
Quality Aware Query Scheduling in Wireless Sensor Networks

Hejun Wu
Department of Computer

Science
Sun Yat-sen University

whjnn@cse.ust.hk

Qiong Luo
Department of Computer
Science and Engineering
Hong Kong University of
Science and Technology

luo@cse.ust.hk

Jianjun Li
School of Computer Science

and Technology
Huazhong University of
Science and Technology

jianjunli@smail.hust.edu.cn

Alexandros Labrinidis
Department of Computer

Science
University of Pittsburgh

labrinid@cs.pitt.edu

ABSTRACT
We study query scheduling in Wireless Sensor Networks
(WSNs) with a focus on two important metrics: Quality
of Service (QoS) and Quality of Data (QoD). The motiva-
tion comes from our observation that most WSN scheduling
techniques ignore the quality requirements of queries. As a
result, they are inefficient or inapplicable to quite a few ap-
plications that have different quality requirements. In this
paper, we propose a distributed Quality Aware Scheduling
(QAS) framework to address this problem. QAS works on
top of existing quality-unaware query scheduling protocols
and allows individual users to specify their QoS and QoD
requirements on their queries. Given these quality require-
ments, QAS determines the target qualities to be provided
in scheduling and the execution order of these queries so as
to maximize the total system profit. Our preliminary re-
sults show that QAS significantly outperforms the baseline
scheduling algorithms in terms of system profit.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Algorithms, Experimentation

1. INTRODUCTION
In-network query processing techniques for wireless sensor

networks have been widely accepted for efficient on-line sen-
sory data management in WSNs [11], [21]. To guarantee the
efficiency and reliability of such query processing, scheduling
schemes have been proposed [4], [7], [10], [17], [20]. These
scheduling schemes are able to coordinate the communica-
tion timings of nodes for communication reliability, and to
schedule nodes to sleep for energy efficiency.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DMSN’09, August 24, 2009, Lyon, France
Copyright @ 2009 ACM 978-1-60558-777-6/09/08... $10.00.

However, existing query scheduling protocols ignore the
potentially different quality requirements from different ap-
plications and users. As a result, those queries with high
quality requirements may be unsatisfied, whereas the queries
with lower quality requirements may be overly satisfied.

Therefore, in this paper we propose a distributed Qual-
ity Aware Scheduling framework (QAS) for these quality-
unaware scheduling protocols to address the above prob-
lem. In QAS, users can specify their quality requirements
on queries by giving revenues to different qualities in quality
functions [6], [14]. Given the quality function, a WSN at-
tains a profit from each processed query in accordance with
the quality it served. The profit is the ratio between the
attained revenue and the query processing cost. With the
quality functions of the queries, QAS tries to find the best
qualities and processing order of the queries to get the max-
imum profit for the underlying scheduling protocol. This
profit is only the highest one for the current underlying pro-
tocol, but may not be the highest for others due to the effi-
ciency differences among various scheduling protocols.

2. BACKGROUND AND RELATED WORK
In this section, we define QoS, QoD, and system profit,

and discuss related work. The symbols (excluding those
commonly used, e.g., U - voltage, the temporary variables,
and those in the algorithm) used throughout this paper is
summarized in Table 1.

2.1 QoS
In this paper, QoS refers to response time and/or query

lifetime in query processing. The response time is the period
from the start time of query processing to the time when
all of the nodes have reported their query results in one
epoch (sample interval). The query lifetime is described
using the number of epochs from the time of query injection
to the time when the query stops running. The lifetime
requirement of a snapshot query is 1, since a snapshot query
needs only one epoch of processing. The reason of including
these two performance metrics in QoS is as follows: some
queries desire short response time, e.g., event monitoring
queries, some queries prefer long query lifetime, e.g., data
collection queries, and some queries may require both short
response time and long life time, e.g., queries in factory or
health monitoring applications.

