations. The proposed
policy is essentially a hybrid between the SRPT policy (that is known
to work best under overload conditions) and the Earliest-Deadline-
First (EDF) policy (that is known to work best under low-utilization
conditions). Instead of setting a threshold in the system where the
scheduling policy switches from EDF to SRPT and vice versa, ASETS
essentially assigns a scheduling policy to each transaction in the sys-
tem. The authors also present extensions to handle the scheduling of
transactions that are part of a workflow (i.e., in the presence of depen-
dencies), which is more suited to the fragment hierarchies present in
the creation of web pages.

When considering both queries and updates, one has to worry about
timeliness of receiving query results, but also about the freshness of
those results. There is a significant amount of related work in the con-
text of real-time databases, which we cover in Section 8.2.4. In the
context of web databases, Qu and Labrinidis [74] propose a meta-
scheduling framework in order to fairly allocate processing of updates
and queries, according to user preferences. They propose keeping two
separate queues (one for queries and one for updates) and execute tasks
within each queue according to well-established policies, but allocate
resources between the two queues by taking into account user prefer-
ences on QoS and QoD (more on this in Section 6.3).

4.2 [Use] Query Processing

Depending on the unit of cached data, query processing (i.e., serving a
user request) can consider previously stored data (e.g., cached results).
In particular, a cache for web databases can be equipped with four types
of processing capabilities: (i) no query processing, (ii) containment-
based query processing, (iii) semantic query processing, and (iv) full-
fledged SQL query processing. Type (i) is also called passive caching,
whereas types (ii)—(iv) are called active caching [119, 120, 121, 122].

4.2 [Use] Query Processing 187

Full-edged SQL
Query Processing

Semantic
Query Processing

Containment-based \/ \/ \/
Query Processing
No Query Processing J J J J

Raw Data Views Fragments HTML Pages

L

Fig. 4.2 Applicability of query processing options to different units of caching.

The unit of caching (i.e., raw data, views, fragments of HTML
pages) determines what types of processing capability a cache may
have (Figure 4.2). Obviously, all caches can support the trivial, no
query processing option. Typically, all caches could also support the
query containment functionality (especially the exact match flavor); all
that is needed is a way to uniquely describe the cached data/object.
What we refer to as semantic query processing cannot be applied when
the unit of caching is entire pages, whereas full-fledged SQL processing
can only be supported by a cache if the unit of caching is either views
or raw data.

In the next paragraphs we describe the different alternatives,
after first discussing the fundamental driver behind content reuse via
caching /materialization, namely the existence of a relationship between
the results of two queries.

The relationship between the results of two SQL queries, in short,
the relationship of two queries, can be of four types: exact match, con-
tainment, overlapping, and disjoint [37, 42, 121]. Ezact match means
the results of the two queries are equivalent. Containment means the
result of one query is a proper subset of that of the other query.
Overlapping means that the results of two queries have a non-empty

188 Using Cached Content

y
100 |
70<=x<=90,
80 20<=x<=80, 50<=y<=70
20<=y<=60 /
\ Q4
60 [bR ==
! Q1 (Q2) — exact match H
1 1
r |3 — 7 ,
40t : disjoint :/overlapplng
1 1
' \ containmenti
1 1
20 ======= S '
30<=X, y<=50
0 20 40 60 80 100 %

Fig. 4.3 Illustration of query relationships.

intersection and the two queries are neither an exact match nor satisfy
the containment relationship. Disjoint means the intersection of the
two query results is empty.

Figure 4.3 shows an illustration of the four types of query relation-
ships. In the figure, the relationships between the pairs of queries (Q1,
Q2), (Q1, Q3), (Q1, Q4) and (Q3, Q4) are exact match, containment,
overlapping, and disjoint, correspondingly. The predicates of the queries
are all denoted in the figure. Given these query relationships, we say
that Q2 and Q1 are equivalent, Q3 is contained in Q1, Q4 overlaps Q1,
and Q3 and Q4 are disjoint.

For the four types of processing capabilities, no query processing
only checks the exact match relationship between the cached queries
and a new query while containment-based query processing checks con-
tainment as well as exact match. Both semantic query processing and
full-fledged SQL query processing check all four types of relationships.
The difference is the former uses a special-purpose query processing
module, whereas the latter uses a general-purpose DBMS product to

4.2 [Use] Query Processing 189

handle query processing in the cache. We present representative works
from each of the four categories next.

4.2.1 [Use::QueryProcessing] No Query Processing

This option represents the traditional, exact match-based passive
caching. Fach web page is stored with its URL, possibly tagged with the
query parameters for a dynamic page, in the cache [12, 29, 139, 140, 141,
151, 157, 172]. When the cache sees an HTTP request, it returns the
cached page of the corresponding URL. Alternatively, a web page, often
a dynamic web page, can be divided into individual fragments and these
fragments are stored separately [26, 43, 104, 105, 106, 107, 136, 138].
When the cache composes a dynamic web page, missing fragments of
the page are fetched from the server [43].

A query result is regarded as a fragment in this option, similar to
an image or a video file. The cache returns a cached query result only if
the new query in an HTTP request is an exact match with the cached
query [119, 121].

4.2.2 [Use::QueryProcessing] Containment-Based
Query Processing

This option answers a new query locally in the cache if the result of the
new query is completely contained in the cached result of a previous
query. Otherwise, the new query is forwarded to the server without any
local processing and the query result returned by the server is merged
into the cache.

4.2.3 [Use::QueryProcessing] Semantic Query Processing

This option answers a new query locally in the cache, if the query result
partially overlaps the cached results of previous queries. The new query
is decomposed into a probe query that is evaluated in the cache and
a remainder query that is transmitted to and evaluated at the server.
The result of the remainder query is then merged into the cache. Com-
pared to the containment-based processing, semantic query processing
requires a stronger server cooperation capability for the server to handle

190 Using Cached Content

remainder queries and more complex cache management techniques to
evaluate queries whose results overlap the cached results.

4.2.4 [Use::QueryProcessing] Full-Fledged SQL
Query Processing

This option uses a full-fledged DBMS as the cache in order to be able
to optimize and execute queries at the cache. A distributed evaluation
plan is generated for a query and is optimized in a way similar to that
in distributed databases. The plan efficiently utilizes both data in the
local cache and data at the remote server. Of course, such an option
introduces complications if transactional consistency is required (and
there are updates).

Cache Maintenance

In this section of our taxonomy, we present the different issues stem-
ming out of the “maintain” verb of caching materialization in web
databases (Figure 5.1).

5.1 [Maintain] Cache Initialization: Proactive
versus Reactive

The timing of the initialization of a web cache can be either proactive
or reactive. Essentially, reactive caching is done as a response to user
queries, whereas proactive caching is performed in anticipation of user

Caching / Materialization

Maintain

Proactive
vs Reactive

Update Update Update Cache
Timing Scheduling Pr ing Repl.

Fig. 5.1 Taxonomy for maintain question.

191

192 Cache Maintenance

queries. With reactive caching, the cache is initially empty and data
are inserted/deleted from the cache during its operation. With proac-
tive caching, the cache is essentially pre-populated with data during
initialization and actively maintained during its operation. We often
refer to proactive caching as materialization, whereas reactive caching
maps to the “traditional” notion of caching.

To better understand the differences between the two flavors of
caching, we look into the operation of the cache when a user query
arrives (at the cache) and when an update arrives (at the server) in
Figure 5.2. In the case of pure reactive caching, any decisions on how
to handle cached data get triggered by incoming user queries (Q1). If
there is a cache miss (e.g., because of an expired TTL, which we explain
in the next section), then the cache issues a request to the server (Q2).
The server’s reply (Q3) is usually stored in the cache and returned to
the user (Q4). In case of a cache hit, the answer is given back to the user
immediately (Q1 — Q4). In the case of pure proactive caching, updates
also trigger changes in the cache contents, for example, to update
cached data that are expected to be accessed again in the near future.
As such, an incoming update (U1) could generate an update to be prop-
agated to the cache (U2), in order for the cache contents to be fresh.

Of course, there are many variations along the spectrum between
pure proactive caching and pure reactive caching, as identified from the
answers to the following questions:

e What are the options for the server to communicate with
the cache? We discuss this further in the next section
(Section 5.2).

Query Qi Q2 —
~ Cache _ " Source
Result Q4 hl Q3
~ U2 U1
Cache Source Update

Fig. 5.2 Query processing under proactive and reactive caching.

5.2 [Maintain] Timing for Updates 193

e What happens when the cache fills up and we need to make
room for new data? This is the cache replacement issue, we
discuss it in Section 5.5.

® In the case of proactive caching, how do we predict which
data items to cache, in anticipation of future requests? This
is the selection issue, which we discussed in Section 3.3.

e What happens if the cached data can partially fulfill the user
query? We discussed this in Section 4.2.

5.1.1 [Maintain::Cachelnitialization] Proactive

View materialization at any of the three tiers of a server falls into the
category of proactive caching [8, 104, 108, 118, 156, 173]. All views
to materialize are defined when the cache is deployed, and data in a
materialized view are continually updated over time.

5.1.2 [Maintain::Cachelnitialization] Reactive

The prevalent work in the literature on caching dynamic web contents
is reactive. The web objects [12, 26, 29, 43, 123, 136, 151, 172] or query
results [9, 10, 37, 110, 119, 120, 121, 122] are obtained from the server
when and only when there is a cache miss.

5.2 [Maintain] Timing for Updates

While caches provide low-access latency, cache coherency must be
maintained for them to be useful. In other words, the cached objects
must be updated so that the difference between them and the original
objects at data sources does not exceed a threshold, which indicates
the maximum staleness degree that clients can tolerate. Given that
the source data are frequently updated and there are bandwidth con-
straints, the problem of effectively disseminating updates to maintain
the cache as close (in value) to the source data as possible is called
the cache coherency or the cache consistency problem. There are
two “traditional” consistency models in the web caching community,
strong consistency where no stale data from the cache can be provided
after the modification completes at data sources, and weak consistency

194 Cache Maintenance

where stale data can be returned to users as valid results. Note that
both strong and weak consistency is used for web data, and have no
database transaction semantics.

In order to maintain cache consistency, a lot of update dissem-
ination mechanisms have been investigated. Two most widely used
schemes are (1) data sources push updates to caches and (2) clients pull
updates from data sources. Another simple scheme is to set a Time-to-
live (TTL) value for each cached object, to mark whether this cached
object is valid or not. This TTL scheme is usually used in combination
with polling. In addition to push, pull, and TTL, there are some other
schemes including piggyback validation/invalidation, leases and its two
variants, adaptive leases and volume leases. We discuss these schemes
(summarized in Table 5.1) in detail next.

5.2.1 [Maintain::UpdateTiming| Cache
Invalidation — Push

To maintain strong cache consistency, an intuitive and important
approach is cache invalidation (i.e., push) [127, 115, 28]. In this
approach, update dissemination is driven by the servers. A server keeps
track of all the clients that ever accessed, and hence possibly have
cached, an object. Upon detecting the modifications on that object,
the server sends invalidation messages or the updated object to all
those clients.

Regarding what to send, there are two alternatives, invalidation-
only and updates. Under the invalidation-only scheme, only notification
of changes will be sent out, and the actual data/objects will be fetched

Table 5.1. Timing of updates to cached/materialized data items — Summary of
options.

Maintain::UpdateTiming
Cache Invalidation — Push Invalidation [127, 115, 28, 48], DBCache [8, 118],
MTCache [108]

Invalidation in wireless environments [16, 89]
Cache Validation — Pull Alex Protocol [32, 73]

Time-to-Live Fixed TTL [170, 80], Adaptive TTL [73, 128]
Piggybacking PCV [99], PSI [100], Combination [40, 101]
Leases Leases [63], Adaptive leases [53], Volume

leases [40, 112, 174, 175]

5.2 [Maintain] Timing for Updates 195

from the data source with the next request. Under the update scheme,
the updated object will be sent without the need for further requests.
The cost of the invalidation-only scheme is on control messages: at
least one acknowledgment (ACK) message for each invalidation has
to be sent. Also, a write at the server will be delayed until all ACK
messages are received. However, since the objects themselves are much
larger than ACK messages in most cases, the update scheme costs much
more bandwidth than invalidation-only. The overhead will be paid off
only if strong consistency is required and both the frequency of updates
and data accesses are high. One hybrid approach is to send updates for
more time-sensitive data and invalidations for all others.

Under the push approach, the message overhead is well controlled
since messages will be sent only if there are updates for an object. Under
the assumption that the update rate is much less than the access rate,
this scheme will not create unnecessary traffic in the network. However,
it also has obvious limitations. First, the servers need to maintain per
client state information for each object, and hence possibly a huge client
list for each popular object. Such lists require a significant amount of
memory space and processing overhead. Second, strong consistency is
hard to achieve in the presence of network failures or node failures. The
server has to delay all the writes whenever there is at least one client,
with the object to be modified in its cache, inaccessible.

To share the server’s load, another implementation alternative is
to employ the publish/subscribe model, in which clients explicitly sub-
scribe to servers which own data that the clients want. A server will
then send invalidations only to those registered clients, which are active
and interested in the updates [48].

Finally, for cases where the update rate is not always less than the
access rate for all or just some of the data, it makes sense to have a
selection process, similar to view selection in traditional databases/data
warehouses (as mentioned in Section 3.3).

5.2.2 [Maintain::UpdateTiming] Cache
Validation — Pull (or Poll)

Another fundamental approach to maintain cache coherency is through
cache validation (i.e., client-driven data polling). Instead of servers

196 Cache Maintenance

sending invalidation messages to clients, clients periodically send vali-
dation messages with “If-Modified-Since” headers to data sources, and
verify if the cached objects have been modified since last polled.

Under this approach, no state information needs to be maintained
at the server side. All that the server has to do is to respond to
clients’ requests. However, this approach may incur a large amount of
unnecessary message overhead in case the objects change infrequently.
Moreover, the data polling time will be counted as part of the query
response time, in case the objects did change. Therefore, the result
is either too many 304 (“Not Modified”) responses, or longer user
perceived response time.

To achieve good performance of the cache validation scheme, one
critical question is how to determine the polling frequency. Polling
too often leads to large message and latency overhead, and polling
too infrequently causes high staleness degree of returned data. The two
polling methods which are often used are synchronous validation and
asynchronous validation.

Synchronous Validation: Synchronous validation is done at object
request time. It is also called polling-every-time. Under this
approach, each time a user sends a request for a cached object,
the cache sends a validation message to the data source.
The data source will send back a “Not Modified” response
if the object hasn’t been changed, or an up-to-date version if
the object has been changed since last validation. In the polling-
every-time approach, strong cache coherency is maintained at
the cost of a large number of messages and a large processing
delay.

Asynchronous Validation: To overcome the limitations of the syn-
chronous validation, the asynchronous validation method makes
clients periodically contact the data sources and proactively
validate their cached objects without waiting for the object
requests.

5.2.3 [Maintain::UpdateTiming| Push or Poll — Discussion

Given the two canonical cache consistency mechanisms, we need to
investigate two related questions. First, do we need both push and

5.2 [Maintain] Timing for Updates 197

High

Update Rate
Medium

Medium High
Access Rate

Fig. 5.3 Spectrum of access/update rate.

pull? Is there an all-time winner between the two? Second, who should
make the decision about which one is the more appropriate approach?

First, the performance of both push and pull depends on the access
rate and the update rate of cached objects (Figure 5.3). If frequently
updated objects tend to be unpopular and have few accesses, then
polling the server on accesses should incur the least overhead; the alter-
native, pushing from the server would have a prohibitively high number
of messages. On the other hand, frequently accessed objects tend to be
unchanged and have few updates, pushing is certainly a better strategy
than pulling, as the server would only send messages when indeed there
is an update (i.e., less often); in this case, the alternative, polling from
the server would lead to too many unnecessary validations messages.

Since the correlation between objects’ access frequency and update
rate is of vital importance in choosing the cache coherency method,
researchers studied the characteristic of web-related activities [18, 22,
52, 73, 169] and quantified this correlation by analyzing representa-
tive real traces. Surprisingly, inconsistent results were presented (see
page 227 for more details).

5.2.4 [Maintain::UpdateTiming] Time-to-Live

Rather than push and pull, a simple approach we mentioned before is
to assign a time-to-live (TTL) value, such as seven days or two hours,
to each object in the cache. Within the TTL, the object is considered

198 Cache Maintenance

valid and will be returned to the users directly. After the TTL elapses,
the object is considered invalid, and the next request for this object
will trigger the cache validation to pull an up-to-date version from the
data source if it has been modified.

The TTL scheme is easy to implement in the HT'TP protocol by
using the “expires” or “max-age” header fields. The challenge lies in
estimating the valid duration of each object, so that we can precisely
set the time out values. If the duration is set too long, the probability
to return a stale data item goes up; if it is set too short, the network
cost and server load will be increased.

Explicit TTL: One simple alternative of the TTL approach is to
assign an explicit TTL value for each object when the web
developer creates the object.

