Scheduling Strategies for Data Stream Processing

2475

| Scheduling

» Concurrency Control — Traditional Approaches

! Scheduling Policies

» Scheduling Strategies for Data Stream Processing

|
Scheduling Strategies for Data
Stream Processing

MOHAMED SHARAF', ALEXANDROS LABRINIDIS>
"Electrical and Computer Engineering, University of
Toronto, Toronto, Ontario, Canada

*Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA, USA

Synonyms
Operator scheduling; Continuous query scheduling;
Scheduling policies

Definition

In a Data Stream Management System (DSMS), data
arrives in the form of continuous streams from differ-
ent data sources, where the arrival of new data triggers
the execution of multiple continuous queries (CQs).
The order in which CQs are executed in response to the
arrival of new data is determined by the CQ scheduler.
Thus, one of the main goals in the design of a DSMS is
the development of scheduling policies that leverage
CQ characteristics to optimize the DSMS performance.

Historical Background
The growing need for monitoring applications [8] has
forced an evolution on data processing paradigms,
moving from Database Management Systems (DBMSs)
to Data Stream Management Systems (DSMSs) [4,11].
Traditional DBMSs employ a store-and-then-query
data processing paradigm, where data are stored in the
database and queries are submitted by the users to be
answered in full, based on the current snapshot of the
database. In contrast, in DSMSs, monitoring applica-
tions register continuous queries which continuously
process unbounded data streams looking for data that
represent events of interest to the end-user.

The data stream concept permeated the data man-
agement research community in the mid- to late 90’s,

with general-purpose research prototypes of data
stream management systems materializing shortly
afterwards, for example Aurora[8], TelegraphCQ[10]
and STREAMS|[5].

Scheduling is one of the fundamental research chal-
lenges for effective data stream management systems;
as such, it has received a lot of attention, with early
works on scheduling in 2003 [2,9].

Foundations

System Model

A continuous query evaluation plan can be conceptua-
lized as a data flow tree [2,8], where the nodes are
operators that process tuples and edges represent the
flow of tuples from one operator to another (Fig. 1).
An edge from operator O, to operator O, means that
the output of O, is an input to O,. Each operator is
associated with a queue where input tuples are buffered
until they are processed.

Multiple queries with common sub-expressions are
usually merged together to eliminate the repetition of
similar operations. For example, Figure 1 shows the
global plan for two queries Q; and Q,. Both queries
operate on data streams M; and M, and they share the
common sub-expression represented by operators Oy,
0, and O;, as illustrated by the half-shaded pattern for
these operators.

A single-stream query Qy has a single leaf oper-
ator QF and a single root operator QF, whereas a
multi-stream query has a single root operator and
more than one leaf operators. In a query plan Qy, an

operators Operator <

-
-

\,5'/

/s

\\\\\\

Scheduling Strategies for Data Stream Processing.
Figure 1. Continuous queries plans.

2476

Scheduling Strategies for Data Stream Processing

operator segment EJ’;}, is the sequence of operators
that starts at Of and ends at OF. If the last operator
on Ef , is the root operator, then that operator segment is
simply denoted as Ef For example, in Fig. 1, El1 =<0,
Os, O4>, whereas E} = <Oy, O3, Os>.

In a query, each operator O,* (or simply O,) is
associated with two parameters:

1. Processing cost or Processing time (c,) is the amount
of time needed to process an input tuple.

2. Selectivity or Productivity (s,) is the number of tuples
produced after processing one tuple for ¢, time units.
s, is less than or equal to 1 for a filter operator and
it could be greater than 1 for a join operator.

Multiple CQ Scheduling

At the arrival of new data, the MCQ scheduler decides the
execution order of CQs, or more precisely, the execution
order of operators within CQs. The execution order is
decided with the objective of optimizing the DSMS per-
formance under certain metrics. Towards this, the sched-
uler assigns a priority to each operator and operators are
executed according to these priorities.