2.2 QoD
In QAS, QoD is defined by Equation (1). In this equation,

D is the number of query results received by the sink of a

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1594187.1594197&domain=pdf&date_stamp=2009-08-24

Table 1: Summary of symbols used
Symbol Definition
D Number of query results received by the sink
A Number of all query results generated in a WSN
D(i) Number of transmitted query results in hop i
A(i) Number of all results should be generated in hop i
DQ Data quality on a node
H Maximum number of hops
Ih Electric current in hibernating (sleeping)
Ip Electric current in computation
Ir Electric current in receiving
It Electric current in transmitting
L Query lifetime
Nc Average number of children
Nd Average number of descendants
N(i) Number of nodes in hop i
r Ratio of parallel transmission among all nodes
Ta Aggregating time on a node
Tc Communication time on a node
Th Hibernating time
T (j) Execution time of the j-th operator in a query
TNp Network processing time of a query
TNc Network communication time of a query
TNq Network query evaluation time of a query
To Overlap between the operations on a node
Tq Query evaluation time on a node
Tr Time for receiving data from the children of a node
ts Length of a time slot

WSN, while A is the number of all query results generated
in the WSN. If A is 0, i.e., there is no satisfying query result
in the network, then D

A
= 1.

Note that D
A

alone does not describe the data quality of a
network well: A WSN may want to return query results from
nodes that are closer to the sink node as much as possible
to save energy. In this scenario, the value of D

A
will still be

high but the data quality under such scenario may be low
in effect, since there are few results from the nodes that are
far from the sink. To avoid such a problem, Equation (1)

uses the average weighted difference between D
A

and D(i)
A(i)

of

each hop i”, ρ(D
A
− D(i)

A(i)
), as a punishment. Here D(i) is

the number of transmitted query results in hop i, H is the
maximum number of hops, and A(i) is the number of all
results that should be generated in hop i. Similarly, if A(i)
is 0, which indicates that there is no satisfying query result

generated in hop i, then D(i)
A(i)

= 1.

QoD : DQ =
D

A
− 1

H
ζ

H∑
i=1

(
D

A
− D(i)

A(i)
) (1)

In Equation (1), ζ is a user specified weight (0 < ζ ≤ 1

and ζ = 0 when D
A
≤ D(i)

A(i)
). A larger ζ indicates that

a user expects the received source data to be more evenly
distributed among hops.

2.3 System Profit
As mentioned, the system profit is the ratio of award and

the cost. Due to the severe limitations of hardware and en-
ergy resources in WSNs, the energy cost is critical for a sen-
sor network to attain the highest award during its lifetime.
Hence, we define the system profit gained from a query as
Equation 2, where ϕ is the price of battery energy, with a
unit of dollar per joule ($/joule). The problem for QAS is

to maximize the profit of the queries processed.

Profit =
AwardtoQoS + AwardtoQoD

ϕ · cost (2)

2.4 Related Work
Previous work on scheduling in WSNs [4], [7], [17], [20] for

both computation and communication are tightly related to
ours, as QAS is designed to work on top of them. FPS [7],
SS [17] and DCS [20] are the representative scheduling pro-
tocols. These protocols can either be directly used or be
adopted for query processing. There are also some other
schemes for event detection [4] or data collection that needs
only one time wake-up per epoch [10]. These protocols allo-
cate slots so as to reduce wireless competition and the idle
listening periods. The problem with them is that they are
not quality-aware and thus are not applicable for queries
with quality requirement.

Although QoS and QoD scheduling are well studied in
traditional database [1], [2], [5], [6], [12], [14], there are few
studies on QoS and QoD in query scheduling for wireless
sensor networks yet. However, these studies of QoS and
QoD in traditional databases share a common goal of profit
maximization with our work.

Qu et al. proposed the concept of quality contract to in-
tegrate QoS and QoD metrics [14]. With quality contract,
the scheduling scheme is able to perform the tradeoff be-
tween QoD and QoS to maximize the total system profit.
We adopted the concept of quality contract in designing our
QAS. In Borealis [1], Abadi et al. proposed a QoS model
that aggregates multiple metrics with different weights to
be a single metric for evaluating the QoS. We adopt this
concept of total system profits in QAS.

