Distrib Parallel Databases (2009) 25: 165-192
DOI 10.1007/s10619-009-7033-z

Blocking reduction for distributed transaction
processing within MANETSs

Sebastian Obermeier - Stefan Bottcher -
Martin Hett - Panos K. Chrysanthis -
George Samaras

Published online: 24 February 2009
© Springer Science+Business Media, LLC 2009

Abstract Atomic commit protocols for distributed transactions in mobile ad-hoc net-
works have to consider message delays and network failures. We consider ad-hoc
network scenarios, in which participants hold embedded databases and offer services
to other participants. Services that are composed of several other services can access
and manipulate data of physically different databases. In such a scenario, distrib-
uted transaction processing can be used to guarantee atomicity and serializability
throughout all databases. However, with problems like message loss, node failure,
and network partitioning, mobile environments make it hard to get estimations on the
duration of a simple message exchange.

In this article, we focus on the problem of setting up reasonable time-outs when
guaranteeing atomicity for transaction processing within mobile ad-hoc networks,
and we show the effect of setting up “wrong” time-outs on the transaction throughput
and blocking time. Our solution, which does not depend on time-outs, shows a better
performance in unreliable networks and remarkably reduces the amount of blocking.

Communicated by Amit Sheth.

S. Obermeier (<) - S. Bottcher - M. Hett
University of Paderborn, 33102 Paderborn, Germany
e-mail: so@upb.de

S. Bottcher
e-mail: stb@upb.de

M. Hett
e-mail: mh1108 @upb.de

P.K. Chrysanthis
University of Pittsburgh, Pittsburgh, PA 15260, USA
e-mail: panos @cs.pitt.edu

G. Samaras

University of Cyprus, 1678 Nicosia, Cyprus
e-mail: cssamara@cs.ucy.ac.cy

@ Springer

mailto:so@upb.de
mailto:stb@upb.de
mailto:mh1108@upb.de
mailto:panos@cs.pitt.edu
mailto:cssamara@cs.ucy.ac.cy

166 Distrib Parallel Databases (2009) 25: 165-192

Keywords Mobile transaction processing - Concurrency control - Locking -
Validation - Mobile ad-hoc networks - Atomic commit - Adjourn state

1 Introduction

As mobile devices get ubiquitous and grow in computational power, their manage-
ment of interdependent data also becomes increasingly important. For example, con-
sider the following application scenarios that make use of mobile ad-hoc networks.

Mobile market scenarios allow buyers and sellers to use their PDAs for searching,
offering, and buying items. A sale transaction can involve items and services of dif-
ferent people located in different parts of the flea marked. In this case, to guarantee
that buyer gets all items and services, atomicity is a required criterion. Furthermore,
when the number of requested items and services is higher than the number of items
available at the flea market, the sellers do not want to reserve their goods for a long
time for a customer that might even back out of the purchase, i.e., an appropriate
time-out mechanism for sale transactions is required.

Mobile gaming, e.g., mobile role playing games, let a player exchange and equip
virtual characters with virtual items. When the game uses embedded local databases
to store the game information, all steps of a player’s action that affect one or more
databases should be encapsulated by database transactions in order to guarantee
consistent game data.

Disaster management, e.g., in case of forest fires, makes use of mobile devices to
instruct fire fighters and to supply them with actual position data and burning densi-
ties. Coordinated actions of distributed fire fighters, e.g. coordinated rescue actions,
require atomic decisions on the use of men and resources. In this scenario, the agree-
ment of all participating fire fighters about the next action is crucial for the security
of the fire fighters. As the application of transaction processing techniques allows
giving guarantees for atomicity, the reduction of transaction blocking is desirable,
for example when fire fighters must be re-grouped.

Scientific exploration, e.g., a Mars exploration, use mobile ad-hoc networks to co-
ordinate multiple exploration rovers and to manage sensored data. In order to store,
search, and compare gathered data of a rover with another rover’s data, embed-
ded databases are also useful. In order to guarantee the consistency of all databases
in case database operations affect more than one database, atomicity is required.
Blocking reduction is also important for the overall application performance.

Clearly, such mobile environments combine all the characteristics of a distributed
database with the challenge of whimsical connectivity.

In order to maintain data consistency and integrity across the network and across
the local databases of each device, in our examples, the use of atomic mobile distrib-
uted transactions is crucial and challenging.

Within fixed wired networks, atomic commit-protocols like Two-phase Commit
protocol (2PC) [18] or Three-phase Commit protocol (3PC) [36], and a lot of vari-
ations of them (e.g., [2, 11, 22, 34, 35]), ensure the atomic execution of distributed
transactions by using a central Coordinator. However, in the context of mobile ad-
hoc networks in which mobile devices interact cooperatively via Web services, the

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 167

protocol must be able to deal with a much more enhanced failure model and must be
more flexible in unreliable environments. As disconnection times are unforeseeable,
the use of standard lock-based concurrency control techniques and atomic commit
protocols in mobile ad-hoc environments may lead to unbounded and unpredictable
delays. Most of these techniques and protocols rely on time-outs to detect and handle
failures. However, it is extremely difficult to set up reasonable time-outs, for example,
for aborting a transaction when its Commit coordinator does not respond immediately
during the execution of an atomic commit protocol such as 2PC or 3PC.

1.1 Contributions

The main contributions of this paper are:

— We propose a distributed transaction model based on Web services.

— We present the “Adjourn state”, a non-blocking state that allows concurrent trans-
actions to be processed while a distributed transaction is waiting for the Coordi-
nator’s voteRequest message to demand the commit decision. In contrast to the
traditional Blocking (or Wait) state, the Adjourn state shows the following advan-
tages:

— It does not require the setup of a transaction time-out.

— It does not block concurrent transactions.

— It provides a flexible reaction to concurrency failures by distinguishing failures
that require a transaction abort, failures that only require the repetition of a sub-
transaction, and failures that allow the reuse of a sub-transaction.

— We introduce a novel use of the Commit tree, i.e. a tree data structure that repre-
sents the execution status of all active sub-transactions, and show how the Commit
tree can be used to efficiently coordinate the transaction.

— We present an experimental evaluation that demonstrates the advantage of the Ad-
journ state in a mobile and highly unreliable environment.

Beyond our previous contributions [30] and [7], this article further

provides a detailed Web service transaction model,

— shows implementations of the Adjourn state for both locking and validation con-
currency control,

— explains how sub-transaction dependencies and commit-status information shared
in the Commit tree can be used to partially restart and re-use sub-transactions, and

— gives experimental results for the Adjourn state and evaluates the effect of setting

up different time-outs regarding transaction throughput and overall blocking time.

1.2 Paper organization

The remainder of the article is organized as follows. In Sect. 2, we explain the un-
derlying system model and the transaction model, and we point out its use in two
concurrency control mechanisms, one pessimistic approach using locks, and one op-
timistic approach using backward oriented validation. In Sect. 2.3, we describe the
blocking problem that both concurrency control mechanisms involve regarding the

@ Springer

168 Distrib Parallel Databases (2009) 25: 165-192

processing of concurrent transactions in a mobile environment, and the resulting dif-
ficulty in setting up reasonable time-outs for aborting non-progressing transactions is
explained in Sect. 2.4.

Section 3 describes our solution, which distinguishes between a blocking and a
non-blocking state—called the Adjourn state—while waiting for the atomic commit
protocol to start. Thus, our solution makes setting up time-outs obsolete. We describe
how to combine our solution with both concurrency control mechanisms, locking
and validation. Furthermore, we show how the use of the Commit tree speeds up the
commit decision phase by implicitly flattening the transaction invocation tree, and
how the Commit tree can be used to optimize concurrency control issues.

Section 5 points out the experimental setup and describes the results of our exper-
iments. Finally, Sect. 6 discusses related work and Sect. 7 summarizes our results.

2 System model

We consider mobile devices, each equipped with a local database. The mobile devices
form a mobile ad-hoc network and offer their data by providing (web-) services.
When a device uses an offered Web service of a participant P;, one or more sub-
transactions are invoked at the local database of P;, which may invoke other sub-
transactions on mobile devices P;.

Due to the distributed character of our system model, one challenge when guaran-
teeing the atomicity property is to block resources as short as possible.

2.1 Transaction model

Our transaction model bases on the “Web Services Transactions Specification” [10].
However, due to our focus on the blocking problem when guaranteeing atomicity, we
can use a much simpler transaction model in this paper, i.e., we do not need a cer-
tain Web service modeling or composition language like BPEL4WS [13]. Thus, our

9% ¢

transaction model consists only of the objects “application”, “Web service”, “transac-
tion procedure”, “global transaction”, and “sub-transaction”. These terms are related
to each other as explained in the first subsection. The second subsection summarizes
some characteristic differences to other transaction models, and the third subsection

describes an example execution illustrating our transaction model.
2.1.1 Basic components of our Web service transaction model

An application is a program that may consist of one or more Web services. A transac-
tion procedure is a Web service that must be executed in an atomic fashion. Transac-
tion procedures and Web services are program fragments including local code, data-
base instructions, and (zero or more) instructions to call other remote Web services.
Note that we distinguish between transaction procedures and transactions as fol-
lows. A transaction procedure is a program fragment that shall be executed in an
atomic fashion. In contrast, a transaction, which is either a global transaction or a

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 169

sub-transaction, is an atomic execution of a transaction procedure. The same transac-
tion procedure when called twice leads to different transactions that may even call a
different number of sub-transactions.

