
Scheduling

▶Concurrency Control – Traditional Approaches

Scheduling Policies

▶ Scheduling Strategies for Data Stream Processing

Scheduling Strategies for Data
Stream Processing

MOHAMED SHARAF
1, ALEXANDROS LABRINIDIS

2

1Electrical and Computer Engineering, University of

Toronto, Toronto, Ontario, Canada
2Department of Computer Science, University of

Pittsburgh, Pittsburgh, PA, USA

Synonyms
Operator scheduling; Continuous query scheduling;

Scheduling policies

Definition
In a Data Stream Management System (DSMS), data

arrives in the form of continuous streams from differ-

ent data sources, where the arrival of new data triggers

the execution of multiple continuous queries (CQs).

The order in which CQs are executed in response to the

arrival of new data is determined by the CQ scheduler.

Thus, one of the main goals in the design of a DSMS is

the development of scheduling policies that leverage

CQ characteristics to optimize the DSMS performance.

Historical Background
The growing need for monitoring applications [8] has

forced an evolution on data processing paradigms,

moving from Database Management Systems (DBMSs)

to Data Stream Management Systems (DSMSs) [4,11].

Traditional DBMSs employ a store-and-then-query

data processing paradigm, where data are stored in the

database and queries are submitted by the users to be

answered in full, based on the current snapshot of the

database. In contrast, in DSMSs, monitoring applica-

tions register continuous queries which continuously

process unbounded data streams looking for data that

represent events of interest to the end-user.

The data stream concept permeated the data man-

agement research community in the mid- to late 90’s,

with general-purpose research prototypes of data

stream management systems materializing shortly

afterwards, for example Aurora[8], TelegraphCQ[10]

and STREAMS[5].

Scheduling is one of the fundamental research chal-

lenges for effective data stream management systems;

as such, it has received a lot of attention, with early

works on scheduling in 2003 [2,9].

Foundations

System Model

A continuous query evaluation plan can be conceptua-

lized as a data flow tree [2,8], where the nodes are

operators that process tuples and edges represent the

flow of tuples from one operator to another (Fig. 1).

An edge from operator Ox to operator Oy means that

the output of Ox is an input to Oy. Each operator is

associated with a queue where input tuples are buffered

until they are processed.

Multiple queries with common sub-expressions are

usually merged together to eliminate the repetition of

similar operations. For example, Figure 1 shows the

global plan for two queries Q1 and Q2. Both queries

operate on data streams M1 and M2 and they share the

common sub-expression represented by operators O1,

O2 and O3, as illustrated by the half-shaded pattern for

these operators.

A single-stream query Qk has a single leaf oper-

ator Qk
l and a single root operator Qk

r , whereas a

multi-stream query has a single root operator and

more than one leaf operators. In a query plan Qk, an

Scheduling Strategies for Data Stream Processing.

Figure 1. Continuous queries plans.

Scheduling Strategies for Data Stream Processing S 2475

S



operator segment Ek
x;y is the sequence of operators

that starts at Ok
x and ends at Ok

x . If the last operator

on Ek
x;y is the root operator, then that operator segment is

simply denoted as Ek
x . For example, in Fig. 1, E1

1 = <O1,

O3, O4>, whereas E2
1 = <O1, O3, O5>.

In a query, each operator Ox
k (or simply Ox) is

associated with two parameters:

1. Processing cost or Processing time (cx) is the amount

of time needed to process an input tuple.

2. Selectivity or Productivity (sx) is the number of tuples

produced after processing one tuple for cx time units.

sx is less than or equal to 1 for a filter operator and

it could be greater than 1 for a join operator.

Multiple CQ Scheduling

At the arrival of new data, theMCQ scheduler decides the

execution order of CQs, or more precisely, the execution

order of operators within CQs. The execution order is

decided with the objective of optimizing the DSMS per-

formance under certain metrics. Towards this, the sched-

uler assigns a priority to each operator and operators are

executed according to these priorities.

For a single-stream query Qk which consists of

operators<Ok
l ;:::;O

k
x ;O

k
y ;:::;O

k
r> (Fig. 1), the function

for computing the priority of operator Ok
x typically

involves one or more of the following parameters:

 Operator Global Selectivity (Skx) is the number of

tuples produced at the root Ok
r after processing one

tuple along operator segment Ek
x .

Skx ¼ skx  sky  ::: skr

 Operator Global Average Cost (C
k

x) is the expected

time required to process a tuple along an operator

segment Ck
x .

C
k

x ¼ ðckxÞ þ ðcky  skxÞ þ :::þ ðckr  skr1  ::: skxÞ

If Ok
x is a leaf operator (x = l), when a processed tuple

actually satisfies all the filters in Ek
l , then C

k

l represents

the ideal total processing cost or time incurred by any

tuple produced or emitted by query Qk. In this case, C
k

l

is denoted as Tk:

 Tuple Processing Time (Tk) is the ideal total proces-

sing cost required to produce a tuple by query Qk.

Tk ¼ ckl þ :::þ ckx þ cky þ :::þ ckr

The exact priority function depends on the perfor-

mance metric to optimize, and in turn on the

employed scheduling strategy.