Implicit TTL: In a lot of cases, an explicit TTL is missing, so that
the client or the proxy cache has to resort to heuristics and
make an a priori estimation as the implicit TTL wvalue. It
could be a fixed value, as in Worrell’s thesis [170], that all
documents are assigned the same TTL, or as in the WebEx-
press project [80] for mobile environments, which allows users
to set a fixed TTL for all objects, but with the capability to
change it for specific objects. Fixed TTL is a simple heuristic
and easy to implement, however, it makes sense for different
objects to have different TTLs [128]. The improved Alex pro-
tocol [73] which we mentioned earlier is also widely used to
determine the TTL values, and is referred to as the adaptive
TTL approach [28, 99, 165, 135].

5.2.5 [Maintain::UpdateTiming] Piggybacking

For both cache validation and cache invalidation, batch message pro-
cessing and piggybacking can further improve performance on the net-
work overhead and the server load. The main idea is that the cache
will embed additional “if-modified-since” messages on every chance of
communicating with the server. Given that this scheme is mostly suited
for files, we describe it in detail in Section 8.

5.3 [Maintain] Processing of Updates 199

5.2.6 [Maintain::UpdateTiming| Leases

The lease approach maintains strong consistency as push does, as long
as the lease is valid. Meanwhile, it is more resilient to network failures
compared with push. Under a push-based protocol, when a network
failure happens and the server cannot connect to one or more clients for
invalidation, it must wait, potentially indefinitely, to finish writes to the
cached object. In contrast, the server in the lease approach only delays
writes until unreachable clients’ leases expire, which also frees servers
from waiting for idle clients before modifications. Another advantage
of the leases approach is that it improves scalability. Instead of pushing
invalidations/modifications to all the clients with the cached objects,
the server now only takes care of those active clients who hold valid
leases. The state information maintained at servers is also reduced.

The lease approach is apparently a hybrid method of push and
pull. As the lease duration becomes long enough (infinite), it becomes
pure push; and as the lease duration becomes zero, it is equivalent
to polling. As such, it combines advantages from both push and pull,
and adapts to environmental change very well. However, it leaves an
important and tough question to answer, namely how to determine the
lease duration. Given that this scheme is mostly suited for files, we
describe the different alternatives in detail in Section 8.

5.3 [Maintain] Processing of Updates

Besides the timing of updates, another closely related aspect is the pro-
cessing of updates. In the early stage of the Internet, static web pages
were dominant. All the elements in the web cache were static HTML
pages. The update process was quite simple, retrieving the updated
HTML pages from the server. Nowadays, dynamic web pages and
database-driven web pages are pervasive. This brings us two possible
update processing schemes: recomputation and incremental updates.
Cached objects can be divided into two classes: base data items
and derived composite data items. Base data items refer to the static
HTML web pages, HTML fragments, and base data coming from back-
end databases. Derived composite data items include everything con-
structed from base data items, such as a dynamic web page composed

200 Cache Maintenance

of multiple fragments, e.g., the S&P 500 stock index calculated from the
price of the 500 U.S. stocks, or a materialized view from the back-end
database.

For base data items, an update is simply equivalent to writing a
new version into the cache. However, for derived composite data items,
the update processing strategy can be classified as recomputation, i.e.,
recalculating from scratch every time the composite data are queried;
or as incremental updating, which incrementally modifies the cached
objects and always builds the up-to-date version from the previous one.

In this section, we will first discuss preprocessing techniques, then
elaborate on the two update processing alternatives, recomputation and
incremental updates, respectively.

5.3.1 [Maintain::UpdateProcessing] Preprocessing

Before processing an update, some approaches determine either which
cached objects are affected by the update [85], or whether the update
has any effect on the derived relations [20, 21, 56, 111].

If we consider a database-driven website, then we assume a gener-
alized “architecture” where each web page is composed of fragments,
many of which are generated using data from a database. As such,
without loss of generality, we can assume that a web page is the root
node in a tree, where each subtree represents the generation “path” for
a particular fragment rooted at the top node of the subtree. This, in
turn, implies that there is a hierarchy for the generation of the page,
with the bottom nodes of this hierarchy essentially being data drawn
from the database (which we refer to as base data). In between nodes
can either be HTML/XML fragments or database views [104, 106].
Given this “architecture”, we trivially see that not all updates to base
data would cause a web page that has been cached to become stale.
As such, having a technique to determine if a certain update would
cause a cached object (in the above hierarchy) to become stale can
greatly increase the efficiency of the caching/materialization scheme
used. There are two classes of techniques to address this. The first
class essentially looks at the cached objects as different files and using
a graph model tracks the dependencies between them (e.g., [85]). The
second class is inspired by the work in view maintenance (e.g., [21]).

5.3 [Maintain] Processing of Updates 201

Given that all these techniques have not been specifically designed for
web databases, we present additional details in Section 8.

5.3.2 [Maintain::UpdateProcessing] Recomputation

There are many cases where recomputation is the best choice. First of
all, recomputation may be the only available choice; this depends on the
unit of caching and the capability level of the cache (as was explained
in the previous section). Secondly, the availability of additional storage
for auxiliary objects or intermediate results is also crucial for most
incremental maintenance solutions. Thirdly, the characteristics of the
workload play a crucial role in determining whether recomputation or
incremental maintenance is the best option. A high update rate of base
data compared to the rate of access would make recomputation the
most favorable update processing option (assuming of course that it is
beneficial to cache/materialize), as many incremental updates would be
computed unnecessarily. Conversely, a high access rate combined with
a low update rate suggests that the incremental maintenance solution
would be best.

Web databases for supporting stock website or trading applications
are a good example to explore further. The NYSE workload had an
update rate of up to 696 updates per second during peek time back
in 2000 [105], and the update workload was at least three times more
intensive than the query workload. As a result, recomputation is widely
used in such web databases [4, 105].

5.3.3 [Maintain::UpdateProcessing] Incremental Updates

Recomputation is acceptable when updates are intensive and queries
are much less frequent. However, it might be prohibitively expensive
when queries are frequent and recomputation of the derived data has
a high cost. For maintaining views, Hanson [76] clearly shows that
when views are simple (selection/projection) and indexes are available,
recomputation outperforms incremental updates in most cases. How-
ever, when joins are involved, recomputation becomes very expensive,
and incremental updates win most of the time.

202 Cache Maintenance

To perform incremental updates one needs to determine which part
of the composite data was affected by the update and only refresh
that part (i.e., to build the up-to-date object from the last snapshot
and the current update only). Such incremental updates are called
autonomously computable in [20]. If an update is autonomously com-
putable, the relevant instance can be calculated by the current instance
and the update only. No additional data from the base relations are
required. Blakeley et al. [20] provide sufficient and necessary conditions
to determine if an update is autonomously computable.

5.4 [Maintain] Scheduling of Updates

Having discussed the approaches of updating the cached objects, we
summarize the literature on the update scheduling problem. Since
cached objects are frequently updated by their data sources, to keep
every cached object up-to-date is hard to achieve, given the bandwidth
constraint and the size of the cached objects. The cache synchroniza-
tion problem is fully defined as determining which objects in the cache
will be refreshed and in what order.

Labrinidis and Roussopoulos [106] study how to propagate updates
on database relations to WebViews affected by these updates in a way
that maximizes the QoD of the views. WebViews are HTML page frag-
ments that typically contain data derived from a database. Their goal
is to maximize the aggregated freshness of the database. Toward this
goal, they propose a QoD-aware update scheduling algorithm (QoDA)
that considers both updates to base tables and materialized views, and
is adaptive and tolerates surges in the update stream. The algorithm
maintains a set of tables or views that are currently stale and selects
every time to refresh the object that would have the greatest negative
impact on the overall QoD, if it was not refreshed. The two issues that
make this work different are (1) view dependencies have to be consid-
ered, and (2) popularity of the objects is taken into account during
scheduling. The authors demonstrate that QoDA consistently outper-
forms FIFO by up to two orders of magnitude on aggregated QoD of
the entire database.

5.5 [Maintain] Cache Replacement Policies 203

Best-effort Cache Synchronization: Olston and Widom [129]
study synchronizing cached objects with the original objects at the
data sources, in the presence of bandwidth constraints. The synchro-
nization is performed based on source cooperation. The authors propose
a best-effort synchronization algorithm that adaptively sets the update
threshold for each object based on the current bandwidth situation.

Database Synchronization: Cho and Garcia-Molina [38] assume
that the local database is updated uniformly over time. Then given the
frequency we synchronize the local database, several important ques-
tions are answered based upon their theoretical proof. First, should
we synchronize all objects at the same rate, or should we synchronize
them with different rates that are proportional to their frequency of
changes? Surprisingly, they demonstrate that the uniform allocation
policy, which synchronizes all elements at the same rate, is always bet-
ter than the proportional allocation policy, and that we can always cal-
culate the optimal resource allocation by using the method of Lagrange
multipliers. Second, given the synchronization frequency and resource
allocation, we need to decide in what order we update the objects in the
local database. There are three alternatives: (1) fixed order, in which
we update all elements in the same order repeatedly; (2) random order,
in which we update them repeatedly, but randomly select an element to
start with in each iteration; and (3) purely random order, in which we
arbitrarily select any object to update no matter when it was updated
last time. It turns out that the fixed order performs the best among
all. By following the uniform resource allocation policy and the fixed
order, the optimal synchronization policy is achieved to significantly
improve the freshness of the local cache.

There is additional related work in closely related areas; we sum-
marize it in Section 8.

5.5 [Maintain] Cache Replacement Policies

Most of the existing work on web caching for dynamic data does not
consider the issue of cache replacement [8, 12, 26, 29, 108, 118, 120,
136, 140, 141, 151, 172, 173]. Many others adopt the traditional Least

204 Cache Maintenance

Recently Used (LRU) [43, 119, 121, 122, 139, 140, 157] and Least Fre-
quently Used (LFU) policies [139, 157] for cache replacement. In these
policies, when the cache size becomes inadequate, the cache unit that
has not been used for the longest time (LRU), or the cache unit that
has the least number of accesses (LFU), will be evicted from the cache.

Finally, a few approaches adopt a benefit-based policy for cache
replacement [9, 123]. The policy deletes the cache unit that has the
least utility. The benefit of a cache unit is usually evaluated based on
the per-bit utilization of answering queries.

Given that most of the work in cache replacement is done in the con-
text of “traditional” web caching (i.e., for static files) or of distributed
systems, we present additional details in Section 8.

Performance and Quality Metrics

In order to evaluate the effectiveness and quality of a web caching/
materialization strategy one can employ three types of metrics:

e standard Quality of Service (QoS) metrics;

e Quality of Data (QoD) metrics, which are important for
dynamic data; and

® user-centric approaches, which measure user satisfaction and
typically consider both QoS and QoD.

In the following subsections we present these metrics in detail.
We conclude the section with a short presentation on Service Level
Agreements.

6.1 [Metrics] QoS Metrics

The Quality of Service (QoS) experienced by web users has gained
great attention in recent years. It is of vital importance for all kinds of
web service, e-business, online financial service, and more important,
for the emerging streaming applications, i.e., audio/video services. QoS
is becoming a dominant factor of any Internet-based web service [41].

205

206 Performance and Quality Metrics

The most widely used QoS metrics include user perceived response
time, data availability, and system throughput.

6.1.1 [Metrics::QoS] Response Time

The key functionality of web caching is to distribute copies of popular
objects from web servers to locations closer to the users. Thus user per-
ceived response time, the latency between a user issuing a request and
receiving a response back, is the most important measurement of a web
caching system. The smaller response time, the better. Typically, we are
interested in the end-to-end response time, which includes the “transit”
time of the results (i.e., the time it takes the results to reach the end-
user’s computer from the server). However, some works focus only on
the response time at the server (i.e., with essentially zero network trans-
mission cost) in order to isolate and study just the server’s behavior.
If somehow a user’s request is associated with a response time dead-
line (equivalent to that of a soft real-time system), then one additional
QoS metric is that of tardiness. Tardiness measures the amount of
“deviation” from the deadline; if the result to a user request is deliv-
ered past the deadline, the tardiness is the amount of time past the
deadline. However, if the result to a user request is delivered before the
deadline, then the tardiness is zero (i.e., no benefit in being early).
Another QoS metric that is based on response time is slowdown.
Slowdown measures the ratio of the actual execution time of serving a
user request over the “ideal” execution time of serving the user request,
i.e., the time it would take to execute it if it were the only request in
the system. Given this definition, slowdown can be greater or equal to
1.0. The closer the slowdown is to 1.0 (the ideal value) the better it is.
One disadvantage of using slowdown is the requirement to know ahead
of time the “ideal” execution time. One big advantage of slowdown is
that it is a more “natural” metric to users, who can easily understand
the meaning of a 20% slowdown of the processing of their requests.
Given a QoS metric (e.g., response time, tardiness, or slowdown),
the question remains on what to optimize in terms of the values of
this metric over multiple requests/user queries over time. In other
words, how to aggregate multiple measurements. By far, the most typical

6.1 [Metrics] QoS Metrics 207

aggregator is the average value. Although the average value is easy to
understand and to implement, it is not always the most representative
aggregator function. In particular, just trying to optimize for the aver-
age value will often lead to starvation, where some of the users will face
very high response times, although the overall average value would be
quite low.

Another alternative for aggregating over multiple values is to con-
sider the minimum or the mazimum value, depending on whether lower
or higher values are better for the metric we are considering. For exam-
ple, trying to optimize (i.e., minimize) for the maximum response time
is essentially trying to make the worst case as good as possible, thus
eliminating the starvation problem. Of course, this can happen at the
expense of the average case.

An alternative that balances between the worst case and the average
case was proposed in [149] for scheduling in data stream management
systems. The main idea is to use the L2 norm of the response time (or
slowdown), which is defined as follows:

Definition 6.1. The /5 norm of response times for N requests is equal
to \/211\7 R?, where R; is the response time of the i-th user request.

Using the L2 norm as the aggregator function was shown to balance
the trade-off between optimizing for the average case and optimizing
for the worst case.

6.1.2 [Metrics::QoS] Availability

The always-on characteristic of the Web is making awvailability a first-
class citizen among performance metrics. Availability is used to mea-
sure whether the data present or the web service is ready for immediate
use. The larger the value the larger the probability that the data and
service are accessible at any given moment.

Availability can suffer because of congestion/overload conditions at
two points: (a) at the server and (b) at the network path between
the end-user and the server. Furthermore, such conditions can occur

208 Performance and Quality Metrics

because of three reasons:

e Increased “legitimate” load, because of the success/popula-
rity of a website, which is often referred to as a flash crowd
or the slashdot effect. In some cases the high load can
occur because of high update volume, which overwhelms the
database driving the website.

e Unintentional software problems/bugs that introduce extra
delays and/or waste system resources (e.g., memory leaks).

e Intentional efforts to sabotage the web server (or the network
path that leads to it), for example through a (distributed)
denial of service attack.

Caching and materialization helps mitigate such congestion and
increase availability, avoiding the “traditional” single point of failure
problem. As such, availability increases by replicating data across dif-
ferent locations, however, on the other hand, such replication brings
consistency /freshness issues, essentially creating a trade-off, as we illus-
trate later in this section.

Associated with availability is the time-to-repair (TTR) metric.
TTR represents the time it takes to get a data item or service back
online. The smaller the TTR value, the better.

6.1.3 [Metrics::QoS] Throughput

Although end-users do not case about throughput (or ever see it),
throughput is an important system performance metric, that mea-
sures how efficiently the current environment is processing user
requests. Throughput is used to assess how many data or web ser-
vice requests can be handled by a system in a given time period. Web
caching /materialization can be employed at the web server to alleviate
congestion (especially during peak times) thus improving the servers’
scalability /throughput [104].

6.2 [Metrics] QoD Metrics

Quality of Data (QoD) metrics are used to evaluate how “good” the
served data are. Goodness of data can be measured in freshness,

6.2 [Metrics] QoD Metrics 209

accuracy, and other metrics. The definition heavily depends on the
semantics and requirements of the application.

6.2.1 [Metrics::QoD]| Freshness

When we cache data locally, a portion of the cached objects may get
temporarily out-of-date, due to the delay between source data updates
and the refresh of the local copy. In general, data freshness mea-
sures how fresh cached data are compared with its up-to-date version
(at the source). There are multiple definitions for data freshness, which
we explore next.

In Squirrel [86], a binary value is assumed as the freshness func-
tion. Opposite to the freshness degree, Iyengar and Challenger [85] and
Dingle and Partl [50] define staleness degree to assess how obsolete the
object is. In [85], one of the functionality of the Data Update Prop-
agation (DUP) algorithm is to calculate the staleness degree for each
object. They use a weighted graph to describe the object dependencies.
At what degree a version of an object is obsolete is determined from the
sum of the weights of edges from the object node n; to another node
ng, where the object is consistent with the latest version of ny. The
obsoleteness degree is compared with an explicitly specified threshold
value, if it falls below the value, the object stays, otherwise it will be
invalidated or replaced with a up-to-date version.