When an application A P invokes a transaction procedure, we call AP the Initia-
tor, and we call the execution of the transaction procedure a global transaction T .
The application AP is interested in the result of 7', i.e., whether the execution of a
global transaction T has been committed or aborted. In case of commit, AP is also
interested in the return values of the parameters of T'.

A global transaction may be distributed over several databases and may consists
of one or more sub-transactions, each of which consists of the following phases: a
read-phase, a coordinated commit decision phase, and, in case of successful commit,
a write-phase. During the read-phase, each sub-transaction performs write operations
on its private storage only. After commit, during the write phase, write operations
on the private storage are transferred to the database, such that the changes done
throughout the read-phase become visible to other transactions after completion of
the write-phase.

The relationship between transactions, Web services, and sub-transactions is re-
cursively defined as follows: We allow each transaction or sub-transaction 7 to dy-
namically invoke additional Web services offered by physically different nodes. We
call the execution of such Web services directly or indirectly invoked by the T the
sub-transactions 7 ... T} of T. The invocation hierarchy of sub-transactions can be
regarded as an invocation tree of sub-transactions that may be arbitrarily deep. Within
such an invocation tree of sub-transactions, the “root-node” represents the global
transaction T, while all other nodes of the tree represent sub-transactions 7; of 7.
In this sense, each transaction 7; calling a sub-transaction 7 is represented by the
“parent” node of the node representing the sub-transaction 7; within the invocation
hierarchy, and, for simplicity, we also call 7; the parent transaction of T;.

Each sub-transaction 7 that has been invoked by a parent transaction 7; is exe-
cuted autonomously. 7; and T; independently of each other send their commit de-
cision or abort decision to the coordinator. Whenever Tj ... T, denote all the sub-
transactions called by either a global transaction T, directly or by any child or descen-
dant sub-transaction T of T, during the execution of T, atomicity of T, requires that
either all transactions of the set {7y, 71, ..., T} commit, or all of these transactions
abort.

We assume that each Web service only knows the Web services that it calls di-
rectly, but does not know whether or not the called Web services call other Web
services. Therefore, at the end of its execution, each transaction 7; knows which
sub-transactions Tk ... T, it has called, but 7;, in general, will not know which sub-
transactions have been called by T ...T,. Furthermore, we assume that usually a
transaction 7; does not know how long its sub-transactions 7y ... T, are going to run.
This holds in particular for each global transaction.

In the mobile architecture for which our protocol is designed, Web services are
invoked by asynchronous messages instead of invoking them by synchronous calls
for the following reason. We want to avoid dependencies that occur if the comple-
tion of the read-phase of a sub-transaction 7; depends on the execution of another
sub-transaction 7. Figure 1 illustrates the situation that we want to avoid: The Web
service T; must wait for the return value of T before it can finish its execution.

@ Springer

170 Distrib Parallel Databases (2009) 25: 165-192

Fig. 1 Synch 11s fi
ig. ynchronous calls for [Tz

’ wait for result
‘Web services N

T; >
— %] e

Fig. 2 Modeling synchronous 7 T
Web service calls by T T

asynchronous invocations \ / time

— 7 =
. time

In contrast, we want each sub-transaction to be able to autonomously complete its
read phase. Thus, we allow sub-transactions only to return values indirectly by asyn-
chronously invoking corresponding receiving Web services, but not synchronously
by return statements. However, our model also supports a synchronous Web service
call of T; to T; by modeling the call as Fig. 2 illustrates: we split 7; into T;, and T;,
as follows. T;, includes 7;’s code up to and including an asynchronous invocation
of its sub-transaction 7;; and T, contains the remaining code of T;. T; addition-
ally contains an asynchronous call to 7;, that contains the return values computed by
T; that shall be further processed by 7;,. In other words, a transaction 7; calling a
sub-transaction 7; and waiting for T;’s return value to continue, as shown in Fig. 1,
is replaced in our model with three transactions as shown in Fig. 2. Here, T;, is a
sub-transaction of 7}, T; is a sub-transaction of 7}, .

Since (sub-)transactions describe general Web service executions, they may not
necessarily access only relational databases, but can also access other resources
stored on the mobile device. Thus, we also call these nodes resource managers (RM)
and assume they support transaction processing.

2.1.2 Characteristic features of our Web service transaction model

We distinguish between program code, e.g., Web Services and transaction proce-
dures, and concrete executions of the program code on the database (transactions). A
transaction does not contain program code and Web services are never executions of
program code. As the invocation of a Web service depends on conditions and para-
meters, different executions of the same Web service may call different Web services
and execute different local code. Thus, the same Web service can lead to different
transactions on the database, e.g., when it is executed twice.

A special feature of our Web service transaction model is that the Initiator and the
Web services do not know every sub-transaction that is generated during transaction
processing. Our model differs from other models that use nested transactions (e.g.
[10, 16, 31]) in some aspects including but not limited to the following:

e Since network partitioning makes it difficult or even impossible to compensate all
sub-transactions, we consider each sub-transaction running on an individual re-
source manager to be non-compensable. Therefore, no sub-transaction is allowed

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 171

to commit independently of the others or before the Commit coordinator guaran-
tees that all sub-transactions can be committed.

e Different from CORBA OTS [26, 31], we assume that we cannot identify a hierar-
chy of commit decisions, where aborted sub-transactions can be compensated by
executing other sub-transactions.

e Different from the Web service transaction model [10], the Initiator of a transaction
in our model does not need to know all the transaction’s sub-transactions in ad-
vance. We assume that each sub-transaction notifies the Initiator after completion
of the read-phase by including a list of asynchronously invoked sub-transactions
into its “read phase completed” notification message to the Initiator.

e A Web service may consist of control structures, e.g., if <Condition> then
<T1> else <T2>.This means that an execution of a sub-transaction may create
other sub-transactions dynamically. These dynamically created sub-transactions
belong to the same global transaction and must participate in the atomic commit
decision, as well.

e Communication is message-oriented, i.e., a Web service does not explicitly return
a result, but may invoke a receiving Web service that performs further operations
based on the result.

2.1.3 An example executing illustrating out Web service transaction model

Figure 3 shows an example execution of our Web service transaction model. The Ini-
tiator of the transaction invokes a Web service 7; that is offered by participant P;. Af-
ter the completion of the read-phase, an additional transaction is T offered by partici-
pant P; is invoked. Furthermore, the Initiator is notified whenever a sub-transaction’s
read-phase is completed, as the dotted arrows indicate. We will see the benefit of this
notification regarding a fast determination of all involved participants in Sect. 4. Fur-
thermore, Fig. 3 shows how call-by-value-result invocations are implemented: When
participant P; invokes the sub-transaction 7; at Pj, it additionally adds a parame-
ter [7}], which specifies the sub-transaction T} to handle the return value. Thus, P;
invokes T} with the requested return value after P; has finished T;’s read-phase.

Commit
Coordinator
start B
commit doCommit
protocol
Initiator y

’ jok oki oki end
.. read i [read write |
Pa;)tlapant phase | phase phase
i H i
! end
T;,[Ti] /
T

.. read . write
Participant phase phase
P;

time
Fig.3 Web service transaction execution sequence

@ Springer

172 Distrib Parallel Databases (2009) 25: 165-192

Note that the transaction consists of the sub-transactions 7;, T}, and Tj. The in-
vocation hierarchy of the sub-transactions is 7; — T; — T;. However, the three sub-
transactions are executed only by two physical participants, P; and P;. Although, in
this case, 7; and T} are run by the same participant P;, their execution is independent
of each other and P; must sent two votes to the Coordinator during the atomic com-
mit protocol, one vote for 7; and one vote for T;. However, P; can bundle these two
votes into one message.

The Initiator starts the commit protocol when all sub-transactions have finished;
how the Initiator determines this, is explained in Sect. 4. The commit protocol then
needs several message exchanges in order to decide on the transaction’s commit sta-
tus.

2.2 Concurrency control

We describe two common concurrency control methods, namely Two-phase locking
(2PL) and validation, which can be used in our Web service transaction model. Based
on these synchronization schemes, we show how to combine our solution with each
of these synchronization techniques in Sect. 3.

For each sub-transaction Ty, let RS(T,) denote the local data read by T, and
WS(T,) denote the local data written by T,.

