N
Check for
Updates

Class-based Continuous Query Scheduling for Data
Streams

Lory Al Moakar*
Panos K. Chrysanthis*

Thao N. Pham*
Alexandros Labrinidis®

Panayiotis Neophytou!
Mohamed Sharaf?

'Department of Computer Science, University of Pittsburgh
2ECE Department, University of Toronto

{lorym, thao, panickos, panos, labrinid}@cs.pitt.edu, msharaf@eecg.toronto.edu

ABSTRACT

Wireless sensor networks link the physical and digital worlds
enabling both surveillance as well as scientific exploration.
In both cases, on-line detection of interesting events can
be accomplished with continuous queries (CQs) in a Data
Stream Management System (DSMS). However, the quality-
of-service requirements of detecting these events are differ-
ent for different monitoring applications. The CQs for de-
tecting anomalous events (e.g., fire, flood) have stricter re-
sponse time requirements over CQs which are for logging
and keeping statistical information of physical phenomena.
In this work, we are proposing the Continuous Query Class
(CQQC) scheduler, a new scheduling policy which employs
two-level scheduling that is able to handle different ranks of
CQ classes. It provides the lowest response times for classes
of critical CQs, while at the same time keeping reasonable
response times for the other classes down the rank. We
have implemented CQC in the AQSIOS prototype DSMS
and evaluated it against existing scheduling policies under
different workloads.

Categoriesand Subject Descriptors

H.2.4 [Database Management]: Systems — Query Pro-
cessing

General Terms

Algorithms, Design, Performance

Keywords

Data Stream Management System, Continuous Queries, Op-
erator Scheduling, User-centric, Priority

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

1. INTRODUCTION

On-line monitoring applications are widely enabled today
by Wireless Sensor Networks (WSN), in conjunction with
Data Stream Management Systems (DSMS). Environmen-
tal monitoring is an example of a monitoring application
that combines both surveillance and detection as well as sci-
entific exploration and discovery (e.g., [6], [7], [12] and [14]).
Individual sensor devices produce simple periodic readings
such as temperature, humidity, and sound measurements
which are all combined into streams of data. Depending
on the underlying setup of the WSN, these streams could
have a steady and/or a bursty rate. Environmental moni-
toring applications compose these individual readings into
more meaningful complex events (e.g., fire, flood). At the
same time, these applications also perform aggregations and
calculate various useful statistics for future reference and
analysis. In both cases, the applications’ requests can be
expressed in terms of Continuous Queries (CQs) running in
a DSMS. These CQs have different response time require-
ments. For example, CQs that detect hazardous conditions
require a lower response time than CQs that collect statis-
tics.

Currently, most DSMSs employ a CQ scheduler to opti-
mize the Quality of Service (QoS) provided by the system.
In particular, the CQ scheduler is the DSMS component
which decides the execution order of CQs to achieve a cer-
tain performance goal such as minimizing response time or
maximizing fairness. However, current CQ schedulers as-
sume that all CQs are of the same importance. In particu-
lar, existing CQ scheduling policies (e.g., Chain [5], Round
Robin (RR), Highest Rate (HR) [10], Highest Normalized
Rate policy (HNR) [10]) are oblivious to the different im-
portance levels of different CQs and hence, they just op-
timize for the overall system performance. Looking back
at our environmental monitoring example, this means that
the critical queries might be dragged down by the statis-
tics gathering queries. For this reason, the system needs to
distinguish between classes of queries, for example, highly-
critical, critical and normal queries.

To better understand the multi-class CQ scheduling prob-

not made or distributed for profit or commercial advantage and that copies ler.n., cqnsider th? following example Whefe neglecting} the
bear this notice and the full citation on the first page. To copy otherwise, to criticality of queries can lead to undesirable response times.
republish, to post on servers or to redistribute to lists, requires prior specific In our example, we assume two continuous queries: CQ1

permission and/or a fee.

DMSN'09, August 24, 2009, Lyon, France.
Copyright(©)2009 ACM 978-1-60558-777-6/09/08 ...$10.00.

which detects fire conditions in a forest (e.g. high temper-
ature, low humidity, and strong wind) and as such is high-
priority and C'Q2 which records the average temperature

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1594187.1594199&domain=pdf&date_stamp=2009-08-24

and humidity measurements for scientific observation pur-
poses and as such is low-priority. It is a well known fact
that RR is oblivious to the priorities and treats C'Q1 and
CQ2 equally. Similarly, schemes that optimize for the aver-
age response time such as HR or for the average slowdown
time such as HNR are oblivious to query importance. Even
worse, they may make decisions that contradict the objective
of optimizing the performance of the highly-critical queries.
For instance, in our example, C'Q: is highly-selective since
fire conditions are rare. Thus, CQ: has a low output rate
which will lead HR to assign C'Q1 a lower scheduling priority
than C'Q2. This conflict between a CQ’s importance and its
scheduling priority is a problem because CQ: is obviously
more critical that C'Qa.