Unlike [50, 85, 86], which define freshness/obsoleteness degree as
a per-object value, both Adelberg et al. [4] and Cho and Garcia-
Molina [38] emphasize a more “global” view and define freshness as
the fraction of the database that is up-to-date. Let S = {eq,...,en} be
a database of N elements. The freshness of an element e; at time t is:

1 if e; is up-to-date at time t
0 otherwise.

Flest) = {

Then the freshness of database S at time ¢ is

F(Si1) = D Flesst), (61)
=1

210 Performance and Quality Metrics

and the freshness averaged over time F(S) as:
_ 1 [t
F(S)=lim — | F(S;t)dt.

t—oo t 0

Labrinidis and Roussopoulos [105] improved the freshness metric
by taking object popularity into account. Their workload study found
that both the query and update distributions are highly skewed, which
well supports the importance of including popularity into the fresh-
ness metric. As a result, they define the overall freshness degree as the
popularity-weighted sum of the freshness probabilities of all the objects
in the database, including views. As in [4, 38|, the freshness function
for object d; is defined as

0 if object d; is stale at time t

bfresn(di)' =
fresh(di) { 1 if d; is not stale at time t

The freshness probability for a view object v, pfresn(v), is defined as
the probability of accessing a fresh version of v during interval T,

1 t
t
pfresh(v) = T X /t bfresh(di) .

Assume f,(v;) is the access frequency of view v;, then the freshness
probability of the database pfyesp(db) is:

pfresh(db) = Z fa(vi) X pfresh('vi). (62)
A%

Olston and Widom [129] further imported another attribute, the
importance of an object, into the freshness metric. They define impor-

tance function as Z(O,t) for object O at time ¢, popularity function as
P(0O,t), and the overall weight W(O,t) is defined as:

W(O,t) = T(0,t) x P(O,1).

6.2.2 [Metrics::QoD]| Accuracy

In addition to freshness, which is based on time, another metric to
assess quality of data is deviation of the value, or its accuracy [19, 129,
148]. Accuracy is defined as:

D,(0,t) = A(V(0,1),V(C(0),t)),

6.3 [Metrics] Quality Contracts 211

where C'(O) is the cached copy of object O, V(O) represents the value
of object O at time ¢, and A(V;,V5) can be any function quantifying
the difference between two versions of an object. In [19] and [148], the
authors use |V(O,t) — V(C(0),t)| to measure the coherence between
two versions. They use the temporal coherency requirements to guide
the process of update dissemination.

Although the accuracy metric is “perfect” for quantifying how dif-
ferent a cached data item is when compared to its source, the metric’s
applicability is somewhat limited because it is not always easy to con-
struct A() functions to measure the difference of the two versions.

6.2.3 [Metrics::QoD]| Lag

Lag is defined in [129] as D;(O,t) = u, when C(O), the cached version
of O, is u updates behind O. This means that O has been updated
u times since the last refresh. It is also called number of Unapplied
Updates (UU) in [4], which is optimistic and assumes that the object
is always fresh unless there are updates received but not applied yet.
In some cases the object freshness is not easy to estimate, so unapplied
updates is a good alternative that systems can accurately measure.

6.3 [Metrics] Quality Contracts

Having visited current approaches to Quality of Service (QoS) and
Quality of Data (QoD), Labrinidis et al. [103] identify that the most
important limitation is that they do not have strong support for user
preferences. In practice, it is beneficial to have users supply their pref-
erences on how the system should balance the trade-off between QoS
and QoD, in other words, instruct the system on how to best allo-
cate resources in order to maximize user satisfaction. Toward this goal,
Labrinidis et al. proposed Quality Contracts (QCs) [103], a framework
based on the micro-economic paradigm, that provides an intuitive and
powerful way for users to specify preferences for QoS and QoD.

In the QC framework, users are allocated virtual money, which they
spend to execute their queries. The Quality Contract (QC) essentially
specifies how much money a user is wiling to pay. The amount of money
the server receives in the end (i.e., the system profit) will depend on

212 Performance and Quality Metrics

worth worth

A period of max A
to user Worth to user to user

A period of max
worth to user

$70 =1 period of some $30

worth to user

period of some
worth to user

H :
| point of zero | point of zero

' | worth to user i worth to user
$0 T ./ > $0 - >
' ' response . n - data
0 sec 60sec 150sec t|me 0 min 5 min 30 min Staleness
(a) QoS graph ($0 to $70) (b) QoD graph ($0 to $30)

Fig. 6.1 QC example: The QoS metric is response time, whereas the QoD metric is data
staleness. Data staleness is measured as the time between the last instant when the physical
world has changed and the instant when the local storage has been updated (i.e., time since
the last update on a data item access by the query).

how well it executes the user’s query. In this model, servers try to
maximize their income, whereas users try to “stretch” their budget to
run successfully as many queries as they can.

A Quality Contract (QC) is essentially a collection of graphs repre-
senting QoS/QoD requirements from the user. Figure 6.1 is an exam-
ple for an ad hoc query submitted by a user. This QC consists of two
graphs: a QoS graph (Figure 6.1a) and a QoD graph (Figure 6.1b).
This example illustrates the following salient features of QCs. First,
QCs allow users to combine different aspects of quality, as the user has
expressed preferences for both QoS and QoD. Second, users can specify
the relative importance of each component of the overall quality by allo-
cating the query budget accordingly. In this example, $70 are allocated
for optimal QoS, whereas $30 are allocated for optimal QoD which is
less important than QoS. Third, users can easily specify the relative
importance of each query by allocating their budgets accordingly.

Quality Contracts were inspired by prior work that utilized micro-
economic models for resource allocation (e.g., Mariposa [154] and the
work by Ferguson et al. [57]). Recent work by Florescu and Kossmann
advocates the use of real cost (i.e., an economic model) as one of the
system optimization objectives.

6.4 [Metrics] Service Level Agreements

A Service Level Agreement (SLA) is a formal definition of the business
relationship between a service provider and its customer. It specifies the

6.4 [Metrics] Service Level Agreements 213

mutual understandings about what the customer could expect from
the service provider, the obligations of both customer and provider,
how well the service needs to be executed and the procedures to be
followed. The typical components of an SLA include description of the
service and parties, the validation period, the expected service level
objectives, the procedures to follow including monitoring and reporting,
the penalty for the service provider not fulfilling the obligation, and
constraints and exclusions.

Verma [163] provides an overview of Service Level Agreements in
the network management domain. Within the context of the computer
networks, especially TP networks, SLAs are typically provided for three
type of services, network connectivity services that provide customer
access to the network or connect them to each other as an intranet;
hosting services that provides web servers to operate websites; and the
integrated services of the connectivity and hosting. Verma also identi-
fied three different models that are used to support SLAs: the insur-
ance approach, the provisioning approach, and the adaptive approach.
The insurance approach is the most commonly used one in industry. In
this approach, the service provider offers the same level of service to all
customers (in a best-effort mode) and periodically modifies service level
objectives. In the provisioning approach, the service provider negoti-
ates different types of service level objectives with different customers.
Different system configurations need to be made and resources will be
allocated according to a customer’s different needs. The last approach
is the adaptive approach that dynamically modifies the system config-
urations for different customers. Verma [163] then describes how these
three different approaches are used in each of the three different ser-
vice environments, and the advantages of moving from the insurance
approach to more dynamic ones.

SLAs can be viewed as legal documents and, as such, original SLAs
are described in natural language. There has been a lot of effort to make
the entire procedure, definition, negotiation, deployment, monitoring
and enhancement, an automated process. The first step is the SLA
templates [142] for a service provisioning system. It includes several
automatically processed fields in the natural language written SLA.
The limitation is that it is only suitable for a small set of SLAs that

214 Performance and Quality Metrics

provides the same type of service and use the same Quality of Service
(QoS) parameters. Additionally, the offer is hard to be changed over the
time. To facilitate automatic SLA process, many companies presented
their own Web Service platforms.

Jin et al. [88] propose a service composition model to capture the
composition relationships between service providers and customers and
help making decisions on the creation stage of SLAs. In this model, a
web service is composed of a set of operations. Each operation is imple-
mented by a sequence of activities, where an SLA is attached to. The
SLA itself is modeled as a distribution of a Quality of Service metric.
By using Business Process Simulation Environment (BPSE) as simula-
tion tool and focus on the HP Process Manager system, they perform
a service level sensitivity analysis, identify the impact of changing sup-
pliers and /or their SLAs on the service provider’s capability of fulfilling
their obligations. Their simulation results suggest that having informa-
tion of impact of various service levels is important for defining service
level objectives in the creation stage of SLAs.

Negotiation of SLAs is very important for maintaining Quality of
Service. To facilitate automated negotiations of SLAs for web services
in a Service-Oriented Architecture (SOA), a lot of different models
and approaches were proposed. Su et al. [155] propose a negotiation
server to perform bargain-type negotiation automatically. The negoti-
ation server uses constraint satisfaction, rule-based conflict resolution,
and event systems to conduct negotiations after goals and requirements
are registered by both parities. Hung et al. [84] propose a Web Service
Negotiation language including negotiation message, protocol, strategy
and a framework the language can be used. Li et al. [113] extend Su’s
negotiation server, and propose an automated negotiation framework
based on a finite state automata and a set of negotiation protocols.
Cappiello et al. [30], Chen et al. [36], and Zulkernine et al. [179] all
propose policy-based Negotiation Broker (NB) framework. The high-
level business goals, the negotiation parameters including preferences,
constraints, and values are expressed as a policy specification by each of
the negotiating parties. The NB then maps the policy specifications to
low-level negotiation strategy models and parameters. The broker then
conducts negotiations automatically. The differences are that [30, 36]

6.4 [Metrics] Service Level Agreements 215

require negotiating parties to have knowledge about strategy models
to input their choice of strategy and parameters in the specification,
whereas Zulkernine et al. [179] lift this requirement and conduct the
mapping automatically.

IBM presented its Web Services framework [97] in 2001. Keller
and Ludwig [93] then proposed Web Service Level Agreement (WSLA)
framework for specifying and monitoring SLAs for Web Services. The
framework contains a language and a run-time architecture comprising
several SLA monitoring services. The language defines a type system
based on XML schema, allows both parties to define the service descrip-
tion including service operations, SLA parameters and metrics, and
the obligations including service level objectives and action guaran-
tees. After the specification is submitted, the WSLA monitoring ser-
vices are automatically configured to enforce the SLA. The principles,
SLA establishment scenarios, lessons, and design goals are documented
n [93]. A Java-implemented WSLA framework, the SLA Compliance
Monitor, has been published as part of the IBM Web Services Toolkit.

Projects

In this section, we review representative projects on caching for
web databases. The projects are clustered based on the location of
caching /materialization, i.e., browser caches, proxy caches, and server-

side caches (Table 7.1).

7.1 Browser Caches

In comparison with the large number of publications on server-side or
proxy caching, there is less existing work on client-side caching for web
databases. One reason is that client-side caching benefits only clients
and browser caches are mostly sufficient for the purpose.

Rabinovich et al. [136] propose an approach to construct dynamic
web pages at the browser rather than at the proxy. Their approach
uses the Edge Side Includes (ESI) [54] markup language to assemble
web fragments stored at a client cache into pages. We will describe
ESI in more detail later in the related work on industrial products and
standards.

Xiao et al. [172] study the sharing of cache contents between a
number of clients and their proxy. The authors design a P2P cache
management scheme that exploits data locality and reduces document
duplicates in the group of browser caches.

216

7.2 Proxy Caches 217

Table 7.1. Classification of projects according to location of cache.

Store::Location

Server db cache: SkyServer [156], WebView [104]
mid-tier cache: DBCache [8, 118], MTCache [108]
web server cache: WebView [104, 105, 107]
combination: Server Farm [26], Weave [173]
Reverse Proxy single cache: CachePortal [26], DBProxy [9, 10], Oracle Web Cache [12]
multi-cache: Cascaded Caching [157], Cooperative Caching
[138, 139, 140, 141]

Proxy Active Caching [29, 120], Bypass Caching [123, 124], DCCP [151],
Dynamic Content Caching [43], Form-Based Proxy [119, 121, 122]
Client Browsers-Aware Caching [172], CSI [136]

There has been renewed interest in caching at the client side lately.
First of all, the upcoming new HTML 5.0 standard! introduces new
caching capabilities, in general, and, in particular, application caches.?
This feature should considerably increase the caching options available
to the end-user.

The proliferation of AJAX brought upon JavaScript libraries that
support enhanced caching capabilities at the client side. The most
notable of these is the Google Gears framework? that was released in
2007. Gears supports among other things a database module that can
store data locally (as part of the client-side part of a web application)
and a module that caches and serves application resources (HTML,
JavaScript, images, etc).?

7.2 Proxy Caches

Proxy caches have been widely used throughout the Internet to improve
client response time and reduce server workload. Specifically for web
databases, we review several representative proxy caching frameworks,
including the active proxy [120], the form-based proxy [119, 121,
122], CachePortal [26], a page fragment-based caching proxy [43],
DBProxy [9], the bypass caching [123], and the Oracle Web Cache.

Lhttp://en.wikipedia.org/wiki/HTML_5
2http://www.w3.org/TR/html5/offline.html#appcache
3http://en.wikipedia.org/wiki/Google_Gears
4http://gears.google.com/

218 Projects

The DCCP protocol proposed by Smith et al. [151] utilizes
user-specified equivalence between different documents to accelerate
dynamic web caching at proxies. In the Active Cache scheme [29], the
server provides cache applets along with corresponding web documents
to store in the proxy cache. These applets are invoked upon cache
hits to dynamically process the documents when necessary, reducing
communication to the server. Luo et al. [120] extend cache applets to
query applets that enable active caching of SQL query results. This
active caching of SQL query results is done through checking query
containment between a new query and a cached query and if applicable,
evaluating the new query over the results of a cached query. The authors
identify sufficient but not necessary conditions for polynomial-time con-
tainment checking between queries to achieve efficient query processing
at the proxy.

The form-based proxy [119, 121, 122] also investigates containment-
based query processing as a variant of its active caching scheme. In
the form-based proxy caching framework, the authors propose active
caching techniques for two common classes of queries issued from
HTML forms to database-backed websites: keyword-based queries and
function-embedded queries. The first class of queries contains keyword
search predicates and the second embeds calls to table-valued functions.
The form-based proxy works with query and function templates that
describe high-level semantics of the queries issued from HTML forms.
By extensive experiments using both real and synthetic query traces,
the authors demonstrate that the proposed active query caching largely
outperforms traditional, exact match-based passive caching.

CachePortal [26] is a reverse proxy caching framework proposed by
Candan et al. for database-backed websites. The proxies in the frame-
work are ordinary web caching proxy servers. The two main components
in the system are the sniffer and the invalidator at the server side.
The sniffer records HT'TP requests received as well as database queries
generated by the application server, and creates mapping between
the HTTP requests and the database queries. The invalidator iden-
tifies the queries whose results are affected by a database update and
removes all cached pages whose fragments are generated from these
query results. CachePortal uses several commercial products in the

7.2 Proxy Caches 219

system deployment and evaluation, including an Oracle DBMS and
a BEA web and application server.

Datta et al. [43] present a proxy implementation for dynamic web
caching. The system can be configured to run either as a reverse proxy
or as a proxy. The proxy stores various web fragments and composes the
page to be returned for an HT'TP request using these cached fragments
given the layout information, which can be dynamically determined by
the server. In other words, both page fragments and the layout of the
page can be dynamically generated and updated. Missing fragments for
a request are shipped from the server together with the layout.

DBProzy [9] is a semantic data cache at the edge server. Results of
SQL queries are stored as materialized views in the cache, independent
from the original database schema. The list of queries whose results are
currently stored is kept in a cache index. The system uses template-
based query containment checking algorithms to answer a new query
using the cached results of previous queries [10]. The query templates
are automatically inferred from similarities between predicates of multi-
ple queries. These template-based algorithms achieve a higher efficiency
than general containment checking algorithms [109] by taking advan-
tage of the semantic restrictions of query templates. As a result, they
are scalable to a large number of query predicates within each template.

In DBProxy [9], the query results in the cache are reactively loaded
at the query time. These query results are stored in a local database
whose schema is dynamically changing with the query workload. If
prior knowledge of the workload is available, an initial schema can be
set proactively for the cache database to reduce subsequent schema
modifications. Updates on the original tables at the database server
are propagated to the cache by a consistency protocol based on update
subscription. In addition, a background garbage collection process
is used to remove cached tuples that do not belong to any cached
queries.

Malik et al. [123] present a bypass proxy caching framework for
scientific database federations. Their framework focuses on conserving
global wide-area network bandwidth in the federation rather than local
response time. This focus is for scientific databases to be a good citizen
in the public Internet.