2.2.1 Two-phase locking

The Two phase locking protocol [17] consists of two consecutive phases for handling
transaction locks:

— In phase 1, necessary locks are acquired, no lock is released.
— In phase 2, no lock must be acquired anymore, but locks may be released.

For transactions that obey 2PL, the serializability property is guaranteed according
to [38]. However, in order to avoid cascading aborts and to guarantee recoverable his-
tories, we require transactions to be strict [5], i.e., Phase 2 can only be entered when
the resource manager has received the decision of the coordinator on the transaction’s
commit or abort status. In other words: Unless the transaction’s commit decision is
not known by a resource manager, the resource manager is not allowed to use the
transaction’s resources for other purposes. We assume for the remainder of the paper
that the strictness property holds when 2PL is used.

2.2.2 Local concurrency control by backward validation

Optimistic concurrency control [20, 23], more precisely backward oriented optimistic
concurrency control with parallel validation, does not use locking and allows parallel
access to conflicting data tuples. However, after the read-phase has been finished, an
additional validation phase follows in which concurrency conflicts are discovered.
Only those transactions that pass the validation may, after a successful distributed
commit decision, enter the write phase, during which they write their changes back
to the database.

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 173

Fig. 4 Serializability for

distributed transactions Tia read(x) ; validate ' > ..
A . .
Toa ! ' validate : write(x) >
Top ¢ read(y) . validate : _
B . .
Tis " ' validate : wrlte(y);

A local sub-transaction 7, is called older than a local sub-transaction 7; running
on the same database, if 7, starts its validation phase before T, does.

During the validation phase, the resource managers checks whether for each older
transaction T, one of the following conditions hold. If this is the case, transaction T,
validates to true. Otherwise, T, validates to false.

1. T, has completed its write phase before 7, has started.

2. T, has completed its write phase after T, has started, but before T, has started its
validation phase, and (RS(T,) N WS(T,)) = @.

3. T, has not finished its write phase before T, has started the validation, and
(a) (RS(T,) UWS(Ty)) NWS(T,) =2, and
(b) RS(To)NWS(Ty))=2.

Compared to [23], we additionally require condition 3(b) to be fulfilled in order to
guarantee serializability for distributed transactions. While the concurrency control
proposed by [23] correctly guarantees serializability for non-distributed transactions,
it cannot guarantee serializability when distributed transactions are executed concur-
rently, as shown in the example of Fig. 4.

Figure 4 shows a schedule for the participants A and B, each of them running
two sub-transactions concurrently. On participant A, a dependency 714 before T4
exists, while on participant B, a dependency 7>p before T7p exists. If a global trans-
action T consists of the sub-transactions 714 and Tjp and a global transaction 7>
consists of the sub-transactions T4 and Tp, the serialization graph would contain
a cycle, which violates serializability. The request for checking condition 3(b) pre-
vents this cycle, since our proposed concurrency control protocol would abort both
sub-transactions 7> and T p.

2.3 Blocking behavior of locking and validation

Traditional validation [23] is usually considered a scheduling technique for synchro-
nization of concurrent transactions that avoids blocking.

However, although validation does not directly block any resources, we argue that
even the validation-based concurrency control shows a blocking behavior when used
in combination with an atomic commit protocol. More precisely, in case of link fail-
ures or node failures, locking and validation are equivalent regarding their blocking
behavior in the following sense. Assume that a sub-transaction 7;, reading the tuples
RS(T;) and writing the tuples WS(T;), is waiting for the Coordinator to request its
vote.

@ Springer

174 Distrib Parallel Databases (2009) 25: 165-192

Two-phase locking would not allow any sub-transaction T with WS(T;) N
(WS(Ty) URS(Ty)) # ¥ to get the required locks and would therefore block 7} and
prevent the completion of 7} ’s read-phase.

Traditional validation (e.g., [23]) would allow any younger sub-transaction Ty with
WS(T;) N (WS(Tr) U RS(Ty)) # @ to enter the read-phase. However, since the tuple
sets WS(T;) and (WS(Ty) U RS(Ty)) are not disjoint, the validation of T fails, result-
ing in an abort of T;. Thus, validation prevents T} to enter its write phase as well.
Note that even a repetition of T, would result in an abort as long as 7; waits for the
Coordinator’s decision.

This means that both techniques, locking and validation, show a similar behavior
when dealing with atomic commit decisions for mobile networks: A transaction 7;
that waits for the commit decision and that has accessed the tuples WS(T;) U RS(T;)
during its read-phase, is not allowed to unilaterally commit or abort the transaction.
Thus, 7; prevents other sub-transactions 7} that write on the data T; accessed or that
read data 7; has written from being committed.

2.4 Problem description

Regardless of whether validation or locking is used, the following problem occurs
when the database is still able to abort a transaction T, but the Commit coordi-
nator is not reachable anymore. Then, the concurrency control prevents conflicting
transactions Tp from being successfully executed. In other words, any delay in the
commit phase of Tp has a blocking effect on concurrent conflicting transactions Ty .
To solve this problem, [36] has introduced time-outs after which the database aborts
the transaction Ty if it is still allowed to do so, i.e., if it has not sent its vote message.

However, especially in mobile networks, the question arises: “What is a reasonable
time-out after which the database should abort the transaction T if it has not sent a
vote message yet?”. If the time-out is too large, it prevents concurrent and conflicting
transactions Ty from a successful validation, since T will not pass the validation
phase successfully due to the pending transaction Tp. If the time-out is too short,
To may be unnecessarily aborted, e.g., when the delay is caused by the network or
when the duration of the validation phase differs for the databases participating in
the global transaction. Determining a reasonable time-out is difficult since it involves
not only knowledge about the network conditions, e.g., device movement, message
delivery times, message loss rates, etc., it must also consider the device’s computing
power and CPU utilization, and the varying duration of the validation phase for each
mobile device. Therefore, our solution, which does not rely on such a time-out, is
much easier to setup, and we will even see that it increases the overall transaction
throughput and reduces the amount of blocking.

3 Adjourn state blocking reduction

Our solution consists of two parts, namely, the Adjourn state and the Commit tree.
The Adjourn state avoids setting up participant time-outs for aborting a transaction

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 175

by distinguishing between two states in which a database can wait for the coordi-
nator’s voteRequest message: the blocking state (defined in Sect. 3.1) and the non-
blocking Adjourn state (introduced in Sect. 3.2). We describe the database’s reaction
regarding concurrent conflicting transactions for both, locking and validation-based
concurrency control.

The second part of our solution—the Commit tree—deals with the identification
of invoked sub-transactions. Furthermore, the Commit tree handles partial restarts of
a sub-transaction instead of repeating the whole global transactions.

3.1 The blocking state

The database is allowed to switch unilaterally from the blocking state to the non-
blocking Adjourn state as long as the vote has not been sent. However, the vote on
the transaction can only be sent in the blocking state, and once a vote has been sent,
the Adjourn state must not be entered anymore.

Both states, the blocking state and the non-blocking Adjourn state differ in the
way whether or how the validation phase for a concurrent transaction is executed,
and therefore show a different blocking behavior.

3.1.1 Blocking state for locking

If a locking-based concurrency control scheme is used and a sub-transaction 7; that
is in the blocking state has acquired the set of read locks RL(7;) and the set of write
locks WL(T;), another transaction T is not allowed to acquire a write lock wl with
wl € RL(T;), and Ty is not allowed to acquire any lock ! with [€ WL(T;). Thus, a
concurrent transaction 7; must wait until 7; is committed or aborted, or until 7; has
proceeded to the Adjourn state, and thus has unlocked RL(T;) and WL(T;).

3.1.2 Blocking state for validation

While a successfully validated transaction 7, is in the blocking state, the validation
of a newer transaction 7, against the older transaction 7 is done by 7}, as described
in Sect. 2.2.2. This means, transaction 7, is validated against 7, with the effect that
whenever transaction 7, is in conflict with T}, T,, is aborted.

3.2 The non-blocking Adjourn state

A transaction T, that has successfully finished its read-phase may enter the non-
blocking Adjourn state at any time after 7, has sent the result message to the Initiator
and before T), has sent the vote message. However, 7, must migrate from Adjourn
state to blocking state before it may send its vote message to the coordinator. Re-
member that, after the vote message has been sent, the sub-transaction is not allowed
to enter the Adjourn state anymore.

If validation is used, the database must further perform a second adjourn-specific
validation phase before a transaction is allowed to leave the Adjourn state.

@ Springer

176 Distrib Parallel Databases (2009) 25: 165-192

Definition 1 The Adjourn state of 7, is a state in which the resource manager RM
executing T, waits for the Commit coordinator’s request to vote on Ty, but RM does
not block the tuples in WS(T,) U RS(Ty), i.e., the tuples written or read by T,,.

In the following, we describe what happens when a concurrent transaction tries to
perform conflicting accesses to the data contained in WS(Ty,) U RS(Ty).