For a single-stream query Qi which consists of
operators <Of‘,...,O§7 O)’f,...,Of> (Fig. 1), the function
for computing the priority of operator OF typically
involves one or more of the following parameters:

o Operator Global Selectivity (S¥) is the number of
tuples produced at the root OF after processing one
tuple along operator segment EX.

sz:s’;xsl;x...xs’:

e Operator Global Average Cost (Ei) is the expected
time required to process a tuple along an operator
segment CK.

—k
C,=(+ (cly< X sE) A (Koxsk X x s

If OF is a leaf operator (x =), when a processed tuple

actually satisfies all the filters in Elk, then d(represents

the ideal total processing cost or time incurred by any

tuple produced or emitted by query Q. In this case, 6;(

is denoted as Tj:

e Tuple Processing Time (Ty) is the ideal total proces-
sing cost required to produce a tuple by query Q.

Te=ci+ . +ch+c+..+¢

The exact priority function depends on the perfor-
mance metric to optimize, and in turn on the
employed scheduling strategy.

Metrics and Strategies

Response Time: Processing a tuple by a CQ might lead
to discarding it (if it does not satisfy some filter predi-
cate) or it might lead to producing one or more tuples
at the output, which means that the input tuple repre-
sents an event of interest to the user who registered the
CQ. Clearly, in DSMSs, it is more appropriate to define
response time from a data/event perspective rather
than from a query perspective as in traditional
DBMSs. Hence, the tuple response time or tuple latency
is defined as follows:

Definition 1

Tuple response time, R;, for tuple t;is R; = D; — A;, where
A; is tis arrival time and D; is t;s output time. Accord-
ingly, the average response time for N tuples is:
LS N R,

N 2ui=1

For a single CQ over multiple data streams, the Rate-
based policy (RB) has been shown to improve the average
response time of tuples processed by that CQ [17].

For multiple CQs, the Aurora DSMS [9], uses a two-
level scheduling strategy where Round Robin (RR) is
used to schedule queries and RB is used to schedule
operators within the query. The work in [14] proposes
the Highest Rate policy (HR) which extends the RB
to schedule both queries and operators. Basically, HR
views the network of multiple queries as a set of operators
and at each scheduling point it selects for execution the
operator with the highest priority (i.e., output rate).

Specifically, under HR, each operator O is assigned
a value called global output rate (GRY). The output rate
of an operator is basically the expected number of
tuples produced per time unit due to processing one
tuple by the operators along the operator segment
starting at OF all the way to the root OF. Formally,
the output rate of operator OF is defined as follows:

sk
GR: = 2= (1)

X

where S¥ and Ei are the operator’s global selectivity
and global average cost as defined above. The intuition
underlying HRisto give higher priority to operator paths
that are both productive and inexpensive. In other

Scheduling Strategies for Data Stream Processing

2477

words, the highest priority is given to the operator
paths with the minimum latency for producing one tuple.

Slowdown: Under a heterogeneous workload, the
processing requirements for different tuples may vary
significantly and average response time is not an ap-
propriate metric, since it cannot relate the time spent
by a tuple in the system to its processing requirements.
Given this realization, other on-line systems with het-
erogeneous workloads such as DBMSs, OSs, and Web
servers have adopted average slowdown or stretch [13]
as another metric. This motivated considering the
stretch metric in [14].

The definition of slowdown was initiated by the
database community in [12] for measuring the perfor-
mance of a DBMS executing multi-class workloads.
Formally, the slowdown of a job is the ratio between
the time a job spends in the system to its processing
demands [13]. In a DSMS, the slowdown of a tuple is
defined as follows [14]:

Definition 2

The slowdown, H;, for tuple t; produced by query Qy is
H; = % , where R; is t;s response time and Ty is its ideal
processing time. Accordingly, the average slowdown for N
tuples is: 1SN H,.

Intuitively, in a general purpose DSMS where all
events are of equal importance, a simple event (i.e., an
event detected by a low-cost CQ) should be detected
faster than a complex event (i.e., an event detected by a
high-cost CQ) since the latter contributes more to the
load on the DSMS.