There are extensive studies on priority (or value) based
and deadline oriented scheduling in the database commu-
nity. For instance, Haritsa et al. proposed Value over Rel-
ative Deadline (VRD) to enable the queries whose dead-
lines are closer to the current time to be executed earlier
[6]. The purpose is to complete as many queries as possi-
ble. These deadline and value based scheduling methods are
mainly used in real-time databases [8], [12], but they are
also helpful in query scheduling of WSNs where queries post
fixed deadlines for result reporting.

Recently, there are initial investigations in query process-
ing quality of WSNs. For instance, Amirijoo et al. defined
the sensory data quality as the length of the sample inter-
val in continuous data collection [3]. The authors proposed
mechanisms to lengthen the WSN lifetime by dynamically
adjusting the sampling period. However, their definition is
not applicable to continuous queries with sample interval
specified already [11]. Yates et al. defined the data quality
as the normalized delay and proposed an approximation ap-
proach to reduce the delay [22]. These essentially focused on
the query processing delay (QoS) as defined in this paper.

There are also two representative studies [15], [13], on the
quality of data (QoD) similar to the QoD defined in this
paper. Among these, Ren et al. proposed an algorithm
to select the most related nodes as the active nodes to an-
swer queries in a WSN to reduce the energy consumption of
nodes without undermining the data quality much. Peng et
al. elaborated the assessment models of data quality in in-
network data processing. Their methods are quite helpful to
improve the admission control and the active node selection
in QAS, although they did not consider query and commu-

nication scheduling. We are planning to adopt and extend
these methods as our future work.

To the best of our knowledge, QAS is the first work that
considers both QoS and QoD in scheduling of WSNs. Next,
we will show how QAS improves the QoS and QoD while
observing energy efficiency.

3. OVERVIEW
Before coming to the details of the cost model in QAS, we

present the overview of QAS to show its general idea. Fig. 1
illustrates the architecture of QAS.

Slot

allocation

Cost Model

Profit Maximization

Runtime Schedule

Adjustment

…

Protocol Array Quality Aware Scheduling Algorithm

Query Processor

QAS

Schedule

execution

Quality

feedback

Slot

request

Figure 1: QAS architecture

On each node, the protocol array adopts a set of exist-
ing scheduling protocols to schedule the query operators
and communications of each query [7], [17], [4], [20]. For
a scheduling protocol to be loaded to the array, we design
a uniform interface that allows QAS to specify the number
of transmission, receiving and query execution slots for each
query. This way, QAS is able to control the target quality of
each query to be scheduled by the protocols. The underlying
protocol to run is system specified before query processing.

The quality-aware scheduler determines the quality and
execution order of queries for the underlying protocol using
a cost model so that the WSN attains the total maximum
profit. To avoid the scenario in which the target qualities of
nodes differ much due to this distributed quality determina-
tion, it uses the same set of network parameters (see Section
4) in the cost model on nodes. Extending our model to allow
nodes to have different parameter settings is a challenging
direction of future work. The details of the cost model will
be presented in the next section.

4. COST MODEL
The cost model in QAS estimates the network processing

time and the energy consumption of a single query. The
motivation of this model is to express the relation between
the QoS, QoD, time and energy costs, and the system profit
of a query, so that QAS is able to determine the target QoS
and QoD to get the maximum system profit.

4.1 Network Processing Time
The network processing time, TNp, is divided into query

evaluation time, TNq, and communication time, TNc. The
network query evaluation time of a WSN, TNq, is called
network query evaluation time, which is the accumulated
time of non-overlapping evaluation time on the nodes of the
WSN. Similarly, TNc of a WSN is the accumulated time of

non-overlapped communications on all nodes of the WSN.
By definition, the time when a node transmits or receives
messages in the midst of query evaluation is considered in
TNc, not TNq.