3.2.1 Adjourn state for locking

If locking is used and a transaction T, which has acquired the set of read locks
RL(T,) and the set of write locks WL(T,), enters the Adjourn state, the locks RL(T)
and WL(T,) are released. However, when the resource manager RM grants one or
more locks from the set RL(T,) U WL(T,) to another transaction 7 while T} is in the
Adjourn state, the RM checks whether or not

WL(T,) N (RL(Ty) U WL(T})) = 2,
/\RL(T,) N WL(Ty) = @.

If this check evaluates to false, there is a conflict between T, and Tj. Therefore,
the RM locally aborts T, and the RM can either abort all other corresponding (sub-)
transactions that belong to Ty, or try a repeated execution of the sub-transaction 7, if
T, is still repeatable.

3.2.2 Adjourn state for validation

While 7, is in the non-blocking Adjourn state, the validation of a concurrent transac-
tion T, is done as follows: T}, is validated against all older transactions except those
being in the Adjourn state when 7, started its validation phase. This means, T,, which
is in the Adjourn state, has no blocking effect on concurrent transactions 7;,.

When T, must leave the Adjourn state, i.e., when the Commit coordinator de-
mands a binding vote on the transaction, 7, must be validated again in a second
adjourn-specific validation phase. However, the scope of this second validation is
different from the first validation phase:

This second validation of a transaction Ty, is successful, if and only if the following
condition holds for each transaction 7,, that has started its validation while T, has
been in the Adjourn state:

(RS(T,) UWS(T) NWS(Ty) = &,
/\RS(T,) N\WS(T,) = 2.

When this validation fails, 7, must either be aborted or can be locally restarted.

The reason for this concurrency check is the following: Although T), entered its
validation phase before 7}, i.e., T, is older, T} has not been validated against 7.
Since T, may have already been committed, the validation of T, against 7,, must be
either successful, or T,, must be aborted or locally restarted.

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 177

Note that the Adjourn state only delays the validation of 7, against T;,. However,
the number of validation tests is exactly the same as with other commit protocols that
use backward oriented concurrent validation.

3.3 Local restarts and re-use of sub-transactions

Whenever a local sub-transaction 7; executing a Web Service W; is in Adjourn state
and must be aborted due to a conflicting access of a concurrent transaction, the data-
base can try to re-execute the Web service W; as a sub-transaction Ti’. However, as
sub-transactions are dynamically generated, 7/ may invoke different Web services
than T;. Since in our transactional model 7; and T/ do not return any values, a repe-
tition of 7; as 7} results only in a repetition of those sub-transactions that have been
invoked by 7;, but a repetition of 7; as 7; will not result in a repetition of the sub-
transaction that has invoked 7;.

Furthermore, we can optimize the repetition of the Web service W; that has spaw-
ned a sub-transaction 7; that is repeated as 7} as follows: 7 does not need to execute
a call to Web service Wy with parameters P; when the same call has also been issued
by T; with exactly the same parameters. In this case, we can re-use the call of 7; to
Ws in the repetition of W;, i.e., in Tl/ , since W itself is responsible for local restarts
in case of concurrency conflicts. Since the effects of the execution of W, will become
permanent after the completion of the atomic commit protocol and W, never returns
any value to an ancestor in the invocation tree, W, only depends on the invocation
parameter of W;. The concrete execution of W;, however, does not depend on the
execution of W at all. Thus, whenever W; is repeated with the same invocation pa-
rameters, this repetition does not have any effect on W;. Therefore, the call of 7; to
W; can be re-used.

To summarize, if W; must be repeated and the corresponding sub-transaction 7;
has invoked Wy with parameter Py, the repetition of W; as T/ can lead to the following
possibilities regarding the calls to other Web services:

1. TI.’ must issue a call to W with the same parameters P as 7; has done. This call
does not need to be executed, Ti’ can re-use the invocation done by T;.

2. T/ mustissue a call to Wy with different parameters P;. This call must be executed.

3. Ti’ does not need to call Wy anymore. Then, W can be aborted.

4. Ti’ must issue a call to a new Web Service W; that has not been invoked by 7;.
Then, W; must be treated as every other Web service that belongs to the global
transaction.

If the repetition 7; of a Web service W; previously executed as 7; does not call
any new Web service W; and does not call any Web service Wy with parameters that
differ from the parameters that were used when calling 7;, W; can be locally repeated
without having an effect on other Web services.

3.4 Entering the Adjourn state

Each transaction may decide for itself when it enters the Adjourn state. However, we
propose to wait for a short delay in order to avoid unnecessary aborts. Our experi-
ments have shown that waiting for the duration of a typical message delay gives the
best results.

@ Springer

178 Distrib Parallel Databases (2009) 25: 165-192

Fig.5 Two sub-transactions teR " doCommit
executed at P; and P; voteReques
! result
vote
[
read p;hase z rite
an
P, 1/ s =
"\T; | validation 5 phase
t t S
Adjourn time
state
voteRequest doCommit
result vote
read phase .
and write
P; validation phase
T
J 1 -
T el
time
Fig. 6 Single resource manager voteRequest
running concurrent and result -
conflicting transactions local repetition
read phase §
and ®
£ . T e o o
validation s
+ = >
Adjourn time
state
read phase||write
and
validation” ||phase
-
>
time

Figure 5 shows an example application of the Adjourn state when validation-based
concurrency control is used. It shows two resource managers P; and P; that try to
commit the sub-transactions 7; and 7}, respectively. Both, 7; and T}, belong to the
same global transaction 7. As the execution time of the read phase and the validation
phase takes longer for P; than for P;, P; has to wait for a longer period of time for the
voteRequest message to arrive. However, P; does not know about the delay of P;.
In order to avoid blocking of concurrent transactions after the validation phase, P;
migrates 7; into the Adjourn state and unblocks the occupied resources. After P; has
successfully sent the result, the coordinator demands the vote of P; and P;. Since
T; has entered the Adjourn state, P; must perform the second validation phase as
stated in Sect. 3.2, before 7; can leave the Adjourn state and can send the vote to the
coordinator.

Figure 6 shows a single resource manager P executing the two independent
sub-transactions 7, and 7,,. While the older transaction, 7,, waits for the coordi-
nator’s voteRequest message, the newer concurrent local transaction, 7;,, performs
conflicting accesses to data tuples accessed by T,. Therefore, after 7, received the
voteRequest, the second adjourn-specific validation phase of T, against 7, fails,

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 179

which requires the repetition of 7,’s read-phase. However, the delay within the coor-
dination process of T, has not led to a chain reaction of blocking of the concurrent
transactions, e.g., 7, could be still committed.

3.5 Proof of correctness

The following theorem states that it is not possible that a sub-transaction 7 of a
global transaction T is still in Adjourn state, when a sub-transaction 7; of T is com-
mitted.

Theorem 1 Whenever a sub-transaction T; of a transaction T is committed, i.e., T;’s
write phase is executed, no sub-transaction Ty belonging to the transaction T can be
in the Adjourn state anymore.

Proof by contradiction. Assume, the coordinator’s decision for T is commit, and the
sub-transaction T} is in Adjourn state. In order to decide for commit, the coordinator
must have had received voteCommit messages of all participating sub-transactions,
including T;. However, in order to be able to send a “voteCommit” message, Ty must
be in the blocking state. After having sent the voteCommit message, T} is not allowed
to migrate to the Adjourn state anymore, as described in Sect. 3.2. Therefore, without
violating the protocol, there is no possibility for a sub-transaction 7y of T to be in
Adjourn state, when another sub-transaction of 7' is committed. O

3.6 Number of messages

The Adjourn state is entered after the read-phase and the first validation phase have
been successfully finished. After the coordinator has sent the voteRequest message,
the database performs a second validation, and either immediately replies by sending
the vote message, or it locally restarts the sub-transaction. In the failure-free case,
each protocol with Adjourn state does not require additional messages compared to
the corresponding protocol without Adjourn state. Of course, if a transaction must
be locally restarted, additional messages for invoking sub-transactions may be nec-
essary. However, this involves at most the same work and at most the same number
of messages as restarting the global transaction as required by protocols without the
Adjourn state.

4 Commit tree

As described in Sect. 3.3, a sub-transaction 7; might be restarted as Ti’ in case of
concurrency conflicts. In this case, 7; and other sub-transactions 7 that have been
invoked by 7; and are either invoked by 7; with different parameters or are not at all
invoked by T;, can be aborted. In order to abort these sub-transactions, the coordinator
must learn about the invocation hierarchy. For this purpose, the invocation hierarchy
and the commit status of the involved sub-transactions is stored in a data structure
called “Commit tree”. To generate the Commit tree, each participant that sends a

@ Springer

180 Distrib Parallel Databases (2009) 25: 165-192

result to the Initiator attaches the IDs of all invoked sub-transactions. The Initiator
then creates the Commit tree for a transaction and passes it to the coordinator, which
is responsible to maintain the tree in case of restarts.