The HR policy schedules jobs in descending order
of output rate which might result in a high average
slowdown because a low-cost query can be assigned a
low priority since it is not productive enough. Those
few tuples produced by this query will all experience a
high slowdown, with a corresponding increase in the
average slowdown of the DSMS.

The work in [14] proposes the Highest Normalized
Rate (HNR) policy for minimizing the slowdown in a
DSMS. Under HNR, each operator Oi‘ is assigned a
priority V¥ which is the weighted rate or normalized
rate of the operator segment EX that starts at operator
OF and it is defined as:

vh= == (2)

The HNR policy, like HR, is based on output rate,
however, it also emphasizes the ideal tuple processing
time in assigning priorities. As such, an inexpensive
operator segment with low productivity will get a
higher priority under HNR than under HR.

Worst-Case Performance: It is expected that a sched-
uling policy that strives to minimize the average-case
performance might lead to a poor worst-case perfor-
mance under a relatively high load. That is, some
queries (or tuples) might starve under such a policy.
The worst-case performance is typically measured using
maximum response time or maximum slowdown [7].

Intuitively, a policy that optimizes for the worst-
case performance should be pessimistic. That is, it
assumes the worst-case scenario where each processed
tuple will satisty all the filters in the corresponding
query.

The work in [14] shows that the traditional First-
Come-First-Serve (FCFS) minimizes the maximum
response time. Similarly, it shows that the traditional
Longest Stretch First (LSF) [1] optimizes the maximum
slowdown.

Average- vs. Worst-Case Performance: On one hand,
the average value for a QoS metric provided by
the system represents the expected QoS experienced
by any tuple in the system (i.e., the average-case per-
formance). On the other hand, the maximum value
measures the worst QoS experienced by some tuple
in the system (i.e., the worst-case performance). It is
known that each of these metrics by itself is not enough
to fully characterize system performance.

The most common way to capture the trade-off
between the average-case and the worst-case perfor-
mance is to measure the /, norm [6]. For instance, the
¢, norm of response times, R;, is defined as:

Definition 3
The ¢, norm of response times for N tuples is equal to
VIR

The definition shows that the £/, norm considers the
average in the sense that it takes into account all values,
yet, by considering the second norm of each value
instead of the first norm, it penalizes more severely
outliers compared to the average metrics.

In order to balance the trade-off between the
average- and worst-case performance, the Balance Slow-
down (BSD) and the Balance Response Time (BRT)

2478

Scheduling Strategies for Data Stream Processing

policies have been proposed in [14]. To avoid starva-
tion, the two policies consider the amount of time an
operator OF has been waiting for scheduling (i.e., WF).
Specifically, under BSD, each operator OF is assigned
a priority value V¥ which is the product of the
operator’s normalized rate and the current highest
slowdown of its pending tuples. That is:

V= (Efka) (Vi\‘/:) ?

As such, under BSD, an operator is selected either
because it has a high weighted rate or because its
pending tuples have acquired a high slowdown.
Application-Specific QoS: Aurora also proposes a
QoS-aware scheduler which attempts to satisfy appli-

cation-specified QoS requirements [9]. Specifically,
under that QoS-aware scheduler, each query is asso-
ciated with a QoS graph which defines the utility of
stale output.

Given, a QoS graph, the scheduler computes for each
operator a utility value which is basically the slope of
the QoS graph at the tuple’s output time. The schedul-
er also computes for each operator its urgency value
which is an estimation of how close is an operator to a
critical point on the QoS graph where the QoS changes
sharply. Then, at each scheduling point, the scheduler
chooses for execution the operators with the highest
utility value and among those that have the same
utility, it chooses the one that has the highest urgency.