TNq: We first investigate the query evaluation time on a
single node, Tq so that we can calculate TNq with Tq. Tq is

calculated as Tq = DQ

n∑
j=1

T (j)− To, where DQ is the QoD

to be provided by this node, T (j) is the execution time of
the j-th operator and To is the overlapping time between
the query execution and the communication on the node.

In a WSN, the nodes in upper hops are usually started at
the same time or later than lower hop nodes [11], [4]. There-
fore, the query evaluation time of the upper hop nodes and
the query evaluation of the lower hop nodes will overlap, or
the query evaluation time and the communication of other
nodes will overlap. The non-overlapping network query eval-
uation time thus is roughly the same as that of a single node,
i.e., TNq ≈ Tq.

TNc: We estimate TNc by Equation (3). In (3), D (Di-
rectly forward) refers to a node that directly forwards the
results from its children towards the sink; A (Aggregate)
refers to a node that aggregates the results of its children
first and then reports the aggregated result. The equations
in the remainder of this paper use the same denotations. In
the two formulas for forward and aggregate, r is the ratio of
parallel transmission among nodes in the network. r is used
to remove time of simultaneous transmissions on the nodes.
N(i) is the number of nodes in hop i and H is the maximum
number of hops in the network. ts is the length of a slot. DQ

is the QoD. The reason of using DQ in the forward formula
is that DQ determines the number of packets to be forwarded
on each node. Nc is the average number of children and Ta

is the average time for aggregating a result. r, N(i), H, Nc,
and Ta are called the network parameters, which are man-
aged by the sink and disseminated to the other nodes before
query processing.

TNc =





(1− r)Dqts

H∑
i=1

iN(i), D,

NcTa +
H∑

i=1

N(i), A.

(3)

Lemma 1. Given a WSN whose routing paths are fixed,
the network processing time of a query, TNp, is a linear func-
tion of data quality DQ: TNp = αDQ + β.

Proof. As described above, TNp = Tq + TNc. From the
equations of Tq and TNc, TNp can be estimated as follows.

TNp = DQ

n∑
j=1

T (j)−To+





(1− r)Dqts

H∑
i=1

iN(i), D,

NcTa +
H∑

i=1

N(i), A.

(4)

In (4), once the network and the scheduler is fixed, the net-
work parameters such as H, N(i), ts, and To are all con-
stants. Denoting these constants using α and β as shown in
Equations (5) and (6), we have TNp = αDQ + β, hence the
lemma follows.

α =

n∑
j=1

T (j) +





(1− r)
H∑

i=1

iN(i)ts, D,

0, A.

(5)

β = −To +





0, D,

NcTa +
H∑

i=1

N(i), A.
(6)

4.2 Energy Consumption
The average energy consumption for processing a query on

a node in a WSN can be estimated from the node running
time and electric current: E = U ·I ·T , where E is the energy
consumption of a node within T length of time, during which
the voltage and the electric current of the node are U and I,
respectively. Considering the different operations in query
processing, the energy consumption should be E = U

∑
Ij ·

T (j) · L, where Ij and T (j) are the electric current and the
execution time of each type of the j-th operation per epoch,
L is the total number of epochs in processing the query.

With the above analysis, the node energy consumption is
modeled in Equation (7). In (7), Tq is the query evalua-
tion time and To is the same as that in Section 4.1. Ip is
the electric current of the computation for query evaluation.
Usually, a node can turn off the radio chips to lower the elec-
tric current. Tr is the time for receiving the results from the
children. Ir is the electric current of receiving on the node.
Tc is the communication time as described in Equation (4).
Tc − Tr is the total transmitting time on the node. It is the
electric current of transmitting. Finally, Th and Ih are time
and electric current in hibernating (sleeping), respectively.

E = (TqIp + TrIr + (Tc − Tr)It + ThIh) · U · L (7)

In Equation (4), the electric current of transmission in
each epoch is assumed to be constant. This assumption is re-
alistic because in the scheduling protocols and current query
processing systems, the transmission power and the corre-
sponding transmission range are all fixed in each epoch. In
addition, the average retransmission time due to transmis-
sion failures is included in the transmitting time per epoch.