Note that each sub-transaction is required to send a result message to the Initiator
of the transaction after read-phase completion. However, a sub-transaction does not
send a message to a sub-transaction that is a parent sub-transaction in the invocation
hierarchy (with the exception of the parent being the Initiator).

Each Commit tree belongs to exactly one global transaction and stores the follow-
ing variables:

1. the global transaction ID,

2. atree structure containing Commit tree nodes,

3. alist unassignedN of unassigned nodes that correspond to sub-transactions 7 that
have sent a result before their parent sub-transactions, i.e., the sub-transactions
calling those transactions 7, have sent the result, and

4. alist openSubTransactions of known transaction IDs, for which the result has not
yet been received by the Initiator.

Furthermore, each Commit tree node stores

. the sub-transaction ID of the sub-transactions 7, represented by this node,
. the ID of the resource manager running the sub-transaction,

. the caller transactionID of the parent sub-transaction, and

. 0 or more IDs of invoked sub-transactions.

AW =

When the Initiator has ascertained that the Commit tree is complete, i.e., the Com-
mit tree has an empty list openSubTransactions, it passes the Commit tree to the
Commit coordinator. Based on the current status of the Commit tree and based on
a timer, the coordinator sends the following messages to the participating resource
managers:

1. voteRequest: when the Commit tree has been received from the Initiator, i.e., all
results have arrived at the Initiator and the list openSubTransactions is empty,

2. doCommit when all participants have voted for commit,

3. doAbort: when at least one participant has voted for abort, and

4. doAdjourn: when after a time-out some votes are still missing.

4.1 An example of the coordinator’s Commit tree

To ensure that all sub-transactions 71, ..., T, invoked by a sub-transaction 7; are
known to the coordinator, the initiator must process the result messages sent by each
participant.

Figure 7 shows an example Commit tree. Each result message of a sub-transaction
T; includes the result data, the ID of 7;, the ID of the parent sub-transaction that has
invoked T;, a list of sub-transactions that have been invoked by 7;, the global transac-
tion ID TID to which T; belongs, and a sequence number. When the initiator receives
the result of 77, the node T is created. Since the sub-transaction 77 has invoked the
sub-transactions 7> and 73, the vote for commit of the sub-transactions 7> and T3
is also required to commit the whole transaction. Therefore, these nodes are added

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 181

@Result(resuItData, I, root, [T1], TID, 1)

@ Result(resultData, Ty, I, [T5, T3], TID, 1)

@ @ Result(resultData, 73, T1, [], TID, 1)
@ @ Result(resultData, T5, T3, [], TID, 1)

Result(resultData, T3, Tj,
[T, 73, TID, 1)

Result(resultData, Ty, T3,
[]. TID, 1)

Fig.7 Commit tree example

to the Commit tree as well. The initiator builds this Commit tree dynamically and
determines when all sub-transactions needed for starting the atomic commit protocol
execution are finished. Since the information about invoked sub-transactions is sent
along with a result message of the parent transaction and the parent’s result can be
received later than the child’s result, it may be the case that a sub-transaction’s result
cannot be immediately assigned to a node connected in the Commit tree. In this case,
the result is stored in a list of unassigned nodes and this node is connected in the
Commit tree after the corresponding parent sub-transaction’s result has arrived.

4.2 Commit tree modification by the result operation

Whenever a participant has successfully finished its read-phase of a sub-transaction
T;, the following result message is sent to the Initiator in order to invoke the initiator’s
RESULTRECEIVED method, which is described in Algorithm 1:

resultReceived (Object resultData,
ID subtransactionID, ID callerID,
ListOf (ID) invokedSubT,
ID globalTID, int sequenceNr)

The optional parameter “resultData” contains 7;’s result, while the “subtransac-
tionID” indicates the ID of 7;. The callerID is the ID of the participant that has in-
voked T;. The list “invokedSubT” contains the IDs of all sub-transactions invoked
by T;, while the “globalTID” is the ID of the global transaction to which 7; belongs.
Furthermore, the result message contains a sequence number, which is increased if
the sub-transaction is restarted and a second result message must be sent.

If the sub-transaction was not successful and has been aborted, the participant does
not send a “resultReceived” message. Instead, it notifies the Initiator about this abort.
Depending on the transaction’s implementation, the Initiator might choose a different
Web service to fulfill the global transaction.

Algorithm 1 outlines the implementation of the Initiator’s resultReceived opera-
tion, which is executed on the Commit tree whenever a resultReceived message is

@ Springer

182 Distrib Parallel Databases (2009) 25: 165-192

Algorithm 1 Implementation of resultReceived

1: procedure RESULTRECEIVED(Object resultData, ID subtransactionID, ID callerID,
ListOf(ID) invokedSubT, ID globalTID, int sequenceNr)
2: if isPreVoteValid(sequenceNr) then

3: markOutdatedAndAbortUnusedST(subtransactionID, callerID,
invokedSubT, globalTID);

4: N :=createNode(subtransactionID, caller|D, globalTID, invokedSubT)

5: openSubTransactions.del(subtransactionID)

6: if (ParentNode:=getNode(callerID)) == null then

7: unassignedNodes.add(N) = If parent’s result has not arrived yet, put back node
8: else

9: ParentNode.addChild(N)
10: assignNodes(invokedSubT, N) > Try to assign nodes from unassignedNodes
11: end if
12: openSubTransactions.add(invokedSubT)
13: end if

14: end procedure

received. First, the Initiator uses the sequence number to check that no newer mes-
sage was processed earlier (line 2). This may be the case when sub-transactions are
repeated and certain invocations must be repeated due to different invocation para-
meters (cf. Sect. 3.3). Therefore, a node N4 that represents the sub-transaction sub-
transactionID may already exist within the Commit tree, but is no longer valid. Thus,
the procedure markOutdatedAndAbortUnusedST(...) marks N4 as outdated (line 3).

When a sub-transaction is repeated, its invoked sub-transactions may change. To
identify sub-transactions that are no longer needed for the commit decision, the IDs
of the sub-transactions invoked by N,;; are compared with the actual invoked sub-
transaction parameters invokedSubT of the new result message. Those sub-transac-
tions that are invoked by N,;; but not needed for commit anymore are aborted and
deleted from the Commit tree (line 3).

After this, a new node N is created (line 4) and the parent-child relationships
between N and the nodes representing other sub-transactions are managed (lines 4-
11). In addition, a list openSubTransactions is updated where transactions are stored
whose votes have not yet arrived (line 12).

If all results are present, the list openSubTransactions is empty and the atomic
commit protocol, which requires votes for commit of all nodes in the Commit tree,
can be started. After the resource managers sent their binding votes, the objects ac-
cessed by the transaction are blocked. To ensure that in case of a resource manager
failure no infinite blocking of the other resource managers occurs, the coordinator
starts a timer. If the time is over and some votes are missing, the coordinator sets the
commit status stored in each node of the Commit tree to the Adjourn state, proposes
the Adjourn state to 7; and to all sub-transactions belonging to 7;, and requests the
votes for the sub-transaction once more.

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 183

4.3 Commit tree modification by repetition

If a sub-transaction 7, must be repeated as 7/, the result message with updated para-
meters must be sent to the Initiator and to the Commit coordinator, and the parameter
“sequenceNr” must be increased.

The coordinator replaces the node for 7, with the updated parameters of 7/, and
notifies sub-transactions that are not needed anymore, i.e. sub-transactions that were
invoked by T, but have not been invoked by Tr/ . Furthermore, the coordinator de-
mands the votes of those sub-transactions that are additionally invoked by 7. When-
ever a sub-transaction can be re-used instead of being repeated, the Commit tree does
not need to be changed for the re-used sub-transaction.

4.4 Benefits of combining Commit tree and Adjourn state

The use of the Commit tree in combination with the Adjourn state shows several
advantages for transaction processing. As the Commit tree allows to identify all sub-
transactions that are invoked during transaction execution, it can be combined with
dynamic transactional models like our Web service transactional model, which allows
to invoke sub-transactions even during transaction execution.

In combination with the Adjourn state, the Commit tree allows participants to save
energy and to speed up transaction processing for the following reason. Assume, for
example, a concurrency conflict has occurred for a sub-transaction 7;. In this case,
a repetition of 7; as T/ including all of its invoked sub-transactions is necessary.
However, if during the execution of 7, some sub-transaction invocations are equal to
those performed by 7;, we can re-use the invocations done by 7; and do not need to
re-invoke them. This results in time and energy savings.

Furthermore, the Commit tree allows the transaction coordinator to identify and
abort sub-transactions that are not needed anymore, for example if sub-transactions
have been invoked by T; but not by 7.