To the best of our knowledge, only two other systems (Au-
rora [1] and RTSTREAM [13]) consider the case of queries
associated with importance or weights and incorporate the
importance into scheduling decisions. The Aurora sched-
uler requires the user to provide a soft deadline after which
the QoS provided to the query significantly decreases. The
RTSTREAM scheduler requires the user to provide a hard
deadline after which the query instance is discarded.

In this paper, we focus on system QoS metrics that do not
require the user to have any prior knowledge about the query
processing requirements or deadlines. We also attempt to
support all the high-priority queries without starving low-
priority queries and without admission control. Toward this,
we have developed a Continuous Query Class (CQC) Sched-
uler that combines both the RR and HR schedulers.

Specifically, the contributions of this work are :

e We designed a two-level operator scheduler called Con-
tinuous Query Class (CQC) Scheduler that considers
query classes to offer differentiated levels of response
times.

e We implemented the CQC scheduler on our prototype
implementation of the AQSIOS stream management
system (which is built on top of STREAM [2]).

o We evaluated the CQC scheduler in a scenario with
three classes namely Highly-Critical (class H), Criti-
cal (class C) and Neutral (class N) which represent
hazardous, anomalous, and exploration events, respec-
tively.

Road Map: The rest of the paper is organized as follows:
Section 2 surveys the related work. We discuss our system
model in Section 3. Section 4 describes the CQC scheduler.
We evaluate the system in Section 5. Finally, we conclude
in Section 6.

2. RELATED WORK

Efficient CQ scheduling has been one of the main tech-
niques for improving the performance of a DSMS. This mo-
tivated the proposal of several policies for scheduling the
execution of CQs in a DSMS with the objective of optimiz-
ing certain performance goals such as minimizing latency [5,
10, 11] or minimizing memory requirements [3, 4].

In this paper, we also focus on the scheduling of CQs in a
DSMS, however, our objective is to optimize DSMS perfor-
mance in the presence of a multi-class workload where CQs
belong to different classes according to their importance.

Related to our work on multi-class CQ scheduling is the
work on the Aurora project [1, 5] which considers a set of

Quality of Service (QoS) functions including a latency-based
one. In particular, under such model, each CQ is associated
with a QoS function and the perceived quality of service de-
grades when the output delay is beyond some threshold 4.
Given that model, one can argue that we can specify the
importance of a CQ by decreasing its § and/or by increas-
ing the slope of degradation in its assigned QoS function.
However, such mapping between classes and QoS functions
is expected to be a daunting task. In addition, under the
Aurora model, the objective is to improve the overall DSMS
performance, whereas in this paper, we focus on mainly im-
proving the performance of critical CQs while still providing
acceptable performance to the other less-important CQs in
the DSMS.

The work on the RTSTREAM system [13] considers schedul-
ing classes of CQs based on deadlines. In particular, it as-
signs to each CQ a deadline and uses those deadlines as pri-
orities for CQ instances during scheduling. However, when
a query instance is foreseen to miss its deadline, it will be re-
moved from the system and its input data will be discarded.
Hence, the RTSTREAM approach aims at increasing the
DSMS success rate by satisfying as many deadlines as pos-
sible. This is in contrast to our approach where all CQs are
executed to completion without discarding any input data.
This is under the goal of minimizing the latency of CQs
according to their importance.

The work in [9] also considers scheduling multi-class work-
loads but in the context of e-commerce OLTP transactions
in traditional database management systems. Specifically,
it divides transactions to classes of different QoS targets
and uses those class-based targets to schedule transactions.
However, the scheduler is an external module which non-
preemptively dispatches a small set of transactions to the
database system for execution, where the size of that set is
a system parameter. Hence, improving the system perfor-
mance relies heavily on figuring out the proper setting of the
set size. Additionally, under a non-preemptive dispatcher, a
highly important transaction might be blocked waiting for
a less important one to finish execution first.