Given the processing time on each node, the energy con-
sumption can be expressed as E = (λDQ + δ)L. Here we
omit the procedure of computing λ and δ, and list them in
Equation (8) and (9). Nd in Equation (8) is the average
number of descendants of each node in the WSN. It is used
to calculate the receiving and forwarding slots for the de-
scendants. The detailed procedure of computing λ and δ
can be referred to our QAS technical report [19].

λ = UIp

n∑
j=1

T (j) + U ·
{

NdtsIr + (Nd + 1)tsIt, D,

0, A.
(8)

δ = −ToU · Iq + U ·
{

0, D,

NcTaIp + NctsIr + tsIt, A.
(9)

5. QUALITY AWARE SCHEDULING
Given the cost model, QAS uses Equation (10) to calculate

the profit. In this equation, k1, k2, b1, b2, k3, b3 are the coef-
ficients in the quality functions. With this equation, QAS

uses the partial derivatives of P , such as ∂2P
∂2DQ

, ∂2P
∂DQ∂L

, and

∂2P
∂2L

to calculate the target qualities of queries that enable
the nodes to get the maximum system profit.

P =
k1L + b1 + k2(αDQ + β) + b2 + k3DQ + b3

(λDQ + δ)L
(10)

Algorithm 1 shows the steps of the determination of the
target qualities and the execution order of queries and then
the process of calling scheduling protocol in QAS. Note that
Algorithm 1 is run on each node instead of on the sink to re-
duce the communication overhead, since the communication
is more costly than computation.

In this algorithm, the first segment (Lines 1 - 6) uses the
partial derivatives of the cost model to calculate the target
QoS and QoD, tQoS[i] and tQoD[i] for the i-th query. The
system profit would be tP [i], if the target qualities tQoS[i]
and tQoD[i] were realized, as shown in Line 3. Then Lines 4
-5 calculate the number of receiving slots needed, sr[i], and
transmission slots, st[i] , using the target quality tQoS[i] and
tQoD[i]. In these two lines, Nr[i] and Nt[i] are the number
of needed receiving and transmission slots if tQoD[i] = 1,
i.e., the number of receiving and transmission slots that the
node would allocate previously without QAS.

Algorithm 1 Scheduling for Profit Maximization

Input n queries with quality functions;
Output Query execution order of these queries and the

target QoS and QoD for each query; schedule of each
query;

1: for i = 1 to n do
2: find tQoS[i], tQoD[i] for query i;
3: compute the profit, tP [i] of the i-th query under

tQoS[i], tQoD[i];
4: sr[i] = Nr[i] · tQoD[i];
5: st[i] = Nt[i] · tQoD[i];
6: end for
7: for j = 1 to NUM STRATEGIES do
8: sort the queries in the descending order of their

weights, the order is denoted as O[j];
9: move the query in O[j] whose quality requirement can-

not be satisfied into the waiting list w[j];
10: P [j] = the sum of system profit of queries in O[j];
11: end for
12: find the execution order, O[k], that has the highest profit

(1 ≤ k ≤ NUM STRATEGIES);
13: send O[k] and the sr, st of the queries in O[k] to the

underlying scheduling protocol to build up the schedule
for each query in O[k];

The second segment (Lines 7 - 13) optimizes the query
execution order of multiple queries to be scheduled and pro-
cessed to get the maximum total system profit. This algo-
rithm uses different weights to sort the queries and can get
a number of orders of query execution of the set of queries
as shown in Lines 5 - 9. QAS currently uses two strate-
gies (NUM STRATEGIES = 2) to define the weights: (1)
maxP[i] and (2) maxP[i] / tQoS[i]. We found in our exper-
iments that in most occasions, these two types of weights
allowed QAS to get higher profits than a single type.