5 Experimental evaluation

We evaluated transaction processing in an unreliable mobile environment, which
means, participants often disconnect for a short time and come back or, equivalent
to this, a lot of messages are lost. Within such a scenario, the longer the blocking
of a transaction is (blocking in terms of preventing other transactions from being
committed) the greater the risk that another participant will disconnect and does not
receive the voteRequest message. Therefore, it is more frequent that the coordinator
cannot decide for commit, and that the coordinator must abort the transaction after
a time-out than in fixed-wired networks. In our experiments, we especially focus on
two parameters that influence transaction execution and that are characteristic for a
mobile network: disconnections and message delay. The adjustment of other para-
meters such as transmitting power or movement models will finally affect these two
parameters. Therefore, we identified “disconnection time and length” and “message
delay” as the key parameters that influence the transaction execution. In other words,

@ Springer

184 Distrib Parallel Databases (2009) 25: 165-192

the more unreliable the network is, the more disconnections, message delays, and
message losses occur.

For the simulation, we define a set of scenarios, which differ in both the network
events such as disconnections and message delays and the spawned transactions. For
each scenario, we start simulating transaction processing at the time when the global
transaction is started, and observe the transaction execution until the time when the
atomic commit protocol is invoked, i.e. when the coordinator demands the vote. In
order to be able to compare the blocking state (which requires a time-out) and the
Adjourn state (which does not require a time-out), we simulate the blocking state
with various time-outs. We measure the number of successful transaction executions
and the overall blocking time of both the Adjourn state and the blocking state. The
concrete parameters of the generated scenario are described in the following subsec-
tion.

5.1 Simulation model

To simulate a varying reliability of our environment, we executed 7 simulations runs,
which started when the sub-transaction was sent to each resource manager. We have
simulated a logical clock in order to compare different approaches. One time unit
corresponds to the shortest database operation (e.g., the shortest read phase). The
used message delivery time (including routing, stack access, powering up wireless
device for sending, etc.) is assumed to be fast, i.e. between 0.2 and 2 time units. Each
of these 7 runs are stopped after 1000 time units plus additional 60 time units in order
to let the time-out based protocols finish the last sub-transactions.

In each of these runs, we let 200 resources execute the same 135 global transac-
tions. Each of these global transactions consists of 4 to 8 sub-transactions, resulting in
830 sub-transactions in total, where each sub-transaction uses exactly one resource.

Most of the sub-transactions have short read phases (randomly selected between 1
and 5 time units), but some transactions contain long read phases (randomly selected
between 4 and 25 time units) that delay the transaction’s commit.

As the number of committed transactions of atomic commit protocols for mobile
networks primarily depends on the number of disconnections, we have focused on an
evaluation based on disconnection of nodes. Thus, the simulated number of discon-
nections reflects the combination of other criteria like field size, movement speed,
node density, and node sending power, which influence the number of disconnec-
tions. For example, the lower the number of nodes within a fixed field, the greater the
number of disconnections.

The 7 runs differ in the number of disconnections of participants. A disconnected
participant cannot communicate with other participants as long as the disconnection
lasts. In the first run, we let no participant disconnect. In the second run, we randomly
add 1000 disconnections to the participants (exponentially distributed). Each of these
disconnections has a length of 25 to 50 time units. After 1000 time units, we stop the
experiment and count the number of successfully committed transactions.

Predicting an optimal transaction time-out is difficult for the blocking state, thus,
we simulated the blocking state using different transaction-time-outs (25, 50, 100,
250, 500, and 750 time units). Each participant starts its time-out after it has sent

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 185

the result to the coordinator. When the time-out has expired and a participant has not
received a voteRequest from the coordinator, the participant aborts the transaction in
order to unblock the occupied resources. Furthermore, we measure the total blocking
times of all participants.

5.2 Results

Figure 8 shows the transaction throughput for the Adjourn state and for the blocking
state when validation is used. On the x-axis, the different simulation runs, which vary
in the number of resource manager disconnections, are shown. Besides the Adjourn
state, Fig. 8 shows different curves for the blocking state, each of which represents the
used transaction time-out. For example, the curve “Block 100” describes a simulation
run in which each participant aborts a transaction if the participant has not received
the coordinator’s voteRequest message for 100 time units after the first validation
succeeded.

We have repeated each simulation run five times in order to see whether there is
an impact by chance. As we have observed that chance has an impact only on short
running experiments, we have chosen the duration of each experiment long enough
to get repeatable results.

Our experiments confirm that setting up a time-out that maximizes the throughput
is difficult and depends on the concrete network reliability. In contrast, the Adjourn
state, which does not require such a time-out, shows an average throughput in reliable
networks, but is superior to each time-out of the blocking state in unreliable networks.

Besides the transaction throughput, the blocking time is an important criterion
for the concurrency control. Figure 9 shows the sum of the blocking times of all

Transaction Throughput

160
140 4
120 ﬁ
100
80 -
60
40
20

Comitted Transactions

0 1000 2000 3000 4000 5000

Number of Disconnections (Ressource Managers)

—O— Adjourn State —e — Block 25 —&— Block 50 - - - Block 100
—a — Block 250 —o- - Block 500 —x - Block 750

Fig. 8 Transaction throughput (Adjourn state and blocking state)

@ Springer

186 Distrib Parallel Databases (2009) 25: 165-192

Blocking
180000
160000 A e R
140000 e —
o V SRR * - L SR *
£ 120000 7— —
= S s = S
-, 100000 +— : :
£ I’l/ & - — .--\-—'—L Py
f, 80000 ’7 ;,/ *— = == @
o Y A~
m 60000 j, 7.
40000 / /’f
20000 l// e e S T
0% : 1 : 1 : 1 : 1 : |
0 1000 2000 3000 4000 5000
Number of Disconnections (Ressource Managers)
—O— Adjourn State —e - Block 25 —&— Block 50 --¢ - Block 100

—a— Block 250 —0O- - Block 500 —x - Block 750

Fig. 9 Overall transaction blocking time (Adjourn state and blocking state)

resources for the Adjourn state and for the blocking state. We can see that the Adjourn
state blocks the resources significantly less than each time-out of the blocking state.
Again, the overall blocking time of using the blocking state highly depends on the
concrete time-out value.

Although we have described solutions for both concurrency control schemes val-
idation and locking, we have omitted the visualization of the results for locking as
both concurrency control schemes lead to almost the same results. The reason for
the identical behavior of locking and validation regarding transaction throughput and
blocking is as described in Sect. 2.3: both concurrency control schemes lead to a
blocking behavior on concurrent transactions after the successful completion of the
read phase. Even concurrency schemes such as timestamp synchronization [25] suf-
fer from the same problem of blocking after successful read phase completion. That
is why we can expect similar evaluation results.

5.3 Evaluation summary

To summarize, our experimental results have shown that the Adjourn state concur-
rency control enhancement blocks remarkably less than using the traditional block-
ing state. Additionally, the Adjourn state achieves a significantly higher transaction
throughput in unreliable networks with a lot of disconnections.

Furthermore, our tests have confirmed the difficulty in setting up a database
time-out that increases the transaction throughput and reduces the amount of block-
ing.

As we argue in Sect. 2.3, the concrete concurrency control technique (e.g., locking
or validation) has no influence on the blocking of distributed transactions after the

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 187

read phase has been finished. Our experiments have proven this, as we got almost the
same results regardless of whether validation or locking has been used as concurrency
control technique.

This justifies the use of the Adjourn state even in mobile networks with moderate
reliability, since Adjourn state protocols do not expose the user to the risk of setting
up a “wrong” time-out that leads to a performance degradation.

6 Related work

Related work on distributed transaction processing can be classified according to the
following two criteria: is the transaction execution flat or hierarchical/nested, and are
transactions considered compensable?

6.1 Transaction invocation

The requirement to allow sub-transactions to invoke other sub-transactions originated
from business applications. Within such a business application, the atomicity con-
straint is to complete all “sub-transactions” of a workflow. Today, Web services and
their description languages (e.g. BPEL4AWS [13] or BPML [3]) are more and more
used to implement nested Web service transactions, which are called Web services
orchestration.

However, these languages do not provide a coordination framework to implement
atomic commit protocols. For this purpose, our contribution can be combined with
these description languages, like the “WS-Atomic-Transaction” proposal [10] does.
Note that our contribution is different from [10] in several aspects. For example, [10]
has a “completion protocol” for registering at the Coordinator, but does not propose
a non-blocking state—like our Adjourn state—to unblock transaction participants
while waiting for other participants’ votes. In addition, our Adjourn state may even
be entered repeatedly during the protocol’s execution.

Besides the Web service orchestration model, there are other contributions that set
up transactional models to allow the invocation of sub-transactions, e.g., the Kan-
garaoo Model [16]. Common with these transaction models, we have a global trans-
action and sub-transactions that are created during transaction execution and cannot
be foreseen. However, our model allows sub-transactions to be removed if they are
not invoked anymore by a newer execution of their parent sub-transactions.