220 Projects

A bypass cache loads and evicts database objects according to their
expected yields. The yield of an object is estimated using the result
sizes of the queries that can be answered using the object, i.e., the
saving of network traffic achieved by caching the object. The rate
of network traffic saving achieved by the queries answered using the
object during its lifetime in the cache is recorded in the rate profile of
the object. The authors develop three algorithms for the bypass cache
management: (i) a rate-profile algorithm that uses previous queries to
predict future workload patterns, (ii) an online algorithm that has
theoretical performance guarantees and assumes no query workload
patterns, and (iii) a randomized algorithm with minimal space require-
ment. Subsequently, the authors investigate how to estimate the query
result sizes required for yield computation [124]. The estimation is
adaptive, based on statistical learning techniques, including classifi-
cation and regression, over query templates.

In bypass caching, the authors experimentally demonstrate that
query containment relationships are infrequent in scientific workloads,
and thus, semantic query processing is ineffective in such scenario. As
a result, table-level rather than query-level caching is employed in a
bypass cache. The tables in bypass caching are dynamically inserted
into or deleted from a cache according to their yield estimation upon
the current query workload. The evaluation of a query at a bypass
cache is either completely local or completely remote. This decision
is made based on the yield estimation of database objects involved in
query processing.

Oracle Web Cache [12] is an industrial reverse proxy cache product.
It performs page-level caching. It employs several techniques to support
dynamic web caching, including name disambiguation of cache con-
tents, intelligent session state management for users, fragment caching
for personalization, and heuristic invalidation for consistency mainte-
nance. Additionally, it manages cache consistency by setting different
granularities of invalidation options for the applications.

7.3 Server-Side Caches

Recall the server side of a web database includes the web server, the
application server, the database server, and the server application.

7.3 Server-Side Caches 221

In the following, we discuss projects that perform caching on various
layers at the server.

For database-backed web servers whose contents rapidly change,
Iyengar and Challenger [85] propose Data Update Propagation (DUP)
to maintain data dependencies between cached objects (e.g., dynamic
HTML web pages) and base data (e.g., fragments in the back-end
database). They utilize object dependency graphs to map relations
between base data and cached objects. They provide a metric to mea-
sure the obsoleteness of an object. Considering the object hierarchy
and the obsoleteness degree, they decide when and which pages should
be replaced.

Based on DUP, Challenger et al. [35] propose graph traversal algo-
rithms to identify all cached objects that are affected by a database
update. These objects are either invalidated or updated.

At the mid-tier of a database-backed website, database caches are
often deployed to store database objects. Such caches are usually a
DBMS clone with some extensions for caching purposes. This DBMS
can either be the same instance as or a different one from the database
server.

Two representatives of mid-tier database caches are DBCache
[8, 118] and MT'Cache [108]. Both caches are industrial-strength imple-
mentations. DBCache is developed using the IBM DB2 database server,
whereas MTCache uses the Microsoft SQL server.

Both DBCache [8, 118] and MTCache [108] employ table-level
caching. The views in both caches are predefined by the Database
Administrator (DBA) given the knowledge of the query workload. View
definitions in DBCache can be dynamically changed based on the cur-
rent query results. In comparison, in MTCache the entire database
schema together with the statistics are replicated to the cache, with all
cache tables initialized to be empty. Data in this shadow database are
reactively loaded from the original database at runtime.

Both DBCache and MTCache can generate distributed query plans
that efficiently combine local processing over cached data with remote
processing over the original database data. In DBCache [118], the cache
and the server are treated as a federated DB2 database. Altinel et al.
[8] propose a two-headed query plan called a Janus plan. Such a plan

222 Projects

contains a probe query that will always be executed. The result of
the probe query determines whether a local query or a remote query
will be executed subsequently. In comparison, MTCache focuses on
generating and optimizing dynamic plans for queries that have run-
time instantiated parameter values [108].

Work on server-side materialization often employs built-in utilities
of a commercial DBMS for consistency maintenance. As examples,
DBCache [8, 118] uses the DPropR utility in DB2 for cache invali-
dation and MTCache [108] uses SQL Sever transactional replication to
propagate database changes to cached tables or views.

Guo et al. [68] propose SQL language extensions to allow explicit
specification of currency and consistency constraints for applications.
The authors define rigorous semantics for these constraints and develop
techniques to fully integrate the constraints into query optimization and
execution. The authors also present a prototype implementation of the
proposed constraints in MTCache [108].

Furthermore, Bernstein et al. [17] design a new Relaxed Cur-
rency (RC) model for transaction serializability in mid-tier caches. The
model allows update transactions to read stale data that satisfies given
freshness constraints. The authors present algorithms for constraint
guarantee and prove the correctness of the proposed algorithms.

In comparison with general-purpose database caches, the SkyServer
[156] website stores materialized views of astronomy data in SQL
databases and utilizes materialized views to speed up the answering of
many types of spatial queries originated from various astronomy web
applications. The SkyServer website only updates its data by offline
load processes [156].

A multi-tier server-side cache that combines all three types of the
server-side caches is possible. For instance, Yagoub et al. [173] propose
a declarative website specification that enables a three-tier material-
ization strategy. It stores HTML pages, XML fragments as well as
materialized views. As a result, this approach is a mixture of query-
level, fragment-level, and page-level caching. What content is cached in
each of the three tiers and how the content is maintained upon various
events and conditions are all specified by the users before the website
is deployed. The processing of cached HTML pages or XML fragments

7.3 Server-Side Caches 223

falls into the category of no query processing. In comparison, the pro-
cessing of cached database data corresponds to full-fledged SQL query
processing. Their experimental results show that such a combination
of different materialization strategies is necessary to achieve the best
performance.

Finally, WebView materialization [104, 105] has been shown an
attractive solution to dynamic web caching. Labrinidis and Roussopou-
los [104] study the strategy of saving query results that generate web
page fragments inside the DBMS. The authors demonstrate that this
materialization strategy is not as efficient as materialization at the web
server, particularly if the queries are not complex. The authors propose
a cost model that analytically evaluates three different materialization
policies: no materialization, materialization at the database server or
at the web server. The model considers both the processing parallelism
at multiple servers and the performance impact of database updates.
The model also helps select WebViews to be materialized.

8

Related Work in Other Areas

Caching and materialization have been long studied in the context of
the “traditional” Web (i.e, for mostly static files), in database engines,
in client—server and distributed databases, in distributed and peer-to-
peer systems, and as part of commercial product offerings. In this
section, we discuss work in these areas related to caching and mate-
rialization for web databases.

8.1 General Web Caching
8.1.1 Data Consistency and Freshness

Cao and Liu [28] compare the Time-to-Live (TTL) weak consistency
method, which is widely used in the Internet, with two strong con-
sistency methods, polling-every-time and tnvalidation. Their experi-
ments show that although polling-every-time performs much worse than
the other two, invalidation achieves a similar response time to TTL.
Bright and Raschid [24] propose to employ user-provided profiles at
the browser to specify the latency—recency data requirement for web
applications.

224

8.1 General Web Caching 225

Li et al. [114] proposed to adaptively select pages to cache, balanc-
ing the response time, and the invalidation frequency of the cached web
pages. Given a system-specified freshness threshold, Li et al. propose
a freshness-driven adaptive dynamic content caching scheme to assure
that the delivered content is either fresh or not older than the thresh-
old. The algorithm keeps watching the response time and the length
of the invalidation cycle, which is the time taken to check the validity of
all pages in the cache. If the response time is larger than the length of
the invalidation cycle, the number of cached query types is increased
to lower the response time. If the invalidation cycle is longer than the
query response time, the number of cached query types is decreased
to shorten the invalidation cycle. By making the response time close
to the invalidation cycle in an equilibrium point, data freshness is
assured.

Bhide et al. [19] propose that the proxy computes a Time-to-Refresh
(TTR) attribute with each cached data item for the pull approach and
registers a temporal coherency requirement with each cached data item
for the push approach. Their argument is that the server—prediction
approach requires previous history on relevant data, which are not suit-
able for web data that is highly dynamic and inherently unpredictable.
They propose two technologies to combine push and pull based on a
client’s observation, PaP (Push and Pull) and PoP(Push or Pull). They
demonstrate that both of them meet the diverse temporal coherency
requirements, and are resilient to failures, efficient and scalable as well.

8.1.2 Cache Replacement

Cao and Irani [27] present a cost-based document replacement scheme
for proxy caching. The main idea behind this seminal paper is to con-
sider both the size of the document and the “cost”, namely the network
delay, of retrieving the document again if it were not cached. Even
though this work is geared toward static content, the idea has been
widely applied in web caching in general, including caching of dynamic
data.

Wolman [168] states in his PhD thesis that the cache replacement
algorithm is relatively indifferent to web caching because in practice

226 Related Work in Other Areas

a cache with a size of gigabytes is sufficient for all cacheable requests
most of the time. None of the papers in our monograph show a strong
impact of the cache replacement policy on the performance.

8.1.3 Cooperative Caching

Ramaswamy and Li [139] study cooperative caching of web documents
based on the expiration times of individual caches in the group. The
expiration times of cached data reveal the access contention in the
cache; the authors propose a document placement scheme based on this
concept. This scheme performs a global management of the total disk
space of all caches and effectively reduces duplicates cached without
performance degeneration. The authors further investigate the archi-
tecture design of a cache group for cooperative web caching [140]. In
this work, they develop dynamic and hash-based protocols for docu-
ment lookup and update within the group as well as a new utility-based
scheme for document placement. Finally, the authors study the impact
of automatic page fragmentation on web caching [138], and propose
two efficient schemes to divide a set of caches into multiple cooperative
groups to optimize the caching performance [141].

Tang and Chanson [157] formulate object placement for multiple
websites over a cache group as an optimization problem. They propose
a dynamic programming solution to solve the optimization problem,
assuming the access frequency of every object in each cache is known
a priori. Since all web objects to be cached need to be known before
the caching decisions are made, this approach requires a strong server
cooperation capability for the cache group.

8.1.4 Web Cache Updates

Banga et al. [15] propose optimistic deltas as incremental updates for
latency reduction over slow networks. They put a layer of proxies on
either end of a slow link. The server-side proxy optimistically sends
data (which are possibly stale) to the client-side proxies during the
idle time. Having transferred all the data just once, in the remaining
correspondence, only a confirmation that the data are not modified or
a delta, which is the change between the older version and the current

8.1 General Web Caching 227

one, will be transferred. Banga et al. provide data analysis to support
their assumption, that changes between two versions are relatively small
in comparison to the actual web documents.

Mogul et al. [126] further quantify the benefits of delta encoding
using real traces. Their results show that incremental updates provide
significant improvements in the response size (i.e., network overhead)
and the response delay (i.e., user-perceived performance). They also
find that data compression helps, and that the combination of delta
encoding and data compression yields the best results.

8.1.5 Workload Characterization

There have been a lot of workload characterization studies for web con-
tent, dealing with both static content (focusing primarily on the access
patterns) and dynamic content (addressing both access and update
patterns).

Bestavros [18] analyzes web logs from Boston University and finds
that the more popular a file is, the less frequently the file changes.
Gwertzman and Seltzer [73] later collect logs from mainly the school
environment as well, and confirm Bestavros’s observation [18] that pop-
ular files tend to be unchanged.

In contrast, Douglis et al. [52] get the result that more popular
resources change more frequently rather than less from traces of two
large corporate networks, and suggest that the divergence of these
results may come from the environmental difference. Labrinidis and
Roussopoulos [106] also found a strong correlation between popularity
of web pages and update frequency, using access and updates traces
from a stock market website.

Finally, Breslau et al. [22] gather 6 representative web traces across
the university environment and the corporation environment to inves-
tigate the same correlation. Their result shows that the statistical cor-
relation between a document’s access frequency and its update rate is
generally quite low and varies from trace to trace. Therefore, it is best
to assume that there is no correlation while designing a cache coherency
mechanism. This result demonstrates that we do need both push and
pull approaches.

228 Related Work in Other Areas

8.2 Database Caching and Materialized Views

There have been a large number of publications on answering queries
using materialized views in relational databases. The book edited by
Gupta and Mumick [71] contains a thorough monograph of the state-
of-the-art in this regard. In this section, we present a sample of the
related work. In particular, we look into five questions/issues: query
answerability, update applicability, efficient updating of materialized
views, updates in soft real-time databases, and a few innovative uses
of database caching.

8.2.1 Query Answerability

Larson and Yang [109] present theoretical conditions to determine
whether and how a query can be answered using a single materialized
view defined via Selection-Projection-Join (SPJ) expressions. Rajara-
man et al. [137] study answering queries using template-based views
that have restricted binding patterns for variables in the templates.
Goldstein and Larson [62] study view utilization in a transformation-
based query optimizer. The authors propose a fast and scalable
algorithm to compute sub-query expressions from materialized views
defined via SPJ and group-by operations. The authors also develop a
special index on view definitions to reduce the number of candidate
views that need to be examined.

Halevy [75] introduces three classes of applications for the problem
of answering queries using materialized views, including query opti-
mization and database design, data integration, and semantic caching
in client—server systems. The author further describes algorithms and
theoretical results proposed for the problem in each class of application.

8.2.2 Update Applicability

Blakeley et al. [20, 21] provide sufficient and necessary conditions for
detecting update irrelevance by validating Boolean expressions. They
can handle updates for SPJ views. The limitation is that the algorithms
to prove the satisfiability of Boolean expressions are quite expensive
under normal conditions.

8.2 Database Caching and Materialized Views 229

Elkan [56] presents a mechanism to determine whether a query is
independent of an update for Datalog. He shows a model-theoretic def-
inition of independence, its basic properties and a proof-theoretic con-
dition for a conjunctive query to be independent of an update. He
also introduces a practical induction scheme to deal with recursive
queries.

Levy and Sagiv [111] further consider irrelevant updates for Datalog
with negated base relations, recursive rules, and arithmetic inequalities.
They reduce the independence problem into the equivalence problem
for Datalog programs, and then propose schemes to detect the two
subclasses of equivalence, query-reachability and uniform equivalence.

8.2.3 Efficient Updating of Materialized Views

Hanson [76] analytically compares three different view materializa-
tion strategies, query modification which is a strategic recomputation,
immediate view synchronization [21], and deferred view synchroniza-
tion [76, 144]. The result shows that under different database struc-
tures, different view definitions (i.e., selection, projection, join, and
aggregates), and different query/update activity patterns, the most effi-
cient strategy is different. Thus, there is no clear winner.

Vista [164] does a thorough monograph in her PhD thesis and sup-
ports the same statement that whether to choose the incremental view
maintenance or re-evaluation could not be decided a priori, and should
be guided by the actual query load. As a result, the decision is bet-
ter to be made by the database query optimizer at the time of view
maintenance.

There is also prior work on efficient updating of materialized views.
Blakeley et al. [21] present a maintenance mechanism for materialized
views. The mechanism filters database updates that do not affect the
views and propagates the remaining updates to the views by recompu-
ation. Abiteboul et al. [2] propose an incremental algorithm to update
materialized views over semi-structured data represented in a graph-
based data model called OEM. The algorithm works based on the view
specification as well as special data structures generated during view
population.

230 Related Work in Other Areas

Materialized Views for Relational Data: There has been a lot of
work exploring the incremental maintenance problem of mate-
rialized views for relational databases. Gupta and Mumick [70]
present a taxonomy of the view maintenance problem based
on three different dimensions in the problem space: amount
of information, expressiveness of view definition language, and
type of modification. We classify existing algorithms into three
categories, counting algorithms, algebraic differencing, and pro-
duction rules, based on the approach they adopt.

Counting Algorithms: One of the most widely used incre-
mental view maintenance algorithms is the counting
algorithm. It was first proposed in [21]. This scheme main-
tains a multiplicity counter for each view tuple to correctly
handle insertions and deletions. Gupta et al. [69, 72] later
use a counting algorithm to track the number of alter-
native derivations of each tuple in the materialized view.
Their counting algorithm in [69] is suggested to handle
non-recursive views only. Then they extend it in [72] to
include recursive views by proposing the Deletion and
Rederivation (DRed) algorithm, which deletes view tuples
that have alternative derivations from the overestimate
and then rederives new tuples with alternative derivations.

Algebraic Differencing: Several papers adopt algebraic
change propagation schemes [64, 65, 134]. Qian and
Wiederhold [134] present an iterative algorithm for the
incremental recomputation of relational expressions based
on the algebraic differencing approach. Griffin et al. [65]
improve Qian and Wiederhold’s [134] work with a recur-
sive algorithm, and corrects the minimality condition
preservation. Griffin and Libkin [64] extend the alge-
braic approach to multiset algebra operations (bags),
and with aggregations. They propose an approach based
on equational reasoning of bag-valued expressions and
list the advantages of this approach over the algorith-
mic approaches. Finally, they prove that their change

8.2 Database Caching and Materialized Views 231

propagation algorithm performs much better than recom-
putation in both time and space efficiency.

Production Rule: Production rules specify data manipula-
tion operations when certain conditions are met or when
certain events occur. Ceri and Widom [33] use production
rules to maintain views as general SQL queries without
duplicates and aggregations. They first perform a syntactic
analysis on the view definition to determine if incremen-
tal maintenance is possible. If yes, the system automati-
cally derives set-oriented production rules to maintain the
materialized views.