6. EVALUATION

6.1 Experiment Setup
We ran the prototype of QAS on four scheduling proto-

cols of WSNs, DCS [20], AHS [18], FPS [7], and SS [17].
We compared QAS with the following quality-aware schedul-
ing schemes applied on the protocols: (1) Low-quality(low),
which always serves the lowest acceptable QoD and life time

of a query; (2) Medium-quality(Mid), which serves the medium
level QoD and life time within the range of QoD and life-
time requests; (3) Random-quality(Rand), which randomly
chooses the target quality from the range of QoD and life-
time; and (4) High-quality (High), which always serves the
highest QoD and life time of a query.

We evaluated the performance of the scheduling schemes
through simulation at this stage and take the experiments
on real sensor motes as future work. In the simulation ex-
periments, the sensory data for the queries were synthetic
data, since there were no available sensory dataset for up to
100 nodes. Hence, we used the source dataset from Intel lab
[9] and expanded it to up to 100 nodes using a data genera-
tion tool [16]. We fixed the WSN to be one with randomly
deployed 100 nodes (including the sink) in an 100 meter *
100 meter area, in which there was at least one route from
each node to the sink node. The transmission range is 25
meters (a MICA series sensor mote can reach this distance
when the transmission current is about 22 mA). WSNs with
such a configuration are widely used in the sensor network-
ing studies [4], [7], [11], [20], [21]. We used the following
query Q1 as the workload for scheduling:

Q1: SELECT nodeid, light
FROM sensors
WHERE light < λ
SAMPLE INTERVAL 60s

6.2 Experiment Results
In the experiments, we found the following major fac-

tors affecting the system profits from processing queries in
a WSN: (1) scheduling protocol, (2) quality functions, and
(3) query execution order.

Scheduling Protocol. We compared QAS on the four
scheduling protocols for WSNs using Q1 (see Section 2).
The query predicate is designed to make the selectivity to
be about 70%. A query with a selectivity lower than 100%
is the common case in both data collection and monitor-
ing applications. Here we choose a little higher selectivity
(70%) to make the protocols work in a relatively high com-
munication traffic network to investigate their performance
under a heavy workload. The quality function is as fol-
lows: k1 = b1 = 0; k2 = −10, b2 = 100; k3 = 333.33, b3 =
−133.33. Such a quality function specifies that, for a net-
work to attain profits, the minimum quality it should serve
is as follows: the shortest query lifetime is 1 epoch, longest
response time is 10s and the lowest data quality is 0.4. Such
requirements are common in real world applications.

The results of the four schemes are shown in Fig. 2. As
shown in this figure, different underlying scheduling proto-
cols achieve different system profits with a given quality-
aware scheme. Some scheduling protocols combined with
a quality-aware scheme may get a negative profit, e.g., FPS
with Random. No matter what underlying scheduling proto-
cols used, QAS outperformed the other three quality-aware
schemes. The High scheme was close to QAS on AHS, due
to the highest profit was achieved near the high end of the
range of the qualities. Overall, AHS achieves the highest
system profits across all schemes. In the following experi-
ments, we use AHS as the underlying scheduling protocol.

Quality Function. A network running the same schedul-
ing scheme may get different system profits from a query
given different quality functions. Since QAS allows a user
to specify the quality function of each query, the effect of
quality function on system profits should be studied.

-1000

-500

0

500

1000

1500

2000

2500

3000

Q
A

S

L
o

w

M
id

R
a

n
d

H
ig

h

Quality Scheduling Strategies

Q
u
a
lit

y
 P

ro
fi
t

AHS DCS

FPS SS

Quality-Aware Schemes

S
y
s
te
m
P
ro
fi
t

Figure 2: Different scheduling protocols

Fig. 2 only shows the system profit from executing queries
with standard quality functions. A standard quality func-
tion for a query refers to a function in which the revenue
is proportional to the cost of the query. We also tested Q1
with two non-standard quality functions to evaluate QAS as
shown in Table 2. These two non-standard quality functions
are used to favor certain performance metrics. For instance,
Function A in this table desires a high QoD and Function B
prefers longer lifetime (at least 1000 epochs).