Corba OTS [26, 31] uses a hierarchy of commit decisions, where an abort of a sub-
transaction does not necessarily lead to an abort of the global transaction. Instead, the
calling sub-transactions can react on this abort and use other sub-transactions, for
example. Although we also assume that Web services invoke other Web services and
the Coordinator uses a tree structure to maintain information about commit votes, we
do not propose hierarchical commit decisions, since this implies that the upper nodes
of the execution hierarchy must wait for the commit decision of all descendant nodes.
In a mobile environment, where node failures are likely, our solution allows to spread
the commit decision as fast as possible by flattening the invocation tree even before
the atomic commit protocol starts.

@ Springer

188 Distrib Parallel Databases (2009) 25: 165-192

6.2 Compensation

The main difference to other transactional models, e.g., [16, 32, 33], is that we con-
sider all sub-transactions to be non-compensable for the following reason. Commit-
ted transactions can trigger other operations, thus, we cannot assume that compensa-
tion for committed transactions in mobile networks is always possible, since network
partitioning makes nodes unreachable but still operational. When the compensation
transaction will not reach the node, however, a model relying on compensation cannot
give hard global atomicity guarantees as defined in [21]. Thus, we focus on a trans-
action model, within which atomicity is guaranteed for distributed, non-compensable
transactions.

Models like [32] or [33] allow a transaction to define the level of consistency
which the transaction leaves behind. In contrast, our solution does not need to ad-
just the level of consistency. We can guarantee atomicity without leaving states of
inconsistency, even within mobile environments without base stations, where nodes
that have consistent data may crash or permanently remain in a separated network
partition.

The approaches [14] and [15] suggest the suspend state, which unblocks resources,
as well. However, these approaches are intended for the use within an environment
with a fixed network and several mobile cells, where disconnections are detectable
and therefore transactions can be compensated. In contrast, our assumed environ-
ment, which allows ad-hoc communication, demands a more complex failure model
that takes network partitioning into consideration. This means, our model assumes
that a Coordinator cannot distinguish whether another node has failed or is still oper-
ational in another partition, and therefore compensation cannot be used. In addition,
our transactional model is more powerful since it allows dynamically invoking Web
service transactions, which must not be known in advance.

Another approach that relies on compensation of transactions is [35], which pro-
poses 2PC optimizations, e.g. heuristics for committing transactions when messages
are lost. However, inconsistencies may occur in case of network partitioning, for ex-
ample, when some databases do not immediately receive the compensation decision
or when the coordination process fails. Furthermore, the approach involves the diffi-
culty of setting up time-outs as well.

Distributed transactions may also occur in the context of mobile agents (e.g., [12,
40]). In this context, the execution code is shipped to the resource managers. Our
key ideas for guaranteeing atomicity of distributed transactions can be adapted to this
context as well.

Other contributions focusing on agents, e.g., [28], propose to shift the coordination
workload to fixed parts of the network by using participant-agents, which are exe-
cuted on base stations and responsible for sending the votes and accepting the commit
decision. However, our extension is also usable for completely mobile networks that
do not have a fixed infrastructure.

While our solution reduces blocking of resource managers before the commit pro-
tocol starts, blocking that occurs during the atomic commit protocol execution is
inevitable in asynchronous networks. This follows from contribution [37], which has
proven that blocking during atomic commit protocol execution cannot be avoided

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 189

if it cannot be determined whether a node has failed or is still working in another
network partition. To enhance the Coordinator’s availability of the atomic commit
protocol, other contributions propose the use of protocols with more than one Co-
ordinator. [34], for example, suggests the use of backup Coordinators in 2PC; [19]
uses Paxos Consensus [24] to get a consensus on the commit decision; and [6, 8]
allow “controlled failures” by proposing a combination of 2PC, 3PC [36], and Paxos
Consensus. Since our Adjourn state affects the phase before the atomic commit pro-
tocol starts, it can also be combined with these protocols. Furthermore, [29] proposes
a different termination technique called Bi-State-Termination, which allows concur-
rent transactions T, to commit even if they are in conflict with a transaction T} that
waits for the coordinator’s commit decision by executing 7, on two states, one repre-
senting T} is committed, the other representing 7 is aborted. Again, as our Adjourn
state effects only the phases before the commit protocol starts, it is compatible and
can be combined with this approach.

6.3 Concurrency control

To omit locking, concurrency control mechanisms like multiversion concurrency con-
trol [4, 39], timestamp-based concurrency control [25], or optimistic concurrency
control [20, 23] have been proposed. However, these approaches do not solve the
problem of setting up time-outs when the database has to abort a transaction. Our
proposed Adjourn state does not rely on such time-outs, and merges nicely with these
concurrency control mechanisms since it is an “on demand” strategy for giving con-
current transactions access to resources that have been used by transactions which are
still waiting for the commit protocol to be invoked.

Reference [27] proposes a concurrency control schema that combines multiversion
concurrency control with a timestamp mechanism for transaction processing in mo-
bile environments containing both mobile devices and fixed-wired databases. It uses
an additional lock type called “verified-lock”, which is a special lock type issued by
the mobile devices for handling transaction termination at the fixed-wired databases.
In contrast, our solution aims at a completely mobile environment and does not need
to rely on these fixed-wired databases.

Compared to our previous contribution [7], the Adjourn state proposed in this pa-
per is developed for the combination of optimistic concurrency control and atomic
commit protocols. Furthermore, we give experimental results and discuss the con-
currency control mechanism. Since the Adjourn state can be combined with a dy-
namic transactional model, the Coordinator must get to know the participating sub-
transactions. An approach that allows the Coordinator to keep track of all dynamically
invoked sub-transactions is described in [9].

Our approach is based on the same optimistic principle as [1]. However, the Ad-
journ state differs from [1] as the Adjourn state does not block resources while a
transaction has sent the result of its read phase to the Initiator and waits for the vote
command.

@ Springer

190 Distrib Parallel Databases (2009) 25: 165-192

7 Summary and conclusion

In this article, we have introduced a Web service transaction model suitable for mo-
bile networks, which allows a Web service to dynamically invoke other Web services
to fulfill its own service. We have discussed two concurrency control mechanisms for
this Web service model, locking and validation, and we have demonstrated the block-
ing effect that both concurrency control schemes involve. Furthermore, we explained
the difficulty in setting up time-outs for aborting transactions.

Our solution, the Adjourn state, does not rely on time-outs and allows to repeat
Web services in case of concurrency failures. Furthermore, we have shown an op-
timization for Web service repetition that, under certain conditions, can re-use Web
service calls instead of repeating them. The Adjourn state is mainly designed for
wireless and mobile environments in which the transaction load is moderate and the
number of disconnections high. If this applies to certain instances of wired systems as
well, these systems may also benefit from our protocol, as it also works in fixed-wired
environments.

We have described the Commit tree, which allows the transaction’s Commit coor-
dinator to keep track of the commit-status of all participating sub-transactions. Fur-
thermore, we have shown how the Commit tree can be used to unblock participants
by migrating them back to the Adjourn state if some participants must repeat their
Web service.

We have evaluated our proposed scheme experimentally using simulation. Our ex-
periments have proven the difficulty that traditional protocols involve when setting up
time-outs for mobile networks with unpredictable reliability. Our experiments have
also demonstrated that using the Adjourn state in unreliable environments can lead to
an increased transaction throughput of committed transactions of a factor up to 2.5
compared to the use of traditional time-outs. Furthermore, the Adjourn state signifi-
cantly reduces the amount of data blocking.

In the future, we plan to combine the Adjourn state with protocols using multiple
coordinators.

References

1. Al-Houmaily, Y., Chrysanthis, P.K., Levitan, S.P.: An argument in favor of the presumed commit
protocol. In: Proceedings of the 13th International Conference on Data Engineering, pp. 255-265
(1997)

2. Al-Houmaily, Y.J., Chrysanthis, P.K.: 1-2pc: the one-two phase atomic commit protocol. In: Proceed-
ings of the 2004 ACM Symposium on Applied Computing, Nicosia, Cyprus, March 14-17, pp. 684—
691 (2004)

3. Arkin, A., et al.: Business process modeling language, bpmi.org. Final draft, BPMI. org (2002)

4. Bernstein, P.A., Goodman, N.: Multiversion concurrency control—theory and algorithms. ACM
Trans. Database Syst. 8(4), 465-483 (1983)

5. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley, Reading (1987)

6. Bose, J.H., Bottcher, S., Gruenwald, L., Obermeier, S., Schweppe, H., Steenweg, T.: An integrated
commit protocol for mobile network databases. In: 9th International Database Engineering & Appli-
cation Symposium IDEAS, Montreal, Canada (2005)

7. Bottcher, S., Gruenwald, L., Obermeier, S.: Reducing sub-transaction aborts and blocking time within
atomic commit protocols. In: 23rd British National Conference on Databases (BNCOD), Belfast,
Northern Ireland, UK, pp. 59-72 (2006)

@ Springer

Distrib Parallel Databases (2009) 25: 165-192 191

8.