All of the three categories can well handle views over SPJ
expressions without duplicates, negation, aggregation, or recur-
sion. The only two schemes that can properly handle duplicates
are [72] and [64]. They are also the only two that can han-
dle aggregations. The work by Gupta et al. [72] can deal with
negation and recursion as well, hence is the least restrictive one
among all.

Most of these traditional view matching and maintenance
techniques are applicable to either a database server or a mid-
tier database cache. In general, they are applicable to any cache
that contains materialized views derived from the original tables
at the database server. On the other hand, the unique character-
istics of a web database make certain modifications of the tech-
niques necessary. For example, the communication cost between
the cache and the database server must be considered when
selecting materialized views in the cache to answer a query,
if the cache is not co-located with the db server. The cache
needs to generate an efficient distributed query plan that uti-
lizes both the local materialized views and the remote origi-
nal tables based on cost estimation. In order to minimize the
influence on website performance, database updates must be
carefully scheduled before they are propagated to the materi-
alized views in the cache [106]. Adaptive, performance-driven
view selection techniques are essential for this [104, 105, 107].

232 Related Work in Other Areas

Materialized Views for Semi-Structured Data: Recently, the
XML semi-structured data model has started attracting a lot
of attention. Several papers [2, 146, 178], which specifically aim
at XML caching applications, have focused on incrementally
maintaining materialized views over XML documents.

XML views in the cache are mainly the results of the previ-
ous queries. All these XML view maintenance algorithms focus
on how to efficiently issue queries to the data source. The dif-
ferences are in data models and view specification languages.

Zhuge and Garcia-Molina’s [178] work is one of the earli-
est papers. It assumes a directed tree-structured data model in
what they called graph structured database (GSDB). Instead,
Abiteboul et al. [2] assume a more general graph-based data
model and the query language Lorel. Their experimental results
show that their algorithm is always more efficient than recom-
putation, even when there are thousands of updates.

Although the results from previous work look promising, the
view specification languages assumed are still limited. Balmin
et al. [14] extend the materialized view specification language
into path expressions (which forms the core of XPath! and the
XQuery? language). Then Sawires et al. [146] study incremental
view maintenance on path-expression views. They propose to
analyze the source updates, and incrementally update the cache
based on the relevance of the updates to the cached results.
Their experimental results confirmed the performance benefits
of their algorithm.

8.2.4 Updates in Soft Real-Time Databases

Adelberg et al. [4] study the problem of update processing in the con-
text of real-time databases, in which each transaction has a deadline
and will be aborted if the deadline is missed. In real-time databases,
updates should be processed in a timely fashion so that the database
is kept up-to-date, and so do transactions due to deadlines.

Lhttp://www.w3.org/TR/xpath
2http://www.w3.org/ TR /xquery

8.2 Database Caching and Materialized Views 233

The authors first focus on update processing for base data and the
scheduling of updates and transactions. They classify the strategies
into four approaches: (i) do updates first (UF), (ii) do transactions
first (TF), (iii) split updates (SU), and (iv) on demand (OD). UF
gives updates higher priority and will apply an update whenever it
arrives. TF is the other way around, and only applies updates when no
transactions are waiting. SU will perform updates first for data of high
importance and execute transactions first for data of low importance.
With the OD strategy, transactions are given a higher priority. How-
ever, whenever a transaction handles a stale data item, it will update
the stale data first. Their experimental results suggest that OD achieves
the best overall performance. In case OD is not applicable, either UF
or TF should be chosen based on the relative importance of database
freshness and transaction response time.

Adelberg et al. [5] study the recomputation process of derived
objects in real-time databases. They explore the combination of
schemes from multiple dimensions, including incremental recomputa-
tion and full recomputation, how to batch several updates into a single
recomputation, and whether to block the transaction on stale data.
Their results indicate that recomputations should be delayed slightly
so that several related updates can be combined in a single step.
This approach, Forced Delay, strikes the balance between recomputing
derived objects and executing transactions timely. Also, the incremen-
tal recomputation performs better than full recomputation, although
there are cases that incremental updates are not feasible. (For a more
detailed discussion on Update Scheduling, see Section 5.4.)

Finally, in the work of Kang et al. [92] users impose freshness
requirements, and also deadlines by which they need to receive the
responses to their queries by. The adaptive algorithm proposed in [92]
tries to maximize the number of users whose response times are within
the specified deadline, while at the same time meeting the freshness
requirements.

8.2.5 Database Caching

Elhardt and Bayer [55] propose a DB cache approach that enhances the
availability of traditional database systems. Their approach replaces the

234 Related Work in Other Areas

buffer space in a DBMS with a cache space in main memory and a safe
space on disk. Transaction failures are all handled by the cache with-
out disk I/O. The safe space enables fast transaction commit as well
as recovery of cache pages upon restart after system failure. This way
both commit and recovery only involve the small safe space rather than
the original database. To handle media failure such as disk damage, an
additional archive safe and an archive database are used. Through a
prototype implementation and evaluation, the authors show that the
DB cache could achieve high throughput for small to moderate-sized
transactions. The DB cache can also handle long, update-intensive
transactions well.

Additionally, Hellerstein and Naughton [78] study caching results of
expensive user-defined functions in object—relational databases. Memo-
ization is a traditional approach to such function caching, which builds
a hash table in the main memory for function results that correspond to
different parameter values. In this work, the authors propose a variant
of unary hybrid hashing called Hybrid Cache that combines memoiza-
tion and sorting. They experimentally demonstrate that Hybrid Cache
outperforms memoization in general.

8.3 Caching in Client—Server Databases

There has been much previous work on client-side query caching
for distributed databases with client—server architectures. Keller and
Basu [94] propose a predicate-based caching scheme that loads query
results into client caches when they are returned by the server. A new
query at a client can be evaluated locally if its result is completely con-
tained in the results of previous cached queries. The containment check-
ing is based on the cache descriptions of query predicates at both the
client and the server. The authors also investigate techniques to ensure
data consistency between the clients and the server when a database
update occurs at either side.

Dar et al. [42] develop a client-side semantic caching model. Results
of previous queries are organized into semantic regions. A semantic
region has a finer granularity than a query and is described by a

8.3 Caching in Client-Server Databases 235

predicate. A new query whose result overlaps data in a client cache
is decomposed into two sub-queries: a probe query evaluated using the
local cache and a remainder query forwarded to the server.

Kossmann et al. [95] consider the relationship between client-side
caching and distributed query optimization. The authors develop a
novel approach called Cache Investment that deliberately generates a
sub-optimal plan for the current client query, with the potential benefit
of good data placement in the client cache that enables better plans
for future queries.

Caching in client—server databases brings forth the important issue
that the client caches should not cause violation of transaction seman-
tics in the whole system. Wilkinson and Neimat [167] study the problem
of cache consistency guarantees in client—server databases. In their envi-
ronment, the database at the server is shared by multiple clients and
each client keeps a portion of the database in its own cache. To solve
the problem, the authors extend traditional two-phase locking with
two new kinds of locks, cache locks and notify locks, and propose cor-
responding algorithms. Wang and Rowe [166] experimentally compare
five cache consistency algorithms between transactions in client—server
databases: (i) two-phase locking, (ii) certification, (iii) callback lock-
ing, (iv) no-wait locking, and (v) no-wait locking with notification. The
performance metrics evaluated in their experiments include throughput
and response time. The results show that it is desirable to implement
multiple cache consistency algorithms and adaptively switch among
them according to current application characteristics. The two-phase
locking algorithm provides the general best performance over all algo-
rithms under various workloads and system configurations. Franklin
et al. [58] present a taxonomy of algorithms for transactional cache
consistency maintenance in client—server databases. The authors fur-
ther conduct a performance evaluation of six specific algorithms in the
taxonomy to study the design trade-offs of the algorithms.

As a dynamic form of replication, client-side caching has been
commonly used in distributed client—server databases to improve data
availability [42, 58, 94, 166]. A client caching mechanism in such envi-
ronments should ensure that the failure of a client will not affect the
availability of data for applications running at other clients [58].

236 Related Work in Other Areas

Hu et al. [83] present an adaptive caching model to support spatial
query processing at mobile clients. In this model, the result objects of
a previous query are cached reactively and the R-tree index of these
objects are cached proactively. The cached index enables the effective
reuse of the cached objects to answer subsequent queries.

8.4 Caching in Distributed Databases

Query-level caching has been widely adopted in distributed databases
[42, 94, 95], data warehouses [47, 91, 117], mediators [3, 37, 110], and
P2P systems [90, 132]. All these approaches cache results of previous
queries to answer subsequent queries, in a manner similar to that of
proxy caching.

Mediators [3, 37, 110] are similar to reverse proxies because they
integrate data from multiple web sources and provide a uniform query
interface to the users. A major difference is that mediators often serve
a specific application, e.g., a search engine, but reverse proxies serve
a general class of web applications. Adali et al. [3] study intelligent
maintenance of mediator caches. In their work, a mediator cache
uses recorded access statistics of sources to optimize the processing
of a query in a distributed, cost-based manner. Chidlovskii et al. [37]
and Lee and Chu [110] study semantic query caching in mediator
caches. The mediator stores the results of previous queries as semantic
regions [42] in the cache and reuse these results to reduce the response
time and network traffic of a new query.

The multi-cache category of reverse proxy caching (page 181) bears
a similarity to caching in peer-to-peer (P2P) systems [90, 172]. The
main difference is that in P2P systems individual peers make their local
caching decisions, while in the multi-cache category a global caching
decision is made for all caches in a group.

Kalnis and Papadias [91] propose a proxy-server architecture for
data warehouses. A proxy cache in this work is called an OLAP Cache
Server (OCS) and stores dynamic query results of On-Line Analytical
Processing (OLAP) queries rather than static web pages. The archi-
tecture involves multiple networked OCSs and the data warehouse.

8.4 Caching in Distributed Databases 237

An OCS answers an OLAP query locally, or redirects the query to
its neighboring OCSs or the data warehouse. Three different policies
are designed to control the caching decisions as well as the query plan
construction at the OCSs: a centralized, a semi-centralized, and an
autonomous policy. The centralized policy uses a central site that has
full knowledge of all OCSs to construct the evaluation plan of every
OLAP query and to decide what data to cache on each OCS. In the
semicentralized policy, the query plans are constructed by the central
site but each OCS by itself decides what to cache. There is no cen-
tral site in the autonomous policy and all decisions are made locally at
individual OCSs.

Loukopoulos et al. [117] investigate active caching of OLAP views
together with static pages at local area network (LAN) proxies. The
targeted scenario is that geographically distributed clients issue ad hoc
OLAP queries to a central data warehouse (DW) on the Web. Since the
user-perceived performance of answering such queries depends on both
the network latency and the server computation, the authors propose
to cache part of the DW data at a proxy and to construct the results
for subsequent queries locally based on the cached data. Furthermore,
they design a cost model to estimate the benefit of caching each OLAP
view at the proxy. Based on the cost model, the authors develop a cache
replacement algorithm that takes into consideration the OLAP query
processing cost. Consequently, the proposed framework can answer
OLAP queries more efficiently than an ordinary proxy cache.

Kalnis et al. [90] propose a P2P caching architecture for OLAP
queries called PeerOLAP. The peers in PeerOLAP are similar to the
proxies in a web database scenario and the data warehouses similar to
servers. The authors propose eager versus lazy query processing as well
as isolated versus hit-aware caching policies in the architecture. These
techniques utilize cooperation between peers to reduce the duplicates
among caches and to improve performance.

Patro and Hu [132] propose a scheme to cache query hits at the
gateway of a P2P network. The gateway of peers in this work can be
viewed as the proxy of a number of clients in web caching. The scheme
exploits the locality of the queries going through the gateway. The

238 Related Work in Other Areas

caching is transparent to the peers so that no modification is required
on them. The authors develop an algorithm to answer queries and to
manage the cache at the gateway.

Yu and Vahdat [176] study the problem of numerical error bounding
of data items in replicated databases. In such a database, a data item
may have multiple replicas and each replica has a single numerical
value. To ensure data consistency over the entire replication framework,
the difference between a replica value and the real value of an item
must be bounded within a pre-defined range. The authors present two
algorithms, Split-Weight AE and Compound-Weight AFE, to effectively
and efficiently bound the absolute error of a data item. Split-Weight
bounds value increase and decrease separately, whereas Compound-
Weight bounds both directions of value change holisticly. The authors
further propose a third Inductive RE algorithm that transforms relative
error to absolute error and then applies the previous two algorithms.
Additionally, the authors discuss optimization techniques that reduce
the space and computation overhead of the algorithms.

Extending the work by Yu and Vahdat [176], Cetintemel and
Keleher [34] further proposed two server-side precision-bound mainte-
nance algorithms: Share-Bound and Partition-Bound. Servers in Share-
Bound collaboratively maintain the precision bounds, whereas those
in Partition-Bound each maintain the precision bounds for a disjoint
subset of data items. The authors show that Partition-Bound is a gen-
eralization of Yu and Vahdat’s algorithms.

8.5 Caching in Distributed Systems

There has been a lot of work dealing with caching and replication/
materialization in distributed systems.

Triantafillou and Neilson [162] propose a consistency protocol for
distributed file systems. The protocol adopts a strong consistency
semantics that every previous update of a file will be seen by a later
access of the file. Failures of servers and clients are both efficiently han-
dled in the protocol to ensure file availability. The servers collaborate
with one another so that file updates unseen at a server are obtained
from other nearby servers as needed. Moreover, a server can continue

8.5 Caching in Distributed Systems 239

its normal operation when it is doing failure handling. A number of
availability enhancement methods are further employed, such as allow-
ing unrestricted access of a file copy at a client cache until a server
callback. As a result, the protocol provides the user a transparent, cen-
tralized view of a replicated file system with a good performance.

Chubby [25] is a distributed lock service used in the Google file
system. Availability and reliability are the main design goals of Chubby.
In Chubby, fault tolerance is based on distributed consensus of multiple
replicas. To reduce the server workload, client-side caches are utilized
and are kept consistent by update notification.

Coda [145] is a system that supports both stationary and mobile
file access over wired or wireless networks. In order to achieve high
data availability, Coda employs disconnected operations to complement
server replication. In a disconnected operation, the client keeps on run-
ning even when it is not connected to any server. The cache at the
client stores files needed for remote processing as well as those recently
accessed by the client. Before it disconnects from the servers, the client
makes sure that all files in its cache are up-to-date. After it is dis-
connected, file modifications are performed on cached copies with an
optimistic replication policy. Finally, when the client recovers its con-
nection, the updated files are sent to corresponding servers.

Gao et al. [59] use a distributed object approach to build an
application-specific data replication system at edge servers. The sys-
tem is targeted for e-commerce applications, and the authors use the
TPC-W benchmark in their implementation and evaluation. Based on
the specific application semantics, the authors present a design cat-
egory of the distributed objects replicated in their TPC-W system.
Example objects are catalogs, orders, profiles, inventories, and best-
seller-lists. Each object manages a specific subset of shared information
using simple and effective consistency models. The authors experimen-
tally demonstrate that the system achieves both high availability and
good performance by slightly relaxing consistency within individual
distributed objects. The throughput and response time of the system
are indifferent to network partitioning and the response time is close
to that of an ideal system with high speed and reliable connection
links.

240 Related Work in Other Areas

8.5.1 Clusters

Krishnamurthy and Wang [98] present a method to identify clusters
of geographically adjacent clients that contribute a significant number
of requests to a website. The clients are clustered in a network-aware,
automatic way based on BGP routing information. The authors employ
a self-correction and adaptation mechanism to improve the applicability
and accuracy of the initial results of clustering. After the clusters are
formed, website contents can be cached or redistributed close to the
clusters to share the server workload and improve response time.

ALBUM [87] is an affinity-based management system for a cluster of
main memory databases serving web applications. The authors observe
that, in a web application, such as e-commerce and digital library,
queries can be divided into multiple groups. Queries in one group access
the same set or overlapping sets of data, whereas the data accessed by
queries in different groups are disjoint. The authors utilize such query
affinity to distribute data among the databases in a cluster so that a
query can be executed in a single database to save data transmission
and synchronization. More specifically, ALBUM executes each query
from a cache server in two stages, a local translation stage and a remote
explicit stage. Each stage of execution involves a single cache in the
cluster. The first stage decides the set of data that the query will likely
access. This decision is then used to determine which cache server will
execute the query in the second stage. If the selected cache server does
not contain all data for the explicit stage of a query execution, missing
data will be collected from a master database.

Tang et al. [158] investigate the problem of assigning requests in a
single session to a cluster of web servers. A session in the paper refers to
all requests sent over a single TCP connection. The authors prove that
the problem is NP-complete, and propose a greedy heuristic algorithm
for it. The heuristics are based on the access probabilities of different
objects in a session.