In a similar manner to this work, our group has used
the approach of two-level scheduling in the context of web-
databases. In particular, the work in [8] deals with the prob-
lem of scheduling queries and updates in a web-database
system in the presence of Quality Contracts, which specify
user-preferences for Quality of Service and Quality of Data
for each query. The proposed scheduling algorithm (QUTS)
involves two separate queues, one for queries and one for up-
dates, and dynamically assigns CPU time to each according
to the expected “profit” in the system through the Quality
Contracts framework.

Finally, in-network scheduling techniques have been ad-
dressed in the literature. These techniques are specific to
sensor networks and are orthogonal to our work. Although
inspired by sensor networks, the techniques proposed here
are more general, as they apply to the processing of stream-
ing data.

3. AQSIOSPROTOTYPE/SYSTEM MODEL

This work is part of the AQSIOS project, in which we
build a new generation of DSMS. AQSIOS is based on the
STREAM prototype source code [2], which is currently ex-
tended to include new scheduling policies and operators.
Figure 1 illustrates an overview of AQSIOS. The query op-

Administrator AQSIOS

Specify scheduler’s
parameters

Statistics
Collector

WRR Scheduler

Level 1 ‘

Define query classes I L
and class priorities =

...............

i Level 2 ‘ HR ‘ ‘ HR ‘ ‘ HR

Query
class 1

Class-based ‘
Continuous queries ‘

Query

Query Optimizer

class n

operators

Source Operational
operators

SQ 0Q

User —_
applications

.

1

|

+ I I
1

|

] Output
| streams
|

|

T

|

|

|

|

|

|

Class H Class C Class N

Sensor networks

Figure 1: Overview of AQSIOS system

timizer, query execution engine, and a Round Robin (RR)
scheduler are inherited from STREAM.

In AQSIOS, all implemented scheduling policies are operator-

based, i.e., they consider an operator as the scheduling unit.
The scheduling module which sits on top of the query net-
work, selects an operator to run for some specific amount of
time before switching to another one. In order to support
cost-based scheduling such as HR, we have implemented a
Statistics Collector module which collects statistical infor-
mation about operators’ costs and selectivities. For exam-
ple, HR uses these statistics to set the priority of an operator
x to be g_Z’ where S is the expected selectivity and C; is the
expected processing cost of the query fragment downstream
from the operator x.

Data streams coming from Sensor Networks are read and
translated to an internal representation format by source
operators. In the STREAM engine, a source operator (as
well as an output operator) is considered part of a query
(i.e., database operators) and the query network. As such,
source operators are scheduled in the same way as the other
operators by the RR scheduler. However, this can result in
an unnecessary overhead when a source operator is selected
to execute and given the CPU if it has no incoming tuple to
read, while some intermediate tuples are still waiting inside
the system to be processed. In fact, we have observed that
RR’s major delays are due to context switching to operators
without input tuples. For this reason, in AQSIOS, and in
particular under the view of the HR scheduler, source oper-
ators are not part of the queries (and query network) and
are scheduled separately from the database and output op-
erators which we referred to them as Operational operators
(see Figure 1). Specifically, AQSIOS groups all source op-
erators together and schedules the source operator set only
when there are no tuples waiting in the input queues of the
operational operators.

Continuous queries submitted to AQSIOS are classified
into several predefined classes of different priorities based on
their criticality levels. In this paper, without lost of general-
ity, we assumed only three priority classes. We also assume
that there is no sharing of operators across different classes.
However, sharing of operators within a class or sharing of
synopses is allowed.

Figure 2: CQC Scheduler

4. CONTINUOUS QUERY CLASS SCHED-
ULER

In this section, we present first the motivation for our two-
level scheduler and then the details of our Continuous Query
Class scheduler (CQC) which assumes no user-specified QoS
requirements (e.g., specific response times or deadlines) and
its implementation in AQSIOS.

41 Motivation

Our implementation of HR in AQSIOS has confirmed the
performance results in [10] that the HR scheduler offers the
best average response time in a DSMS. Unfortunately, HR
is oblivious to query class priorities and therefore, cannot
be used in optimizing the response time of highly critical
queries. A simple solution is to extend HR by multiplying
the priority of each operator by the priority of its query
class. We identified two problems with this extension:

e The original HR scheduler is prone to starve low-priority
operators because it schedules high-priority operators
first during every round. If high-priority operators al-
ways have tuples in their input queues, low-priority
operators may never execute. An extended HR might
further increase the probability of starvation of those
operators if they belong to low class queries. Multi-
plying their low HR priorities by the low class priority
results in a lower relative combined priority and an
increased chance of starvation.

e Extended HR is also vulnerable to class-priority inver-
sion. An operator of a query in a higher class H does
not always have higher probability to execute than an
operator of query of a lower class N. For example,
consider two operators Op; and Opz. Opi has a low
output rate Ry but belongs to a query in class H with
priority Pr. Opa2, on the other hand, has a high output
rate R2 but belongs to a query in class N with priority
Pn. Given that the order of execution of Op; and Op2
depends on both their output rates and query class
priorities, Op2 will have higher priority to execute if
Ry > (Pu/Pn) - R1 or Opy will have higher priority if
and only if Ry < (Pu/Pn) - Ra.