Table 2: Non-standard Quality Functions for Q1
Function k1 b1 k2 b2 k3 b3

A 0 0 -1.667 100 1000 -800
B 1 -1000 -60 600 166.667 -66.667

The attained system profits are shown in Figure 3. The
results show that, QAS achieved the highest profit for both
non-standard quality functions. Especially for Function B,
QAS was able to avoid negative profit.

Function A

0

200

400

600

800

Q
A

S

L
o

w

M
id

R
a

n
d

H
ig

h

Quality-Aware Schemes

S
y
s
te

m
 P

ro
fi
t

Function B

-15000

-11000

-7000

-3000

Q
A

S

L
o

w

M
id

R
a

n
d

H
ig

h

Quality-Aware Schemes

S
y
s
te

m
 P

ro
fi
t

Figure 3: Q1 with different quality functions

Query Execution Order. We now show the compari-
son of three strategies, the algorithm in QAS, a greedy al-
gorithm, and an exhaustive searching algorithm on schedul-
ing of multiple queries. The greedy algorithm always ar-
ranges the queries in descending order of system profits.
The exhaustive algorithm traverses all of the permutations
of queries and arranges the queries in the order that will get
the highest total system profits.

We tested a group of five queries, where the required query
life time and QoD of each were 1 and 0.4, respectively. The
acceptable response time of the queries were 30s (Q13), 40s
(Q14), 10s (Q11), 50s (Q15), 20s (Q12) (The query injection
order was: Q13, Q14, Q11, Q15, Q12). We used different
quality functions of the queries, so that different execution
orders of queries would not get the same system profits.

As shown in Figure 4(a), when the quality functions spec-

Order 1

0

1000

2000

3000

4000

5000

6000

QAS Greedy Exhaustive

Strategies

Q
u
a
lit

y
 P

ro
fi
t

S
y
s
te
m
P
ro
fi
t

Order 2

0

1000

2000

3000

4000

5000

6000

QAS Greedy Exhaustive

Strategies

Q
u
a
lit

y
 P

ro
fi
t

S
y
s
te
m
P
ro
fi
t

Order 3

0

1000

2000

3000

4000

5000

6000

QAS Greedy Exhaustive

Strategies

Q
u
a
lit

y
 P

ro
fi
t

S
y
s
te
m
P
ro
fi
t

Figure 4: System Profits of the three strategies

ified the revenues in a way that made the order of possi-
ble highest system profit (PHSP) as Q11 > Q12 > Q13 >
Q14 > Q15, then the three strategies got the same total
system profits. The PHSP is the highest system profit that
can be attained from processing a query given a WSN. We
found that the strategies determined the same query execu-
tion order and it is the optimal query execution order.

However, when the quality functions did not enable the
PHSP of Q11 to be the largest one, the execution orders
given by the strategies were much different. As demon-
strated in Figure 4, in general the performance of QAS was
better than the greedy algorithm and close to the exhaus-
tive algorithm. In the worst case, QAS attained the same
system profit as that of the greedy algorithm.

Finally, we evaluated the network lifetime. In this paper,
we define the network lifetime as the time from a network
starts to the time that the first node runs out of energy.
Due to space constraints, we omit the performance figures
on network time. In general, QAS enabled a much longer
network lifetime than the other schemes. Interested readers
are referred to our technical report.

7. CONCLUSION
In this paper, we presented a quality aware scheduling

framework, QAS, which efficiently satisfies the user qual-
ity requirements on queries. QAS runs on existing quality-
unaware scheduling protocols of WSNs and enables users to
specify their quality requirements using quality functions.
Given these quality functions, QAS determines the target
quality of each query, at which the ratio between the rev-
enue and the energy cost is maximal.

QAS effectively solves the energy waste problem in sen-
sor query processing that causes high quality requirement
queries to be unsatisfied but low quality requirement queries
to be overly satisfied. As shown in the experimental results,
QAS outperforms the baseline quality scheduling strategies.