H-SWEB [11] is a system that implements a dynamic scheduling
mechanism for HTTP requests to a cluster of web servers residing in a
local network. The scheduling model in H-SWEB is hierarchical where a
server can provide service to either a cluster or a super cluster. A super

8.5 Caching in Distributed Systems 241

cluster can be a cluster of clusters or super clusters recursively. The
system is adaptive to the workload change of the clusters.

Zhang et al. [177] propose a load balancing policy called ADAPT-
LOAD for a homogeneous web server cluster. The policy is workload-
aware and self-tuning: the parameters of a server are dynamically
adjusted based on characteristics of incoming requests as well as vari-
ation of the operation environment. The behavior of ADAPTLOAD is
similar to a locality-aware allocation policy, but it requires no locality
information. Both static and dynamic web page cachings are supported
by the policy. The authors evaluate ADAPTLOAD using a real-world
workload from 1998 World Cup and show that it achieves a high cache
utilization and low slowdowns.

Cohen and Kaplan [39] study the impact of object aging in cas-
caded caches in web content distribution. The authors propose a weak
consistency policy for cached objects based on TTL values. An object
copy that a cache fetches from another cache usually has a smaller
TTL than that fetched from the original server, i.e., the object ages
as it travels among caches. The authors present a model of object dis-
tribution, and use different inter-request time distributions (Poisson,
Pareto, and fixed-frequency arrivals) and trace-based simulation under
various cache settings to evaluate the performance effect of object ages
on cache miss rates.

Rodriguez et al. [143] develop analytical models to compare hierar-
chical and distributed web caching architectures on several performance
factors, including client response time, network bandwidth usage, cache
workload, and utilization. They show that hierarchical caching with
intermediate caches reduces bandwidth consumption. In comparison,
distributed caching achieves a good performance in well-interconnected
areas without requiring any intermediate cache levels. The authors fur-
ther investigate a hybrid combination of the two caching architectures
and evaluate its performance.

Wu and Liao [171] proposes a Virtual Proxry, which not only
performs data caching, but also provides various common services,
such as search engines, information filtering, and intelligent agents.
The authors implement two basic services to demonstrate the effective-
ness of a virtual proxy: an object lookup scheme and a searchable proxy.

242 Related Work in Other Areas

The former searches objects by maintaining global resource index tables
that record object distribution information in a virtual proxy tree, the
latter searches the cached objects at a virtual proxy.

8.5.2 Caching in Mobile Environments

Barbara and Imielinski [16] bring the idea of server invalidation into the
mobile wireless environment to keep the cache coherent. They propose
that a server periodically broadcasts an invalidation report, in which
the changed data items are indicated, while clients listen to the invalida-
tion report over wireless channels. Then the users that are often discon-
nected (sleepers) are differentiated from the users which are connected
most of the time (workaholics), and different invalidation strategies are
applied to different users, to achieve the best overall performance.

Jing et al. propose the Bit-Sequences algorithm [89], which adap-
tively adjusts the size of the invalidation report, to optimize the use of
a limited communication bandwidth while retaining the effectiveness
of cache invalidation.

8.5.3 Asynchronous Validation

Rabinovich and Spatschek [135] categorize two approaches to imple-
ment asynchronous validation, (1) with separate threads on clients and
(2) with time triggers.

The most famous asynchronous validation scheme is the Alex
protocol [32, 73], which originated from the Alex FTP cache [32].
Based on the observation that file lifetime distribution tends to be
bimodal (i.e., either a file remains unmodified for a long time or it will
be modified frequently), Gwertzman and Seltzer [73] proposed a variant
of the original protocol of the Alex FTP cache. This improved scheme
is widely used in many systems. In the improved scheme, the update
threshold 61, which determines how frequently to poll the server, is
set as a percentage (perc) of the object’s age (since last modified). As
long as the time since last validation does not exceed the threshold, the
object is considered valid. Furthermore, another threshold 6 is added
as a sanity check to make sure that the old objects will also be validated

8.5 Caching in Distributed Systems 243

sometime, as shown in Equation (8.1).

01 = min{(perc x (send_time — last_modified)),02}. (8.1)

8.5.4 Leases

Leases were first proposed by Gray and Cheriton [63] to maintain file
consistency in distributed file systems. To cache an object, the client
first acquires a lease from the data source, which specifies a time inter-
val . Within the time interval, the data source will notify the client for
any invalidation or modification of the cached object.

After the lease expires, the server has no obligation to notify the
client, it would be up to the client to make sure any cached data are up-
to-date. This could happen proactively with the client either renewing
the lease before it expires or starting to pull modifications from the
server, or reactively, once the client has a request for a data item whose
lease has expired.

Adaptive Leases: Duvvuri et al. investigate the lease duration
problem in [53]. They provide experimental results to show that short
leases have a larger control message overhead, and long leases have
a larger state space overhead on the servers. To strike a balance, they
propose adaptive policies to calculate the optimal lease duration. These
heuristics are motivated by observations from object lifetimes, renewal
frequencies and state space overhead, respectively. Duvvuri et al. imple-
mented their adaptive lease technique and demonstrated its effective-
ness and efficacy.

Volume Leases: The concept of volume validation has been intro-
duced in the Andrew File System [81], NF'S [125], and [40, 112]. In
order to further improve performance, Yin et al. [174, 175] propose
the concept of volume leases. By grouping objects into volumes and
maintaining consistency at a coarser granularity, the control message
overhead (devoted to lease renewals) is amortized over a large number
of objects. Moreover, the space overhead on servers, which is used to
maintain client state information, is also reduced.

Under the volume leases protocol, a client can read a cached object
only if it holds valid leases on both the object and its volume. A
server can modify an object if all clients acknowledged its invalidation

244 Related Work in Other Areas

messages or either lease (i.e., the object’s lease or volume’s lease)
expires. In this scheme, long object leases and short volume leases can
be well combined and achieve the best overall performance, since long
object leases avoid high maintenance cost and short volume leases avoid
long time delay for data source modifications.

8.5.5 Piggybacking

Krishnamurthy and Wills established a series of mechanisms in this
direction, including Piggyback Cache Validation (PCV) [99], Piggyback
Server Invalidation (PSI) [100], and their combination [40, 101].

Piggyback Cache Validation (PCV) [99] focuses on piggybacking
batch validation requests from proxy caches to the servers. In PCV,
when a proxy cache has a chance to communicate with a server, it
checks if it cached any objects which have been expired or about to
expire from this server. The proxy then piggybacks If-Modified-Since
requests for the batch of these potentially stale objects for validation.
With enough traffic to support piggybacking, PCV achieves strong
cache coherency as well as saves a lot of messages. In order to maintain
the traffic so that piggybacking is viable, the client has to be the proxy
cache instead of the individual one.

Piggyback Server Invalidation (PSI) [100] works for servers to pig-
gyback objects. In PSI, servers partition resources into volumes, and
maintain version information for each volume. When a server receives
an If-Modified-Since request from a proxy cache, including an object
and the version number for the object’s volume, the server piggybacks
the list of all objects in the same volume which have been modified since
the client provided version. The proxy cache then invalidates objects
which are both in its cache and in the list, extending the lifetime of all
other objects which are not in the list.

Both the PCV and the PSI mechanisms yield stronger cache coher-
ence and less network cost, by using the piggybacked batch informa-
tion. Krishnamurthy and Wills [40, 101] further propose to combine
the PSI and PCV techniques and create a hybrid approach, where the
best overall performance can be achieved. Under the hybrid scheme,
the choice of the mechanism depends on the time elapsed since the last

8.6 Industrial Products/Standards 245

time the proxy requested invalidation for the volume. If the time inter-
val is small, PSI is used, otherwise, the PCV mechanism is used. The
reason behind this scheme is for a short period, the number of modified
objects tends to be small, and thus sending invalidation is more efficient
than sending validation messages. In contrast, for a long time period,
the number of modified objects tend to be much larger, so that sending
validation requests will potentially reduce the communication cost.

8.6 Industrial Products/Standards

Edge Side Includes [54] is a simple markup language used to specify
the generation of dynamic contents in a web page. As such, web caches
with an ESI processing capability can cache the ESI directives in a page
and generate dynamic content and assemble the page when the page
is requested. In the client-side ESI-compliant approach proposed by
Rabinovich et al. [136], ESI segments are stored in the browser cache
to dynamically construct a web page on demand. One disadvantage
of ESI is that because users need to specify how a page fragment is
generated, the caching decision is not transparent to the users.

AJAX (Asynchronous JavaScript and XML) [6, 152] is a group
of advanced technologies used to develop user-interactive Web appli-
cations. Example technologies in Ajax include XMLHttpRequest,
XHTML, CSS, and DOM. Ajax has been implemented in various lan-
guages and libraries, such as ActiveX, Flash, and Java applet. The main
feature of Ajax is its asynchronous nature: By bringing code to a web
browser and generating HTML there, the browser can send data to and
receive data from the server without interfering with the display of the
current page. There are several known problems of Ajax today, e.g.,
browser compatibility issues due to the use of JavaScript and DOM,
possible response time delay caused by preloading and handling of the
XMLHttpRequest object, and vulnerability to advanced attacks that
subvert client—server communication.

The Akamai [7, 49] network consists of more than 15,000 servers
deployed in thousands of ISP networks all over the world. It serves
Akamai’s customers by hosting their web contents and applications
with performance and reliability guarantees. It provides a number

246 Related Work in Other Areas

of configuration options for caching, e.g., HTML cache timeouts and
whether to allow session data to be cached. ACMS [150] is a fully
functional configuration management system for the Akamai network.
The system accepts distributed submissions of configuration informa-
tion from customers and disseminates this information to the Aka-
mai CDN. ACMS is highly available, distributed, and fault-tolerant. It
manages the configuration updates by adapting existing quorum-based
algorithms such as Vector Ezchange and Index Merging to support
consistency and easy storage recovery.

TimesTen [160, 161] is an in-memory RDBMS that can be deployed
at an application server and serves as a mid-tier cache. Disk data stored
at the back-end database server is cached and processed in mid-tier
main memory. As a result, TimesTen provides low response time and
high throughput to data-intensive Internet applications. Cached data
in TimesTen can be either subsets of frequently used relational tables
existing in the back-end database, or exclusive tables created by the
applications. TimesTen processes SQL queries and updates from appli-
cations over the cache data. Multiple mid-tier caches can co-exist and
store disjoint or overlapping subsets of the same back-end database.
The caches are kept synchronized with each other as well as with the
back-end database.

Tangosol [159] is a reliable in-memory data grid technology that
has been acquired by and integrated with Oracle. It is designed to
meet the new requirements of real-time data analysis, computation-
intensive middleware and high-performance transactions. The combina-
tion of Tangosol with Oracle Fusion Middleware, Oracle TimesTen, and
Oracle Database creates an integrated platform that enables extreme
transaction processing.

Grundy et al. [66] investigate the use of an object-oriented persis-
tency framework to improve the performance of enterprise application
servers. The authors transparently employ an in-memory database at
the application server. This database stores all objects and indices and
writes transaction logs. Liu [116] empirically studies the performance
and scalability of EJB application servers. The author introduces the
architecture of EJB clustering and proposes three scaling approaches

8.6 Industrial Products/Standards 247

based on the EJB clustering scenarios. The author also develops and
tests a benchmark application for performance measurement.

Kounev et al. [96] describe their experience in deploying the
industry-standard SPECjAppServer2004 benchmark on the JBoss plat-
form. The authors examine a number of deployment alternatives, e.g.,
three web containers (Tomcat 4.1, Tomcat 5, and Jetty) and two
JVMs. The authors measure and analyze the effect of these alternatives
on the overall system performance in both single-node and clustered
environments.

Bakalova et al. [13] introduces caching techniques used in the
IBM WebSphere Dynamic Cache for a variety of objects including
Java Servlets, JavaServer Pages (JSPs), WebSphere command objects,
Web services objects, and Java objects. The authors provide examples
for these dynamic caching techniques, discuss their unique technical
requirements and specific implementation methods, and measure their
performance using the Trade3 IBM J2EE benchmark application.

WebEzpress [80] aims at a more bandwidth-constrained environ-
ment, such as a wireless environment. They focus on small changes to
the dynamic data (CGI output). They store the shared common base
objects, and only transfer the deltas, i.e., the differences between the
base objects and the responses.

9

Open Research Problems

Although caching and materialization are well-known techniques that
have been used to improve system performance for decades, their full
potential to improve performance/scalability of web databases without
sacrificing the quality of the data being served has only materialized
recently. To this day, the problem is not fully “solved”; in fact, the
ever-changing technological landscape is creating additional problems/
opportunities for research. In the following paragraphs, we list some of
the challenges that we expect to drive research on caching and materi-
alization for web databases in the future.

9.1 Cloud Computing

The typical architecture for web-database servers is quickly evolving
from a configuration with a dedicated cluster of machines (and a load
balancer in front) to a cloud computing infrastructure, potentially used
to host multiple web-database server installations at the same time,
through virtualization.

Under the cloud computing paradigm,’ a user’s queries and
computations are handled by an “amorphous” collection of machines,

Lhttp://en.wikipedia.org/wiki/Cloud_computing.

248

9.2 User-Centric Computing 249

the cloud, for which many of the low-level details have been made
transparent to the user. Two of the primary tenets of cloud computing
are the following:

® massive parallelism, which is easily exploitable when dealing
with workloads that have large numbers of small tasks, as is
typical for many web-database servers; and

® tolerance to failures, which occur frequently due to the high
number of machines typically participating in the cloud.

Such an environment brings multiple challenges, but also many oppor-
tunities for caching and materialization. However, most of the existing
techniques are bound not to scale to typical cloud sizes and would need
to be rethought.

Given the unique characteristics of cloud computing, it is no sur-
prise that the debate is still ongoing on what is the proper programming
paradigm for it, especially with regards to data-intensive tasks. In par-
ticular, the question remains on whether parallel database management
systems (and SQL) can handle the scale required or new programming
frameworks, such as MapReduce, are most suited for cloud computing
over large datasets [45, 46, 133, 153].

9.2 User-Centric Computing

Although cloud computing is expected to make web-database servers
more “generic”, since their details will be abstracted out, we envision
an increase in the role of the client in caching/materialization solu-
tions. In the past, caching was mostly beneficial if the same content
was shared among multiple users (i.e., favoring proxy caches at ISPs),
however, nowadays web pages often have full-blown applications (e.g.,
using AJAX) that typically require a lot of data, possibly from differ-
ent sources (through a mashup application). In many cases, local caches
can store application state and additional data, providing for a more
interactive user experience. This is being reinforced further by the new
HTML 5 standard? which will support local storage at the client.

2http://en.wikipedia.org/wiki/HTML_5.

250 Open Research Problems

Given the myriad of options and alternatives, it would be difficult
to identify solutions that work well for every user. This is further exac-
erbated by the move to cloud computing, which aims at consolidat-
ing servers to achieve better economy of scale. As such, it would be
completely impossible for simple performance and other global system
metrics to be able to keep all users happy. Therefore, we believe that
considering user preferences and establishing Service Level Agreements
(as we saw in Section 6) will become more commonplace in the near
future. Given the early stage of work on Service Level Agreements for
web-database systems, a lot of open problems still exist in the area.

Going beyond user preferences and Service Level Agreements, per-
sonalization is expected to have a major impact in web-database ser-
vices of the future. For example, user queries can be personalized to
include either past history from the same user, current context of the
user (e.g., geo-location), or past history/feedback from “similar” users.
In such an environment, caching/materialization can still be beneficial,
but will pose unique challenges.

9.3 Mobile Computing

If cloud computing can be considered as a major disrupting technol-
ogy on the server side, then mobile computing is undoubtedly a major
disrupting technology on the client/user side. In 2008, 26 years after
the cell phone was first introduced, we reached a watershed moment,
with about one active cell phone for every two humans on earth [60].
Going from zero to adoption by half the planet in 26 years corresponds
to the fastest global diffusion of any technology in human history, even
including vaccines.

The proliferation of cell phones in general and smartphones in par-
ticular is making mobile platforms the defacto entry point for accessing
webdatabases and many other applications. This brings many chal-
lenges and opportunities for caching and materialization. First of all,
the obvious connectivity issue makes data caching/materialization an
important technology to consider, as has happened already in the
mobile data management research literature of the past decade. Nearly
always-on connectivity is more commonplace nowadays (especially in

9.4 Green Computing 251

connection with WiFi networks), but there is always the issue of dif-
ferentiated quality of service and also the issue of monetary cost, with
roaming and other charges.

Beyond the traditional connectivity issues, the pervasiveness of
smart-phones is bringing a flood of new, innovative, mobile-only net-
worked applications that are enhanced by the additional capabilities
of smart-phones (e.g., GPS, compass, voice recognition, etc.). Such
applications could potentially benefit from caching and materialization,
especially given the resource constraints inherent in even the latest gen-
eration smart-phones (e.g., network bandwidth and battery).