10.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Bottcher, S., Gruenwald, L., Obermeier, S.: A failure tolerating atomic commit protocol for mobile en-
vironments. In: Proceedings of the 8th International Conference on Mobile Data Management (MDM
2007), Mannheim, Germany (2007)

. Bottcher, S., Obermeier, S.: Dynamic commit tree management for service oriented architectures. In:

Proceedings of the 9th International Conference on Enterprise Information Systems (ICEIS), Funchal,
Madeira, Portugal (2007)

Cabrera, L.F.,, Copeland, G., Feingold, M., et al.: Web services transactions specifications—web
services atomic transaction. http://www-128.ibm.com/developerworks/library/specification/ws-tx/
(2005)

. Chrysanthis, P.K., Samaras, G., Al-Houmaily, Y.J.: Recovery and performance of atomic commit

protocols in distributed database systems. In: Kumar, V., Hsu, M., (eds.) Performance of Database
Recovery Mechanism, pp. 370-416. Prentice Hall, New York (1998)

. Covaci, S., Zhang, T., Busse, I.: Java-based intelligent mobile agents for open system management.

In: Proceedings of the 9th International Conference on Tools with Artificial Intelligence (ICTAI *97),
p. 492. IEEE Computer Society, Washington (1997)

. Curbera, F,, Goland, Y., Klein, J., Leymann, F., et al.: Business process execution language for web

services. v1.0. Tech. rep., BEA, IBM, Microsoft (2002)

. Dirckze, R.A., Gruenwald, L.: A toggle transact. management technique for mobile multidatabases.

In: CIKM °98, pp. 371-377. ACM Press, New York (1998). doi:10.1145/288627.288679

. Dirckze, R.A., Gruenwald, L.: A pre-serialization transact management technique for mobile mul-

tidatabases. Mob. Netw. Appl. 5(4), 311-321 (2000). citeseer.ist.psu.edu/dirckzeOOpreserialization.
html

. Dunham, M.H., Helal, A., Balakrishnan, S.: A mobile transaction model that captures both

the data and movement behavior. Mob. Netw. Appl. 2(2), 149-162 (1997). citeseer.ist.psu.edu/
article/dunham97mobile.html

. Eswaran, K.P,, Gray, J.N., Lorie, R.A., Traiger, L.L.: The notions of consistency and predicate locks

in a database system. Commun. ACM 19(11), 624-633 (1976). doi:10.1145/360363.360369

. Gray, J.: Notes on data base operating systems. In: Flynn, M.J., Gray, J., Jones, A.K., et al. (eds.)

Advanced Course: Operating Systems. Lecture Notes in Computer Science, vol. 60, pp. 393—481.
Springer, Berlin (1978)

. Gray, J., Lamport, L.: Consensus on transaction commit. ACM Trans. Database Syst. 31(1), 133-160

(2006). doi:10.1145/1132863.1132867

Hirder, T.: Observations on optimistic concurrency control schemes. Inf. Syst. 9(2), 111-120 (1984).
10.1016/0306-4379(84)90020-6

Kifer, M., Bernstein, A., Lewis, P.M.: Database Systems: An Application Oriented Approach. Pearson
Addison-Wesley, Reading (2005)

Kumar, V., Prabhu, N., Dunham, M.H., Seydim, A.Y.: Tcot-a timeout-based mobile transaction com-
mitment protocol. IEEE Trans. Commun. 51(10), 1212-1218 (2002). doi:10.1109/TC.2002.1039846
Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM Trans. Database
Syst. 6(2), 213-226 (1981). doi:10.1145/319566.319567

Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133-169 (1998).
doi:10.1145/279227.279229

Leu, P.J., Bhargava, B.K.: Multidimensional timestamp protocols for concurrency control. In: Pro-
ceedings of the Second International Conference on Data Engineering, pp. 482-489. IEEE Computer
Society, Washington (1986)

Liebig, C., Kiihne, A.: Open source implementation of the CORBA object transaction service.
http://xots.sourceforge.net/ (2005)

Madria, S.K., Baseer, M., Kumar, V., Bhowmick, S.S.: A transaction model and multiversion concur-
rency control for mobile database systems. Distrib. Parallel Databases 22(2-3), 165-196 (2007)
Nouali, N., Doucet, A., Drias, H.: A two-phase commit protocol for mobile wireless environment. In:
Williams, H.E., Dobbie, G. (eds.) Sixteenth Australasian Database Conference (ADC2005). CRPIT,
vol. 39, pp. 135-144. ACS, Newcastle (2005)

Obermeier, S., Bottcher, S.: Avoiding infinite blocking of mobile transactions. In: Proceedings of the
11th International Database Engineering & Applications Symposium (IDEAS), Banff, Canada (2007)
Obermeier, S., Bottcher, S., Hett, M., Chrysanthis, P.K., Samaras, G.: Adjourn state concurrency
control avoiding time-out problems in atomic commit protocols (poster). In: Proceedings of the 24th
IEEE International Conference on Data Engineering (ICDE), Cancun, Mexico (2008)

Object Management Group: Trans. service spec. 1.4. http://www.omg.org (2003)

@ Springer

http://www-128.ibm.com/developerworks/library/specification/ws-tx/
http://dx.doi.org/10.1145/288627.288679
http://citeseer.ist.psu.edu/dirckze00preserialization.html
http://citeseer.ist.psu.edu/dirckze00preserialization.html
http://citeseer.ist.psu.edu/article/dunham97mobile.html
http://citeseer.ist.psu.edu/article/dunham97mobile.html
http://dx.doi.org/10.1145/360363.360369
http://dx.doi.org/10.1145/1132863.1132867
http://dx.doi.org/10.1016/0306-4379(84)90020-6
http://dx.doi.org/10.1109/TC.2002.1039846
http://dx.doi.org/10.1145/319566.319567
http://dx.doi.org/10.1145/279227.279229
http://xots.sourceforge.net/
http://www.omg.org

192 Distrib Parallel Databases (2009) 25: 165-192

32. Pitoura, E., Bhargava, B.K.: Maintaining consistency of data in mobile distributed environ-
ments. In: International Conference on Distributed Computing Systems, pp. 404—413 (1995).
citeseer.ist.psu.edu/pitoura9Smaintaining.html

33. Rakotonirainy, A.: Adaptable transaction consistency for mobile environments. In: DEXA Workshop,
pp. 440445 (1998). citeseer.ist.psu.edu/410658.html

34. Reddy, PK., Kitsuregawa, M.: Reducing the blocking in two-phase commit with backup sites. Inf.
Process. Lett. 86(1), 39-47 (2003)

35. Samaras, G., Britton, K., Citron, A., Mohan, C.: Two-phase commit optimizations in a commercial
distributed environment. Distrib. Parallel Databases 3(4), 325-360 (1995). doi:10.1007/BF01299677

36. Skeen, D.: Nonblocking commit protocols. In: Lien, Y.E. (ed.) Proceedings of the 1981 ACM SIG-
MOD International Conference on Management of Data, Ann Arbor, Michigan, pp. 133-142. ACM
Press, New York (1981)

37. Skeen, D., Stonebraker, M.: A formal model of crash recovery in a distributed system. In: Berkeley
Workshop, pp. 129-142 (1981)

38. Ullman, J.D.: Principles of Database Systems, 2nd edn. Computer Science Press, New York (1982)

39. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan Kaufmann, San Francisco (2001)

40. Ye, D.Y., Lee, M.C., Wang, T.I.: Mobile agents for distributed transactions of a distributed heteroge-
neous database system. In: DEXA 02, pp. 403—412. Springer, London (2002)

@ Springer

http://citeseer.ist.psu.edu/pitoura95maintaining.html
http://citeseer.ist.psu.edu/410658.html
http://dx.doi.org/10.1007/BF01299677

	Blocking reduction for distributed transaction processing within MANETs
	Abstract
	Introduction
	Contributions
	Paper organization

	System model
	Transaction model
	Basic components of our Web service transaction model
	Characteristic features of our Web service transaction model
	An example executing illustrating out Web service transaction model

	Concurrency control
	Two-phase locking
	Local concurrency control by backward validation

	Blocking behavior of locking and validation
	Problem description

	Adjourn state blocking reduction
	The blocking state
	Blocking state for locking
	Blocking state for validation

	The non-blocking Adjourn state
	Adjourn state for locking
	Adjourn state for validation

	Local restarts and re-use of sub-transactions
	Entering the Adjourn state
	Proof of correctness
	Number of messages

	Commit tree
	An example of the coordinator's Commit tree
	Commit tree modification by the result operation
	Commit tree modification by repetition
	Benefits of combining Commit tree and Adjourn state

	Experimental evaluation
	Simulation model
	Results
	Evaluation summary

	Related work
	Transaction invocation
	Compensation
	Concurrency control

	Summary and conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