Acknowledgments
This work was supported by grant 617307 from the Hong
Kong Research Grants Council and by NSF Career award
#IIS 0746696.

8. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B.
Zdonik, “The design of the borealis stream processing
engine,” in CIDR, 2005.

[2] R. K. Abbott and H. Garcia-Molina, “Scheduling
real-time transactions: A performance evaluation,”
ACM Trans. Database Syst., vol. 17, no. 3, pp.
513–560, 1992.

[3] M. Amirijoo, S. Son, and J. Hansson, “Qod adaptation
for achieving lifetime predictability of wsn nodes
communicating over satellite links,” in INSS, June
2007.

[4] Q. Cao, T. F. Abdelzaher, T. He, and J. A. Stankovic,
“Towards optimal sleep scheduling in sensor networks
for rare-event detection,” in IPSN, 2005.

[5] H.-R. Chen and Y.-H. Chin, “An adaptive scheduler
for distributed real-time database systems,” Inf. Sci.,
vol. 153, pp. 55–83, 2003.

[6] J. R. Haritsa, M. J. Carey, and M. Livny,
“Value-based scheduling in real-time database
systems,” VLDB J., vol. 2, no. 2, pp. 117–152, 1993.

[7] B. Hohlt, L. Doherty, and E. A. Brewer, “Flexible
power scheduling for sensor networks,” in IPSN, 2004.

[8] D. Hong, T. Johnson, and S. Chakravarthy, “Real-time
transaction scheduling: A cost conscious approach,” in
SIGMOD, 1993.

[9] IntelLabData,
“http://berkeley.intel-research.net/labdata.”

[10] G. Lu, N. Sadagopan, B. Krishnamachari, and
A. Goel, “Delay efficient sleep scheduling in wireless
sensor networks,” in INFOCOM. IEEE, 2005.

[11] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong, “Tinydb: an acquisitional query processing
system for sensor networks,” ACM Trans. Database
Syst., vol. 30, no. 1, pp. 122–173, 2005.

[12] H. Pang, M. J. Carey, and M. Livny, “Multiclass query
scheduling in real-time database systems,” IEEE
Trans. Knowl. Data Eng., vol. 7, no. 4, pp. 533–551,
1995.

[13] L. Peng and K. S. Candan, “Data-quality guided load
shedding for expensive in-network data processing,” in
ICDE, 2007.

[14] H. Qu and A. Labrinidis, “Preference-aware query and
update scheduling in web-databases,” in ICDE, 2007,
pp. 356–365.

[15] Q. Ren and Q. Liang, “Energy and quality aware
query processing in wireless sensor database systems,”
Inf. Sci., vol. 177, no. 10, pp. 2188–2205, 2007.

[16] SDGEN, “http://www.cse.ust.hk/catalac/.”

[17] M. L. Sichitiu, “Cross-layer scheduling for power
efficiency in wireless sensor networks,” in INFOCOM,
2004.

[18] H. Wu and Q. Luo, “Adaptive holistic scheduling for
query processing in sensor networks,” HKUST-CSE
Technical Report, http://www.cse.ust.hk/tahoe, April,
2007.

[19] H. Wu, Q. Luo, J. Li, and A. Labrinidis, “Quality
aware scheduling for query processing in wireless
sensor networks,” HKUST-CSE Technical Report,
http://www.cse.ust.hk/tahoe, January, 2009.

[20] H. Wu, Q. Luo, and W. Xue, “Distributed cross-layer
scheduling for in-network sensor query processing,” in
PerCom. IEEE Computer Society, 2006, pp. 180–189.

[21] Y. Yao and J. Gehrke, “Query processing in sensor
networks,” in CIDR, 2003.

[22] D. Yates, E. Nahum, J. Kurose, and P. Shenoy, “Data
quality and query cost in wireless sensor networks,” in
Pervasive Computing and Communications
Workshops, March 2007.