9.4 Green Computing

Although battery is an important resource constraint primarily for
mobile computing devices, energy consumption in general is an impor-
tant consideration for server configurations; the bigger the installation
the bigger the energy concern and the potential savings from energy-
saving solutions. Currently, there are many technologies that can offer
specific trade-offs in terms of energy consumption, performance, and
cost. For example, some modern processors offer Dynamic Voltage
Scaling® as a way to reduce energy usage (and performance) when cir-
cumstances permit. Another energy-efficient technology of particular
interest is that of Solid State Drives (SSDs),* that offer faster access
speeds than traditional hard disk drives (HDDs), but their price is
significantly higher than HDDs.

Utilizing energy-efficient technologies is part of a greater initiative
toward green computing, where the impact of information technology
on the environment is considered and attempts are made to minimize it.
Caching and materialization can play an important role in this effort,
with all the challenges that this entails. For example, Content Distribu-
tion Networks are already being used to cache/materialize (primarily
static) content closer to the end-users, which minimizes response times,
but also minimizes unnecessary data transport and the need for the
origin servers to be always online, thus reducing energy. Caching and

3http://en.wikipedia.org/wiki/Dynamic_Voltage_Scaling.
4http://en.wikipedia.org/wiki/Solid-state_drive.

252 Open Research Problems

materialization can also be employed to manage the trade-off between
the different capabilities, cost, and energy consumption profiles of the
different machines and storage devices in a server infrastructure.

9.5 Non-technical Challenges

Finally, all the above are primarily technical questions. However,
caching can often bring forth non-technical issues, primarily stemming
from legal requirements and copyright ownership. For example, which
content can be safely stored at the proxy cache of an ISP (and shared
among all users)® and for how long can it stay there? Also, in cloud
computing environments, where multiple web databases are co-located,
how can one make sure that the proper safe-guards are in place to limit
any possible threats to data privacy and security?

5http://www.interesting-people.org/archives/interesting-people/200906 /msg00063.html.

10

Summary

In this monograph, we view caching and materialization in web
databases as a series of actions and introduce the current approaches
on these actions. Specifically, we examine where and at what granu-
larity data are cached/materialized, how we select the data items to
cache/materialize, how we use the cached data to answer new requests,
and how we maintain the stored data so that they provide both good
quality of data and high performance. Additionally, we present evalua-
tion metrics and categorize them. Finally, Figure 10.1 summarizes the
options/alternatives for each caching/materialization action presented
in this monograph.

253

254 Summary

Caching / Materialization

Store

/
\

51
Cache
Initialization

Maintain

55
Cache
Replacement

- 3.
Location
(where)

- 3.2
Unit
(what granularity)

3.
Content
(which data)

4.1
Query

4.2
Query

5.3
Update
Scheduling
5.4
Update
Processing

Fig. 10.1 Overview of caching/materialization options.

Server

Reverse Proxy

Proxy
Client

Raw Data

Views

Fragments

Pages

No Query Processing

Containment-Based
Query Processing

Semantic Query
Processing

Full-fledged Query
Processing

Proactive

Reactive

Push

Pull
Time-to-Live

Piggybacking
Leases

Preprocessing

Recomputation

Incremental Updates

Acknowledgments

The authors would like to thank Joe Hellerstein and Alon Halevy for
their guidance and advice throughout the review process, the anony-
mous reviewers for their very detailed and helpful comments, and the
publisher, James Finlay, for his never-ending patience and perseverance
throughout the entire process. This monograph would not have been
possible without their combined efforts.

This material is based on work supported in part by the National
Science Foundation under grants CAREER 11S-0746696, 115-0534531,
and ITR ANI-0325353, and by the Hong Kong Research Grants Council
under grant 617307.

255

References

[1]

2]

3]

R. K. Abbott and H. Garcia-Molina, “Scheduling real-time transactions: A
performance evaluation,” ACM TODS, vol. 17, no. 3, pp. 513-560, 1992.

S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. L. Wiener, “Incremen-
tal maintenance for materialized views over semistructured data,” in VLDB,
pp. 38-49, 1998.

S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian,
“Query caching and optimization in distributed mediator systems,” in
SIGMOD Conference, pp. 137-148, 1996.

B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying update streams in a
soft real-time database system,” in SIGMOD Conference, pp. 245-256, 1995.
B. Adelberg, B. Kao, and H. Garcia-Molina, “Database support for efficiently
maintaining derived data,” in EDBT, pp. 223-240, 1996.

Ajax. http://en.wikipedia.org/wiki/AJAX.

Akamai. http://www.akamai.com.

M. Altinel, C. Bornhévd, S. Krishnamurthy, C. Mohan, H. Pirahesh, and
B. Reinwald, “Cache tables: Paving the way for an adaptive database cache,”
in VLDB, pp. 718-729, 2003.

K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “DBProxy: A dynamic
data cache for web applications,” in ICDE, pp. 821-831, 2003.

K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “Scalable template-based
query containment checking for web semantic caches,” in ICDE, pp. 493-504,
2003.

D. Andresen and T. McCune, “Towards a hierarchical scheduling system for
distributed WWW server clusters,” in HPDC, p. 301, 1998.

256

(12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]
(25]

(26]

27]
(28]

29]

References 257

J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, and T. Zhong, “Web caching
for database applications with oracle web cache,” in SIGMOD Conference,
pp. 594-599, 2002.

R. Bakalova, A. Chow, C. Fricano, P. Jain, N. Kodali, D. Poirier, S. Sankaran,
and D. Shupp, “Websphere dynamic cache: Improving J2EE application per-
formance,” IBM Systems Journal, vol. 43, no. 2, pp. 351-370, 2004.

A. Balmin, F. Ozcan, K. S. Beyer, R. Cochrane, and H. Pirahesh, “A frame-
work for using materialized xpath views in XML query processing,” in VLDB,
pp. 60-71, 2004.

G. Banga, F. Douglis, and M. Rabinovich, “Optimistic deltas for WWW
latency reduction,” in USENIX Annual Technical Conference, 1997.

D. Barbara and T. Imieliski, “Sleepers and workaholics: Caching strategies in
mobile environments,” ACM SIGMOD Record, vol. 23, no. 2, pp. 1-12, 1994.
P. A. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and P. Tamma,
“Relaxed-currency serializability for middle-tier caching and replication,” in
SIGMOD Conference, pp. 599-610, 2006.

A. Bestavros, “Demand-based document dissemination to reduce traffic and
balance load in distributed information systems,” in SPDP, p. 338, 1995.

M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and
P. Shenoy, “Adaptive push-pull: Disseminating dynamic web data,” IEEE
Transactions on Computers, vol. 51, no. 6, pp. 652—668, 2002.

J. A. Blakeley, N. Coburn, and P.-A. Larson, “Updating derived relations:
Detecting irrelevant and autonomously computable updates,” ACM Transac-
tions on Database Systems, vol. 14, no. 3, pp. 369—400, 1989.

J. A. Blakeley, P.-A. Larson, and F. W. Tompa, “Efficiently updating mate-
rialized views,” in SIGMOD Conference, pp. 61-71, 1986.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
Zipf-like distributions: Evidence and implications,” in INFOCOM, pp. 126—
134, 1999.

E. A. Brewer, “Towards robust distributed systems (abstract),” in PODC
’00: Proceedings of the Nineteenth Annual ACM Symposium on Principles of
Distributed Computing, p. 7, New York, NY, USA: ACM, 2000.

L. Bright and L. Raschid, “Using latency—recency profiles for data delivery on
the web,” in VLDB, pp. 550-561, 2002.

M. Burrows, “The Chubby lock service for loosely-coupled distributed sys-
tems,” in OSDI, pp. 335-350, 2006.

K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal, “Enabling
dynamic content caching for database-driven web sites,” in SIGMOD Confer-
ence, pp. 532-543, 2001.

P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in
USENIX Symposium on Internet Technologies and Systems, 1997.

P. Cao and C. Liu, “Maintaining strong cache consistency in the world wide
web,” IEEE Transactions on Computers, vol. 47, no. 4, pp. 445-457, 1998.
P. Cao, J. Zhang, and K. Beach, “Active cache: Caching dynamic contents on
the web,” Distributed Systems Engineering, vol. 6, no. 1, pp. 43-50, 1999.

258

30]

(31]
32]
(33]

34]

35]

(36]

37]

(38]
39]

(40]

[41]

42]

(43]

(44]
(45]
[46]

(47]

References

C. Cappiello, M. Comuzzi, and P. Plebani, “On automated generation of web
service level agreements,” in Proceedings of IEEE International conference on
Advanced Information Systems Engineering (CAiSE), pp. 264-278, 2007.

D. Cappucio, B. Keyworth, and W. Kirwin, Total cost of ownership: The
impact of system management tools, 1996.

V. Cate, “Alex — A global filesystem,” in USENIX File System Workshop,
pp- 1-12, 1992.

S. Ceri and J. Widom, “Deriving production rules for incremental view main-
tenance,” in VLDB, pp. 577-589, 1991.

U. Cetintemel and P. Keleher, “Efficient distributed precision control in sym-
metric replication environments,” in 21st IEEE Symposium on Reliable Dis-
tributed Systems (SRDS’02), 2002.

J. Challenger, A. Iyengar, and P. Dantzig, “A scalable system for consistently
caching dynamic web data,” in INFOCOM, pp. 294-303, 1999.

J.-H. Chen, R. Anane, K.-M. Chao, and N. Godwin, “Architecture of an agent-
based negotiation mechanism,” in ICDCSW ’02: Proceedings of the 22nd Inter-
national Conference on Distributed Computing Systems, pp. 379-384, Wash-
ington, DC, USA: IEEE Computer Society, 2002.

B. Chidlovskii, C. Roncancio, and M.-L. Schneider, “Semantic cache mecha-
nism for heterogeneous web querying,” Computer Networks, vol. 31, no. 11-16,
pp. 1347-1360, 1999.

J. Cho and H. Garcia-Molina, “Synchronizing a database to improve fresh-
ness,” in SIGMOD Conference, pp. 117-128, 2000.

E. Cohen and H. Kaplan, “Aging through cascaded caches: Performance issues
in the distribution of web content,” in SIGCOMM, pp. 41-53, 2001.

E. Cohen, B. Krishnamurthy, and J. Rexford, “Improving end-to-end perfor-
mance of the web using server volumes and proxy filters,” in SIGCOMM,
pp- 241-253, 1998.

M. Conti, M. Kumar, S. K. Das, and B. A. Shirazi, “Quality of service issues
in internet web services,” IEEE Transactions on Computers, vol. 51, no. 6,
pp- 593-594, 2002.

S. Dar, M. J. Franklin, B. T. Jénsson, D. Srivastava, and M. Tan, “Semantic
data caching and replacement,” in VLDB, pp. 330-341, 1996.

A. Datta, K. Dutta, H. M. Thomas, D. E. VanderMeer, and K. Ramam-
ritham, “Proxy-based acceleration of dynamically generated content on the
world wide web: An approach and implementation,” ACM Transactions on
Database Systems, vol. 29, no. 2, pp. 403-443, 2004.

J. S. David, D. Schuff, and R. St. Louis, “Managing your total it cost of
ownership,” Communications of the ACM, vol. 45, no. 1, pp. 101-106, 2002.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

J. Dean and S. Ghemawat, “Mapreduce: A flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72-77, 2010.

P. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton, “Caching mul-
tidimensional queries using chunks,” in SIGMOD Conference, pp. 259-270,
1998.

(48]

(49]

[50]
[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

[60]

(61]

(62]

(63]
[64]

(65]

References 259

J. Dilley, M. Arlitt, S. Perret, and T. Jin, “The distributed object consistency
protocol,” in HP Labs Technical Report, 1999.

J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl, “Glob-
ally distributed content delivery,” IEEE Internet Computing, vol. 6, no. 5,
pp- 50-58, 2002.

A. Dingle and T. Partl, “Web cache coherence,” in World Wide Web Confer-
ence, Paris, France, 1996.

DNS: Domain Name System. http://en.wikipedia.org/wiki/Domain_name_
system.

F. Douglis, A. Feldmann, B. Krishnamurthy, and J. Mogul, “Rate of change
and other metrics: A live study of the world wide web,” in USENIX Symposium
on Internet Technologies and Systems, pp. 147-158, 1997.

V. Duvvuri, P. Shenoy, and R. Tewari, “Adaptive leases: A strong consistency
mechanism for the World Wide Web,” IEEE Transactions on Knowledge and
Data Engineering, vol. 15, no. 5, pp. 1266-1276, 2003.

Edge Side Includes. http://www.esi.org.

K. Elhardt and R. Bayer, “A database cache for high performance and fast
restart in database systems,” ACM Transactions on Database Systems, vol. 9,
no. 4, pp. 503-525, 1984.

C. Elkan, “Independence of logic database queries and update,” in PODS,
pp. 154-160, 1990.

D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini, Fconomic Models
for Allocating Resources in Computer Systems. River Edge, NJ, USA: World
Scientific Publishing Co., Inc., 1996.

M. J. Franklin, M. J. Carey, and M. Livny, “Transactional client—server cache
consistency: Alternatives and performance,” ACM Transactions on Database
Systems, vol. 22, no. 3, pp. 315-363, 1997.

L. Gao, A. Nayate, and J. Zheng, “Improving availability and performance
with application-specific data replication,” IEEE Transactions on Knowledge
and Data Engineering, vol. 17, no. 1, pp. 106—-120, 2005.

J. Garreau, “Our Cells, Ourselves: Planet’s fastest revolution speaks to the
human heart,” The Washington Post, February 2008.

S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services,” SIGACT News, vol. 33, no. 2,
pp. 51-59, 2002.

J. Goldstein and P.-A. Larson, “Optimizing queries using materialized
views: a practical, scalable solution,” in SIGMOD Conference, pp. 331-342,
2001.

C. Gray and D. Cheriton, “Leases: An efficient fault-tolerant mechanism for
distributed file cache consistency,” in SOSP, pp. 202-210, 1989.

T. Griffin and L. Libkin, “Incremental maintenance of views with duplicates,”
in SIGMOD Conference, pp. 328-339, 1995.

T. Griffin, L. Libkin, and H. Trickey, “An improved algorithm for the incre-
mental recomputation of active relational expressions,” IEEE Transactions on
Knowledge and Data Engineering, vol. 9, no. 3, pp. 508-511, 1997.

260

[66]

[67]

(68]

[69]

[70]

(71]
(72]
(73]
(74]
[75]
[76]

[77]

(78]
[79]

(80]

(81]

(82]

(83]

References

J. Grundy, S. Newby, T. Whitmore, and P. Grundeman, “Extending a persis-
tent object framework to enhance enterprise application server performance,”
in ADC, pp. 5764, 2002.

S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs,
“Adaptive scheduling of web transactions,” in Proceedings of the 25th Inter-
national Conference on Data Engineering, April 2009.

H. Guo, P.-A. Larson, R. Ramakrishnan, and J. Goldstein, “Relaxed currency
and consistency: How to say “good enough” in SQL,” in SIGMOD Conference,
pp. 815-826, 2004.

A. Gupta, D. Katiyar, and 1. S. Mumick, “Counting solutions to the view
maintenance problem,” in Workshop on Deductive Databases, JICSLP, 1992.
A. Gupta and I. S. Mumick, “Maintenance of materialized views: Problems,
techniques, and applications,” IEEE Bulletin on Data Engineering, pp. 145—
157, 1995.

A. Gupta and I. S. Mumick, eds., Materialized Views: Techniques, Implemen-
tations, and Applications. Cambridge, Mass: MIT Press, 1999.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining views incre-
mentally,” in SIGMOD Conference, pp. 157-166, 1993.

J. Gwertzman and M. Seltzer, “World wide web cache consistency,” in
USENIX Annual Technical Conference, 1996.

H. Qu and A. Labrinidis, Preference-aware query and update scheduling in
web-databases, April 2007.

A.Y. Halevy, “Answering queries using views: A survey,” The VLDB Journal,
vol. 10, no. 4, pp. 270-294, 2001.

E. N. Hanson, “A performance analysis of view materialization strategies,” in
SIGMOD Conference, pp. 440-453, 1987.

J. R. Haritsa, M. Livny, and M. J. Carey, “Earliest deadline scheduling for
real-time database systems,” in Proceedings of RTSS °91, pp. 232-243, IEEE
Computer Society, 1991.

J. M. Hellerstein and J. F. Naughton, “Query execution techniques for caching
expensive methods,” in SIGMOD Conference, pp. 423-434, 1996.

J. M. Hellerstein and M. Stonebraker, Readings in Database Systems. Cam-
bridge, Mass: MIT Press, 2005.

B. C. Housel and D. B. Lindquist, “WebExpress: A system for optimizing web
browsing in a wireless environment,” in International Conference on Mobile
Computing and Networking, pp. 108-116, 1996.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,
R. N. Sidebotham, and M. J. West, “Scale and performance in a distributed
file system,” ACM Transactions on Computer Systems, vol. 6, no. 1, pp. 51-81,
1988.

HTTP: Hypertext Transfer Protocol. http://en.wikipedia.org/wiki/Hypertext._
Transfer_Protocol.