Memory Usage: Multi-query scheduling has also
been exploited to optimize metrics beyond QoS. For
example, Chain is a multi-query scheduling policy that
optimizes memory usage in order to minimize space
requirements for buffering tuples [2]. Towards this, for
each query plan, Chain constructs what is called a
progress chart. A progress chart is basically a set of
segments where the slope of each segment represents
the rate of change in the size of a tuple being processed
by a set of consecutive operators along the query plan.
Given that progress chart, at each scheduling point,
Chain schedules for execution the tuple that lies on the
segment with the steepest slope. The intuition is to give
higher priority to segments of operators with higher
tuple consumption rate which will lead to quickly
freeing more memory.

Quality of Data (QoD): Another metric to optimize
is Quality of Data (QoD). For instance, the work in
[15] proposes the freshness-aware scheduling policy for

improving the QoD of data streams, when QoD is
defined in terms of freshness. The proposed scheduler
exploits the variability in query costs, divergence in
arrival patterns, and the probabilistic impact of selec-
tivity in order to maximize the freshness of output data
streams.

Multiple-Objective Scheduling: In DSMSs, and in
computer systems in general, it is often desirable to
optimize for multiple metrics at the same time. How-
ever, those metrics might be in conflict most of the
time. This motivated the proposals of schedulers that
are able to balance the trade-off between certain
conflicting metrics.

For instance, the work in [3] attempts to balance
the trade-off between memory usage and latency by
formalizing latency requirements as a constraint to the
Chain scheduler. This formulation lead to the Mixed
policy which can be viewed as a heuristic strategy that
is intermediate between Chain and FIFO. Specifically,
Mixed is tuned via a parameter where a high value of
that parameter causes Mixed to behave more like FIFO,
whereas a lower value makes it behave more like Chain.

In another attempt towards multiple-objective
scheduling, the work in [16] proposes AMoS which is
an Adaptive Multi-objective Scheduling selection
framework. Given several scheduling algorithms,
AMoS employs a learning mechanism to learn the
behavior of the scheduling algorithms over time. It
then uses the learned knowledge to continuously select
the algorithm that has statistically performed the best.

Scheduler Implementation: To ensure the applicabil-
ity of scheduling policies in DSMSs, a low-overhead
implementation is needed in order to reduce the
amount of computation involved in computing prio-
rities. For static policies (i.e., policies where an opera-
tor priority is constant over time), priorities are
computed only once when a query is registered in the
DSMS which naturally leads to a low-overhead imple-
mentation. Examples of such static policies include
HR, HNR, and Chain. On the other hand, for dynamic
policies where priority is a function of time, the prior-
ity of each operator should be re-computed at each
instant of time. Such a naive implementation renders
that class of policies very impractical. This motivated
several approximation methods for efficient imple-
mentation of dynamic policies to balance the trade-
off between scheduling overhead and accuracy.
For instance the work in [9] proposes using bucketing

as well as pre-computation for an efficient

Schema Evolution

2479

implementation of the QoS-aware scheduling in
Aurora. Similarly, [14] proposes using search space
reduction and pruning methods in addition to clus-
tered processing of continuous queries.

Key Applications

There is a plethora of applications that require data
stream management systems and, as such, proper
scheduling strategies. The most well-known class of
applications is that of monitoring applications[8], be it
environmental monitoring (e.g., via sensor networks),
network monitoring (e.g., by collecting router data), or
even financial monitoring (e.g., by observing stock-
market data). In all such cases, the sheer amount of
input data precipitates the use of the data stream
processing paradigm and proper scheduling strategies.

Cross-references

» Adaptive Query Processing

» Adaptive Stream Processing

» Data Stream

» Event Stream

» Stream Processing

» Stream-Oriented Query Languages and Operators
» Streaming Applications

Recommended Reading

1. Acharya S. and Muthukrishnan S. Scheduling on-demand
broadcasts: New metrics and algorithms. In Proc. 4th Annual
Int. Conf. on Mobile Computing and Networking, 1998.

2. Babcock B., Babu S., Datar M., and Motwani R. Chain: operator
scheduling for memory minimization in data stream systems. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, 2003.