Another alternative is to extend Round Robin (RR) which

Algorithm 1 CQC Scheduling Algorithm: Level 1
INPUT: a set of HR schedulers where each sched-
uler is responsible for a set of all operators belonging
to a specific class.

Setup Phase

1. Sort the scheduler set in decreasing order of class pri-
orities.

2. For each scheduler i, calculate its ideal time slice
(T = Pi xk [/ 30,_y Pj) and its quota (c; = T5).

Execution Phase
1. Select the next scheduler ¢ from the scheduler set.
2. If 7 has nonpositive quota c;, then Step a, else Step b.
(a) Add T; to ¢;. Go to Step 1.

(b) Schedule 4 to run for ¢; time units.

3. After i returns control, determine the number of time
units (tu) it executed for. If tu < ¢;, go to Step a, else
Step b.

(a) Reset ¢; to T;. Go to Step 1.
(b) Set ¢; = T; — (tu — T3). Go to Step 1.

already prevents starvation but it does not optimize the per-
formance of highly-critical queries. RR can be extended into
a Weighted Round Robin (WRR) scheduler that uses the
class priorities to order the operators and to determine their
time slices. This extension prevents starvation while opti-
mizing for high-priority query classes. However, WRR does
not distinguish between operators in the same class, and
thus, does not optimize the average response time within a
class as would have been the case of HR.

4.2 Proposed Solution

The last observation above suggested the idea of integrat-
ing the WRR and HR schedulers to support class-based con-
tinuous query scheduling for data streams. Specifically, we
propose a two-level scheduler, namely, Continuous Query
Class (CQC) scheduler (Figure 2), that combines the WRR
scheduler (level 1) and the HR scheduler (level 2).

Level 2 consists of a set of HR schedulers. Each HR sched-
uler is responsible for a set of operators that belong to a
specific class. In AQSIOS, each HR class scheduler is im-
plemented in a way that distinguishes between source and
operational operators and schedules them independently ac-
cording to their input queues (SQ and OQ in Figure 2). Re-
call that HR is designed to minimize the average response
time. At each scheduling point, an HR class scheduler first
sets the priority of operational operators and switches to
schedule the source operators only when all the operators in
the OQ have empty input queues.

On level 1, a WRR scheduler (Algorithm 1) allocates to
each query class ¢ a quota (c¢;) equal to a time slice of T;
time units. 7; is the product of the priority of query class ¢
(P;) and a configurable time period k divided by the sum of
all class priorities(3_7_ P;). For example, in a system with
three query classes {H,C, N} with priorities of {6, 3,1} and

System Parameters
1000 time units
1 micro second

k (time period)
Time unit

Query Load Specifications
Number of queries 21
Number of query classes 3
Types of queries Select, Aggr, 2-way Joins
Window Size 10 time units
Selectivity of Selections [0.25 — 1]

Data Stream Specifications
Humidity (int) Uniform [0 — 100]
Temperature (int) Uniform [0 — 40]
Location (12 chars) 20 locations
Number of input streams 27
Tuple arrival rate/stream 1500 tuples/second
Number of tuples/stream 10,000

Table 1: Experimental Setup

k = 20, WRR assigns weighted quotas of {12,6,2} to each
HR class scheduler.

In AQSIOS, WRR does not preempt HR class schedulers
but uses a negative credit system (Steps 2 and 3 in the ex-
ecution phase of Algorithm 1). If any HR class scheduler
i exceeds its quota (¢;), WRR deducts the excess amount
from its future quotas. This reduces the effect of heavy
loaded low-class N queries on high-class H queries. How-
ever, unused time quotas do not carry on. If an HR class
scheduler is waiting for input tuples, it returns control to
WRR after polling its SQ twice.