H. Hu, J. Xu, W. S. Wong, B. Zheng, D. L. Lee, and W.-C. Lee, “Proactive
caching for spatial queries in mobile environments,” in ICDE, pp. 403-414,
2005.

(84]

(85]

(86]
(87]
(88]

(89]

(90]

(91]

92]

(93]

[94]

[95]

[96]

[97]

(98]

(99]

[100]

[101]

References 261

P. C. K. Hung, H. Li, and J.-J. Jeng, “WS-negotiation: An overview of research
issues,” in HICSS ’04: Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS’04), p. 10033.2, Washington, DC,
USA: IEEE Computer Society, 2004.

A. Iyengar and J. Challenger, “Data update propagation: A method for deter-
mining how changes to underlying data affect cached objects on the web,” in
IBM Research Technical Report, 1998.

S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A decentralized, peer-to-peer
web cache,” in PODC, 2002.

M. Ji, “Affinity-based management of main memory database clusters,” ACM
Transactions on Internet Technology, vol. 2, no. 4, pp. 307-339, 2002.

L.-J. Jin, V. Machiraju, and A. Sahai, “Analysis on service level agreement of
web services,” Technical report, HP Laboratories, 2002.

J. Jing, A. Elmagarmid, A. S. Helal, and R. Alonso, “Bit-sequences: An adap-
tive cache invalidation method in mobile client/server environments,” Mobile
Networks and Applications, vol. 2, no. 2, pp. 115-127, 1997.

P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan, “An adaptive
peer-to-peer network for distributed caching of OLAP results,” in SIGMOD
Conference, pp. 25-36, 2002.

P. Kalnis and D. Papadias, “Proxy-server architectures for OLAP,” in
SIGMOD Conference, pp. 367-378, 2001.

K.-D. Kang, S. H. Son, and J. A. Stankovic, “Managing deadline miss ratio and
sensor data freshness in real-time databases,” IEEE TKDE, vol. 16, no. 10,
pp. 12001216, 2004.

A. Keller and H. Ludwig, “The WSLA framework: Specifying and monitoring
service level agreements for web services,” Journal of Network and Systems
Management, vol. 11, no. 1, pp. 57-81, 2003.

A. M. Keller and J. Basu, “A predicate-based caching scheme for client—
server database architectures,” The VLDB Journal, vol. 5, no. 1, pp. 3547,
1996.

D. Kossmann, M. J. Franklin, and G. Drasch, “Cache investment: Integrating
query optimization and distributed data placement,” ACM Transactions on
Database Systems, vol. 25, no. 4, pp. 517-558, 2000.

S. Kounev, B. Weis, and A. Buchmann, “Performance tuning and optimization
of J2EE applications on the JBoss platform,” Journal of Computer Resource
Management, vol. 113, 2004.

H. Kreger, Web services conceptual architecture (WSCA 1.0), 2001.

B. Krishnamurthy and J. Wang, “On network-aware clustering of web clients,”
in SIGCOMM, pp. 97-110, 2000.

B. Krishnamurthy and C. Wills, “Study of piggyback cache validation for
proxy caches in the WWW” in USENIX Symposium on Internet Technology
and Systems, pp. 1-12, 1997.

B. Krishnamurthy and C. Wills, “Piggyback server invalidation for proxy
cache coherency,” in World Wide Web Conference, pp. 185194, 1998.

B. Krishnamurthy and C. E. Wills, “Proxy cache coherency and
replacement — towards a more complete picture,” in ICDCS, pp. 332-339,
1999.

262

[102]

[103]

[104]
[105]
[106]

[107]

[108]
[109]
[110]
[111]

[112]

[113]

[114]

[115]
[116]

[117]

[118]

[119]

[120]

References

A. Labrinidis, “Web views,” in Encyclopedia of Database Systems, (L. Liu and
M. T. Ozsu, eds.), pp. 3524-3525, Springer US, 2009.

A. Labrinidis, H. Qu, and J. Xu, “Quality contracts for real-time enterprises,”
in First International Workshop on Business Intelligence for the Real Time
Enterprise, 2006.

A. Labrinidis and N. Roussopoulos, “Webview materialization,” in SIGMOD
Conference, pp. 367-378, 2000.

A. Labrinidis and N. Roussopoulos, “Adaptive webview materialization,” in
WebDB, pp. 85-90, 2001.

A. Labrinidis and N. Roussopoulos, “Update propagation strategies for
improving the quality of data on the web,” in VLDB, pp. 391-400, 2001.

A. Labrinidis and N. Roussopoulos, “Exploring the tradeoff between perfor-
mance and data freshness in database-driven web servers,” The VLDB Jour-
nal, vol. 13, no. 3, pp. 240-255, 2004.

P.-A. Larson, J. Goldstein, and J. Zhou, “MTCache: Transparent mid-tier
database caching in SQL server,” in ICDE, pp. 177-189, 2004.

P.-A. Larson and H. Z. Yang, “Computing queries from derived relations,” in
VLDB, pp. 259-269, 1985.

D. Lee and W. W. Chu, “Semantic caching via query matching for web
sources,” in CIKM, pp. 77-85, 1999.

A. Y. Levy and Y. Sagiv, “Queries independent of updates,” in VLDB,
pp. 171-181, 1993.

D. Li and D. R. Cheriton, “Scalable web caching of frequently updated objects
using reliable multicast,” in USENIX Symposium on Internet Technologies and
Systems, pp. 1-12, 1999.

H.Li, S. Y. W. Su, and H. Lam, “On automated e-business negotiations: Goal,
policy, strategy, and plans of decision and action,” Journal of Organizational
Computing and Electronic Commerce, vol. 13, pp. 1-29, 2006.

W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, and D. Agrawal, “Freshness-
driven adaptive caching for dynamic content web sites,” Data € Knowledge
Engineering, vol. 47, no. 2, pp. 269-296, 2003.

C. Liu and P. Cao, “Maintaining strong cache consistency in the world-wide
web,” in ICDCS, p. 12, 1997.

J. Liu, “Performance and scalability measurement of COTS EJB technology,”
in SBAC-PAD, p. 212, 2002.

T. Loukopoulos, P. Kalnis, I. Ahmad, and D. Papadias, “Active caching of on-
line-analytical-processing queries in WWW proxies,” in ICPP, pp. 419-426,
2001.

Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G. Lindsay, and
J. F. Naughton, “Middle-tier database caching for e-business,” in SIGMOD
Conference, pp. 600-611, 2002.

Q. Luo and J. F. Naughton, “Form-based proxy caching for database-backed
web sites,” in VLDB, pp. 191-200, 2001.

Q. Luo, J. F. Naughton, R. Krishnamurthy, P. Cao, and Y. Li, “Active query
caching for database web servers,” in WebDB (Selected Papers), pp. 92-104,
2000.

[121]
[122]
[123]

[124]

[125]

[126]

[127]

[128]
[129]
[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

References 263

Q. Luo, J. F. Naughton, and W. Xue, “Form-based proxy caching for database-
backed web sites: Keywords and functions,” The VLDB Journal, 2007.

Q. Luo and W. Xue, “Template-based proxy caching for table-valued func-
tions,” in DASFAA, pp. 339-351, 2004.

T. Malik, R. C. Burns, and A. Chaudhary, “Bypass caching: Making scientific
databases good network citizens,” in ICDE, pp. 94-105, 2005.

T. Malik, R. C. Burns, N. V. Chawla, and A. Szalay, “Estimating query result
sizes for proxy caching in scientific database federations,” in Supercomputing,
p. 36, 2006.

J. C. Mogul, “Recovery in spritely NFS,” Computing Systems, vol. 7, no. 2,
pp- 201-262, 1994.

J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy, “Potential
benefits of delta encoding and data compression for http,” in SIGCOMM,
pp- 181-194, 1997.

M. N. Nelson, B. B. Welch, and J. K. Ousterhout, “Caching in the sprite
network file system,” ACM Transactions on Computer Systems, vol. 6, no. 1,
pp- 134-154, 1988.

M. Nottingham, “Optimizing object freshness controls in web caches,” in Web
Caching and Content Delivery Workshop, 1999.

C. Olston and J. Widom, “Best-effort cache synchronization with source coop-
eration,” in SIGMOD Conference, pp. 73-84, 2002.

Ozgﬁr Ulusoy and G. G. Belford, “Real-time transaction scheduling in
database systems,” Information Systems, vol. 18, no. 9, pp. 559-580, 1993.
S. Papastavrou, G. Samaras, P. Evripidou, and P. K. Chrysanthis, “A decade
of dynamic web content: A structured survey on past and present practices and
future trends,” IEEE Communications Surveys and Tutorials, vol. 8, no. 1-4,
pp. 5260, 2006.

S. Patro and Y. C. Hu, “Transparent query caching in peer-to-peer overlay
networks,” in IPDPS, p. 32, 2003.

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker, “A comparison of approaches to large-scale data analysis,”
in SIGMOD ’09: Proceedings of the 35th SIGMOD International Conference
on Management of Data, pp. 165-178, New York, NY, USA: ACM, 2009.

X. Qian and G. Wiederhold, “Incremental recomputation of active relational
expressions,” IEEE Transactions on Knowledge and Data Engineering, vol. 3,
no. 3, pp. 337-341, 1991.

M. Rabinovich and O. Spatschek, Web Caching and Replication. Addison-
Wesley Longman Publishing Co., Inc., 2002.

M. Rabinovich, Z. Xiao, F. Douglis, and C. R. Kalmanek, “Moving edge-side
includes to the real edge — The clients,” in USENIX Symposium on Internet
Technologies and Systems, 2003.

A. Rajaraman, Y. Sagiv, and J. D. Ullman, “Answering queries using tem-
plates with binding patterns,” in PODS, pp. 105-112, 1995.

L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis, “Automatic fragment
detection in dynamic web pages and its impact on caching,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 859-874,
2005.

264

139

[140]
[141]

[142]

[143]

[144]
[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]
[153]

[154]

[155]

[156]

References

L. Ramaswamy and L. Liu, “An expiration age-based document placement
scheme for cooperative web caching,” IEEE Transactions on Knowledge and
Data Engineering, vol. 16, no. 5, pp. 585-600, 2004.

L. Ramaswamy, L. Liu, and A. Iyengar, “Cache clouds: Cooperative caching
of dynamic documents in edge networks,” in ICDCS, pp. 229-238, 2005.

L. Ramaswamy, L. Liu, and J. Zhang, “Efficient formation of edge cache groups
for dynamic content delivery,” in ICDCS, p. 43, 2006.

G. D. Rodosek and L. Lewis, “Dynamic service provisioning: A user-centric
approach,” in Proceedings of the 12th International Workshop on Distributed
Systems: Operations and Management (DSOM’01), 2001.

P. Rodriguez, C. Spanner, and E. W. Biersack, “Analysis of web caching archi-
tectures: Hierarchical and distributed caching,” IEEE/ACM Transactions on
Networking, vol. 9, no. 4, pp. 404-418, 2001.

N. Roussopoulos and H. Kang, “Principles and techniques in the design of
ADMS+,” IEEE Computer, vol. 19, no. 12, pp. 19-25, 1986.

M. Satyanarayanan, “The evolution of Coda,” ACM Transactions on Com-
puter Systems, vol. 20, no. 2, pp. 85-124, 2002.

A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S. Candan, “Incremental
maintenance of path-expression views,” in SIGMOD Conference, pp. 443-454,
2005.

B. Schroeder and M. Harchol-Balter, “Web servers under overload: How
scheduling can help,” ACM Transactions on Internet Technology, vol. 6, no. 1,
pp. 20-52, 2006.

S. Shah, K. Ramamritham, and P. J. Shenoy, “Maintaining coherency of
dynamic data in cooperating repositories,” VLDB, pp. 526537, 2002.

M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs, “Algorithms
and metrics for processing multiple heterogeneous continuous queries,” ACM
Transactions on Database Systems (TODS), pp. 5.1-5.44, March 2008.

A. Sherman, P. A. Lisiecki, A. Berkheimer, and J. Wein, “ACMS: The Akamai
configuration management system,” in NSDI, pp. 245-258, 2005.

B. Smith, A. Acharya, T. Yang, and H. Zhu, “Exploiting result equivalence
in caching dynamic web content,” in USENIX Symposium on Internet Tech-
nologies and Systems, 1999.

G. F. Stefano Di Paola, “Subverting Ajax,” in CCC, 2006.

M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and
A. Rasin “Mapreduce and parallel DBMSs: Friends or foes?” Communications
of the ACM, vol. 53, no. 1, pp. 64-71, 2010.

M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin,
and A. Yu, “Mariposa: A wide-area distributed database system,” The VLDB
Journal, vol. 5, no. 1, 1996.

S. Y. Su, C. Huang, J. Hammer, Y. Huang, H. Li, L. Wang, Y. Liu, C. Pluem-
pitiwiriyawej, M. Lee, and H. Lam, “An Internet-based negotiation server for
e-commerce,” The VLDB Journal, vol. 10, no. 1, pp. 72-90, 2001.

A. S. Szalay, J. Gray, A. Thakar, P. Z. Kunszt, T. Malik, J. Raddick,
C. Stoughton, and J. vandenBerg, “The SDSS skyserver: Public access to the
sloan digital sky server data,” in SIGMOD Conference, pp. 570-581, 2002.

[157]
[158]

[159]
[160]

[161]

[162]

(163]
[164]
[165]

[166]

[167]
[168]

[169]

[170]
[171]

[172]

[173]
[174]

[175]

[176]

References 265

X. Tang and S. T. Chanson, “Coordinated management of cascaded caches
for efficient content distribution,” in ICDE, pp. 37-48, 2003.

X. Tang, S. T. Chanson, H. Chi, and C. Lin, “Session-affinity aware request
allocation for web clusters,” in ICDCS, pp. 142-149, 2004.

Tangosol. http://www.tangosol.com.

The TimesTen Team, “In-memory data management in the application tier,”
in ICDE, p. 637, 2000.

The TimesTen Team, “Mid-tier caching: The timesten approach,” in SIGMOD
Conference, pp. 588-593, 2002.

P. Triantafillou and C. Neilson, “Achieving strong consistency in a distributed
file system,” IEEE Transactions on Software Engineering, vol. 23, no. 1,
pp. 35-55, 1997.

D. Verma, “Service level agreements on IP networks,” Proceedings of the IEEE,
vol. 92, pp. 1382-1388, 2004.

D. Vista, “Optimizing incremental view maintenance expressions in relational
databases,” PhD thesis, University of Toronto, 1997.

J. Wang, “A survey of web caching schemes for the Internet,” ACM SIG-
COMM Computer Communication Review, vol. 29, no. 5, pp. 36—46, 1999.
Y. Wang and L. A. Rowe, “Cache consistency and concurrency control in
a client/server DBMS architecture,” in SIGMOD Conference, pp. 367-376,
1991.

W. K. Wilkinson and M.-A. Neimat, “Maintaining consistency of client-cached
data,” in VLDB, pp. 122-133, 1990.

A. Wolman, “Sharing and caching characteristics of internet content,” PhD
thesis, University of Washington, 2002.

A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray,
D. Pinnel, A. Karlin, and H. Levy, “Organization-based analysis of web-object
sharing and caching,” USENIX Symposium on Internet Technologies and Sys-
tems, 1999.

K. Worrell, “Invalidation in large scale network object caches,” Master thesis,
University of Colorado, Boulder, 1994.

S. Wu and C.-C. Liao, “Virtual proxy servers for WWW and intelligent agents
on the internet,” in HICSS, p. 200, 1997.

L. Xiao, X. Zhang, A. Andrzejak, and S. Chen, “Building a large and efficient
hybrid peer-to-peer internet caching system,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 16, no. 6, pp. 754-769, 2004.

K. Yagoub, D. Florescu, V. Issarny, and P. Valduriez, “Caching strategies for
data-intensive web sites,” in VLDB, pp. 188-199, 2000.

J. Yin, L. Alvisi, M. Dahlin, and C. Lin, “Using leases to support server-driven
consistency in large-scale systems,” in ICDCS, pp. 285-294, 1998.

J. Yin, L. Alvisi, M. Dahlin, and C. Lin, “Volume leases for consistency in
large-scale systems,” IEEE Transactions on Knowledge and Data Engineering,
vol. 11, no. 4, pp. 563-576, 1999.

H. Yu and A. Vahdat, “Efficient numerical error bounding for replicated net-
work services,” in VLDB, pp. 123-133, 2000.

266

[177]

[178]

[179]

References

Q. Zhang, W. Sun, E. Smirni, and G. Ciardo, “Workload-aware load balancing
for clustered web servers,” IEEE Transactions on Parallel and Distributed
Systems, vol. 16, no. 3, pp. 219-233, 2005.

Y. Zhuge and H. Garcia-Molina, “Graph structured views and their incremen-
tal maintenance,” in ICDE, pp. 116-125, 1998.

F. Zulkernine, P. Martin, C. Craddock, and K. Wilson, “A policy-based
middleware for web services SLA negotiation,” in Proceedings of the IEEE
International Conference on Web Services (ICWS08), 2008.