3. Babcock B., Babu S., Datar M., Motwani R., and Thomas D.
Operator scheduling in data stream systems. VLDB],
13(4), 2004.

4. Babcock B., Babu S., Datar M., Motwani R., and Widom J.
Models and Issues in Data Stream Systems. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, 2002.

5. Babu S. and Widom J. Continuous queries over data streams.
ACM SIGMOD Rec., 2001.

6. Bansal N. and Pruhs K. Server scheduling in the L, norm: a
rising tide lifts all boats. In Proc. 35th Annual ACM Symp. on
Theory of Computing, 2003.

7. Bender M.A., Chakrabarti S., and Muthukrishnan S. Flow
and stretch metrics for scheduling continuous job streams. In
Proc. 9th Annual ACM -SIAM Symp. on Discrete Algorithms,
1998.

8. Carney D., Cetintemel U., Cherniack M., Convey C., Lee S.,
Seidman G., Stonebraker M., Tatbul N., and Zdonik S. Monitor-
ing streams: a new class of data management applications.
In Proc. 28th Int. Conf. on Very Large Data Bases, 2002.

9. Carney D., Cetintemel U., Rasin A., Zdonik S., Cherniack M.,
and Stonebraker M. Operator scheduling in a data stream
manager. In Proc. 29th Int. Conf. on Very Large Data Bases,
2003.

10. Chandrasekaran S., Cooper O., Deshpande A., Franklin M.J.,
Hellerstein J.M., Hong W., Krishnamurthy S., Madden S.,
Raman V., Reiss E, and Shah M.A. TelegraphCQ: continuous
dataflow processing for an uncertain world. In Proc. 1st Biennial
Conf. on Innovative Data Systems Research, 2003.

11. Golab L. and Ozsu M.T. Issues in data stream management.
ACM SIGMOD Rec., 32(2):5-14, 2003.

12. Mehta M. and DeWitt D.J. Dynamic memory allocation
for multiple-query workloads. In Proc. 19th Int. Conf. on Very
Large Data Bases, 1993.

13. Muthukrishnan S., Rajaraman R., Shaheen A., and Gehrke J.E.
Online Scheduling to Minimize Average Stretch. In Proc. 40th
Annual Symp. on Foundations of Computer Science, 1999.

14. Sharaf M.A., Chrysanthis P.K., Labrinidis A., and Pruhs K.
Efficient Scheduling of Heterogeneous Continuous Queries. In
Proc. 32nd Int. Conf. on Very Large Data Bases, 2006.

15. Sharaf M.A., Labrinidis A., Chrysanthis P.K., and Pruhs K.
Freshness-Aware Scheduling of Continuous Queries in the
Dynamic Web. In Proc. 8th Int. Workshop on the World Wide
‘Web and Database, 2005.

16. Sutherland T., Pielech B., Zhu Y., Ding L., and Rundensteiner E.
A. An adaptive multi-objective scheduling selection framework
for continuous query processing. In Proc. Int. Database Engi-
neering and Applications Symp, 2005.

17. Urhan T. and Franklin M.J. Dynamic pipeline scheduling
for Improving Interactive Query Performance. In Proc. 27th
Int. Conf. on Very Large Data Bases, 2001.

I
Schema Evolution

Joun E. Ropbpick
Flinders University, Adelaide, SA, Australia

Definition

Schema evolution deals with the need to retain current
data when database schema changes are performed.
Formally, Schema Evolution is accommodated when a
database system facilitates database schema modifica-
tion without the loss of existing data, (q.v. the stronger
concept of Schema Versioning) (Schema evolution and
schema versioning has been conflated in the literature
with the two terms occasionally being used inter-
changeably. Readers are thus also encouraged to read
also the entry for Schema Versioning.).

Historical Background

Since schemata change and/or multiple schemata are
often required, there is a need to ensure that extant
data either stays consistent with the revised schema or