The CQC scheduler isolates the operators in different query
classes. This guarantees a time-slice k - P;/ Zj:o P; for op-
erators in class ¢ during each round. Hence, the isolation
of operators among classes reduces the probability of star-
vation. In our example, high-priority operators in classes H
and C, cannot starve low-priority operators in class N. The
latter compete only with high-priority operators in their own
class. Priority class isolation also guarantees a high prob-
ability of execution for all queries in class H because their
operators do not compete with high-priority operators in
class C or N queries. That is, CQC ensures no operator
class priority inversion.

5. PERFORMANCE EVALUATION
5.1 Experimental Setup

To evaluate our proposed solution, we implemented the
HR and CQC schedulers in AQSIOS DSMS. AQSIOS is
based on the STREAM source code, but is extended to in-
clude scheduling policies, and load shedding operators (that
are not described in this paper). We compared the perfor-
mance of CQC to both HR and the STREAM DSMS Round
Robin (RR) scheduler. Under RR and HR, each operator
processes all the tuples in its input queue before returning
control back to the scheduler. Under HR, the operators are
scheduled in nonincreasing order of output rate. Table 1
shows the configuration parameters of the system and the
workloads.

Workloads: We evaluated the CQC scheduler using three

| Workload A |
Class H | Class C | Class N

Number of queries 7 7 7
Types of queries all all all
Priorities 6 3 1
| Workload B |
Class H | Class C | Class N
Number of queries 2 8 11
Types of queries join all all
Priorities 3 2 1
| Workload C |
Class H | Class C | Class N
Number of queries 2 8 11
Types of queries join all all
Priorities 6 3 1

Table 2: Workloads

workloads: A, B and C. We also ran the HR scheduler with
three additional workloads Ag, By and Cpg that only con-
tain class H queries out of workloads A, B and C, respec-
tively. All workloads consist of nine aggregate queries, six
2-way join queries and six selection queries. We have ex-
perimented with various query sets and we chose this one
because it brings the system to a highly loaded state with-
out overloading it. Table 2 shows the number of queries and
the priorities of each query class under each workload. The
queries in workload A are identical in each class while work-
loads B and C have more queries in classes C and N. Work-
load B and C have an identical query load and differ only in
the priority of the CQ classes. We chose the queries in work-
loads B and C to satisfy the assumptions made concerning
the applications we are considering (i.e. critical monitoring
and scientific exploration).

Data Input: We assume a wireless sensor network band-
width of 250Kbps [14]. Our tuples consist of 3 attributes: lo-
cation (12 characters), humidity (int) and temperature (int)
measurements. The network was simulated by injecting the
system with 10,000 tuples per input stream as read from a
file, at the highest assumed network bandwidth (1500 tu-
ples/second). We simulate no operator sharing across query
classes by duplicating shared input streams and source op-
erators.

Metrics: We measure the average response time for each
workload query class and scheduler.

Platform:We ran AQSIOS on a Dell Inspiron E1405 lap-
top with Intel Core Duo processor T5500 @ 1.66 GHz with 1
GB of RAM running Fedora 10 with the 2.6.27 Linux kernel.
AQSIOS executes on only one core of the CPU. We mea-
sure response times using the PROCESS_CPUTIME clock,
which measures only the process’s active execution time.

5.2 Experimental Results

Figure 3 compares the average response times of class H
queries for all schedulers on workloads A, B, and C (Table
2) and for the HR scheduler on workloads Ag, Ba, and Cg.
In the latter case, class H queries are running by themselves,
i.e. there are no class C or N queries. We introduce these
workloads to compare with the ideal case. When executing

queries of all classes, the CQC scheduler improved the aver-
age response time of class H queries as compared to the HR
scheduler by a factor of at least 9.4 (the y-axis in Figure 3
is in logarithmic scale). Class H queries running by them-
selves have an even lower response time because the system
is under-loaded.

Figure 4 shows the average response times for workload
A query classes under all schedulers. As expected, the CQC
scheduler improves the average response time of class H
queries, but impairs the response time of class N queries.
Class C queries have a higher average response time for this
workload because they constitute one third of the system
queries and they have a high output rate. As a result, when
their HR scheduler executes, class H queries always have
tuples and do not return before their quota T ends.

CQC improves the average response times of class H and
class C queries for both B and C workloads (Figures 5 and 6),
but impacts negatively the performance of class N queries.
In contrast with workload A, class H queries are fewer, so
they do not affect the performance of class C queries in work-
loads B and C, which are a set of more realistic workloads
for the motivating applications we are considering. The re-
sponse time of class N queries under workload B is lower
than under workload C because they are assigned a lower
relative priority (1/10 vs. 1/6) under workload C than work-
load B. Overall, our scheduling policy does extremely well in
improving the response time of the most important queries,
and penalizes the data gathering queries whose results do
not need to be handled immediately.

Class H

1000
m
E 100
[}
E
’_
© OH only
2 HRR
S
=3 OHR
C cQc
[9]
g 1
[}
>
<

01
Workload A Workload B Workload C

Figure 3: Average Response Time for Class H
queries (y-axis is in log-scale). “H only” are the re-
sults as the queries of class H were ran by themselves
under HR. Those are compared against the response
time of class H on the scheduling algorithms as was
ran with the corresponding workload mixture.

6. CONCLUSIONS

In this paper, we considered scheduling multiple continu-
ous query classes with different priorities. We developed a
new scheduling policy that optimizes the average response
time of queries in high-priority classes. Our scheduler con-
sists of two levels. The lower level which schedules queries
within a class is using the Highest Rate policy. The top level
which schedules which class to run is using the Weighted

Workload A
2500

N
S
S
3

1500
HRR
OHR

N
1000 CQC

Average Response Time (ms)

Class H Class C Class N

Figure 4: Workload A: All classes have equal query
load. CQC provides 9.4 times improvement on class
H, compared to HR.

Workload B

1800

1600
@ 1400
£
Q 1200
£
e
© 1000 HRR
2 OHR

800 -
@ cQc
9}
O 600
©
=)
E 400
g
< 200

0
Class H Class C Class N

Figure 5: Workload B: Class N has more queries.
Class H a couple important join queries. CQC pro-
vides 19.8 times improvement on class H, compared
to HR.

Round Robin policy. We implemented and evaluated our
scheduling scheme on our DSMS prototype code-named AQ-
SIOS which is built on top of the STREAM DSMS. We
showed that our scheduler improves the response time of
critical queries in practical workloads. For class H (highly-
critical) by a factor of at least 19 and class C (critical) by a
factor of at least 2.5.

In the future, we will modify our scheduler to handle
shared operators, first the source operators and then other
common operator prefixes within the query plans. Having
the prototype system will help us to easily extend our cur-
rent techniques and explore more constrained and heavily-
loaded environments.

Acknowledgements: This research was supported in part
by NSF grant 1IS-0534531 and NSF career award grant IIS-
0746696.

Workload C
2500

N
8
S
3

1500
HRR
OHR

1000 o

Average Response Time (ms)

a
3

Class H Class C Class N

Figure 6: Workload C: Same set of queries as Work-
load B. Priorities differ by giving higher priority to
class H than classes N and C. CQC provides 19.3
times improvement on class H, compared to HR.

7. REFERENCES

[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for data
stream management. The VLDB Journal, 12(2):120-139,
2003.

[2] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,
K. Ito, R. Motwani, U. Srivastava, and J. Widom. Stream:
The stanford data stream management system. Technical
Report 2004-20, Stanford InfoLab, 2004.

[3] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain:
Operator scheduling for memory minimization in data
stream systems. In SIGMOD, 2003.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and
D. Thomas. Operator scheduling in data stream systems.
The VLDB Journal, 13(4):846-860, 2004.

[5] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik,

M. Cherniack, and M. Stonebraker. Operator scheduling in
a data stream manager. In VLDB, 2003.

[6] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves,

S. Glaser, and M. Turon. Health monitoring of civil
infrastructures using wireless sensor networks. IPSN, 2007.

[7] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi.
Implementing software on resource-constrained mobile
sensors: experiences with impala and zebranet. In ACM
MobiSys, 2004.

[8] H. Qu and A. Labrinidis. Preference-aware query and
update scheduling in web-databases. In ICDE, 2007.

[9] B. Schroeder, M. Harchol-Balter, A. Iyengar, and
E. Nahum. Achieving class-based qos for transactional
workloads. In ICDE, 2006.

[10] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and
K. Pruhs. Efficient scheduling of heterogeneous continuous
queries. In VLDB, 2006.

[11] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and
K. Pruhs. Algorithms and metrics for processing multiple
heterogeneous continuous queries. ACM Transactions on
Database Systems, 2008.

[12] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and
D. Culler. An analysis of a large scale habitat monitoring
application. In ACM SenSys, 2004.

[13] Y. Wei, S. H. Son, and J. A. Stankovic. Rtstream:
Real-time query processing for data streams. In ISORC,
2006.

[14] Zigbee specification 053474106, version 1.0, 2004.