Metrics and Strategies

Response Time: Processing a tuple by a CQ might lead

to discarding it (if it does not satisfy some filter predi-

cate) or it might lead to producing one or more tuples

at the output, which means that the input tuple repre-

sents an event of interest to the user who registered the

CQ. Clearly, in DSMSs, it is more appropriate to define

response time from a data/event perspective rather

than from a query perspective as in traditional

DBMSs. Hence, the tuple response time or tuple latency

is defined as follows:

Definition 1

Tuple response time, Ri, for tuple ti is Ri = Di  Ai, where

Ai is ti’s arrival time and Di is ti’s output time. Accord-

ingly, the average response time for N tuples is:
1
N

PN
i¼1Ri .

For a single CQ over multiple data streams, the Rate-

based policy (RB) has been shown to improve the average

response time of tuples processed by that CQ [17].

For multiple CQs, the Aurora DSMS [9], uses a two-

level scheduling strategy where Round Robin (RR) is

used to schedule queries and RB is used to schedule

operators within the query. The work in [14] proposes

the Highest Rate policy (HR) which extends the RB

to schedule both queries and operators. Basically, HR

views the network ofmultiple queries as a set of operators

and at each scheduling point it selects for execution the

operator with the highest priority (i.e., output rate).

Specifically, underHR, each operator Ok
x is assigned

a value called global output rate (GRk
x). The output rate

of an operator is basically the expected number of

tuples produced per time unit due to processing one

tuple by the operators along the operator segment

starting at Ok
x all the way to the root Ok

r . Formally,

the output rate of operator Ok
x is defined as follows:

GRk
x ¼

Skx

C
k

x

ð1Þ

where Skx and C
k

x are the operator’s global selectivity

and global average cost as defined above. The intuition

underlying HR is togivehigherpriority tooperatorpaths

that are both productive and inexpensive. In other

2476S Scheduling Strategies for Data Stream Processing



words, the highest priority is given to the operator

pathswith theminimumlatency forproducingone tuple.

Slowdown: Under a heterogeneous workload, the

processing requirements for different tuples may vary

significantly and average response time is not an ap-

propriate metric, since it cannot relate the time spent

by a tuple in the system to its processing requirements.

Given this realization, other on-line systems with het-

erogeneous workloads such as DBMSs, OSs, and Web

servers have adopted average slowdown or stretch [13]

as another metric. This motivated considering the

stretch metric in [14].

The definition of slowdown was initiated by the

database community in [12] for measuring the perfor-

mance of a DBMS executing multi-class workloads.

Formally, the slowdown of a job is the ratio between

the time a job spends in the system to its processing

demands [13]. In a DSMS, the slowdown of a tuple is

defined as follows [14]:

Definition 2

The slowdown, Hi, for tuple ti produced by query Qk is

Hi ¼ Ri

Tk
, where Ri is ti’s response time and Tk is its ideal

processing time. Accordingly, the average slowdown for N

tuples is: 1
N

PN
i¼1Hi .

Intuitively, in a general purpose DSMS where all

events are of equal importance, a simple event (i.e., an

event detected by a low-cost CQ) should be detected

faster than a complex event (i.e., an event detected by a

high-cost CQ) since the latter contributes more to the

load on the DSMS.

The HR policy schedules jobs in descending order

of output rate which might result in a high average

slowdown because a low-cost query can be assigned a

low priority since it is not productive enough. Those

few tuples produced by this query will all experience a

high slowdown, with a corresponding increase in the

average slowdown of the DSMS.

The work in [14] proposes the Highest Normalized

Rate (HNR) policy for minimizing the slowdown in a

DSMS. Under HNR, each operator Ok
x is assigned a

priority Vk
x which is the weighted rate or normalized

rate of the operator segment Ek
x that starts at operator

Ok
x and it is defined as:

Vk
x ¼

1

Tk

 Skx

C
k

x

ð2Þ

The HNR policy, like HR, is based on output rate,

however, it also emphasizes the ideal tuple processing

time in assigning priorities. As such, an inexpensive

operator segment with low productivity will get a

higher priority under HNR than under HR.

Worst-Case Performance: It is expected that a sched-

uling policy that strives to minimize the average-case

performance might lead to a poor worst-case perfor-

mance under a relatively high load. That is, some

queries (or tuples) might starve under such a policy.

The worst-case performance is typically measured using

maximum response time or maximum slowdown [7].

Intuitively, a policy that optimizes for the worst-

case performance should be pessimistic. That is, it

assumes the worst-case scenario where each processed

tuple will satisfy all the filters in the corresponding

query.

The work in [14] shows that the traditional First-

Come-First-Serve (FCFS) minimizes the maximum

response time. Similarly, it shows that the traditional

Longest Stretch First (LSF) [1] optimizes the maximum

slowdown.

Average- vs. Worst-Case Performance: On one hand,

the average value for a QoS metric provided by

the system represents the expected QoS experienced

by any tuple in the system (i.e., the average-case per-

formance). On the other hand, the maximum value

measures the worst QoS experienced by some tuple

in the system (i.e., the worst-case performance). It is

known that each of these metrics by itself is not enough

to fully characterize system performance.

The most common way to capture the trade-off

between the average-case and the worst-case perfor-

mance is to measure the ‘2 norm [6]. For instance, the

‘2 norm of response times, Ri, is defined as:

Definition 3

The ‘2 norm of response times for N tuples is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1 R

2
i

q
.

The definition shows that the ‘2 norm considers the

average in the sense that it takes into account all values,

yet, by considering the second norm of each value

instead of the first norm, it penalizes more severely

outliers compared to the average metrics.

In order to balance the trade-off between the

average- and worst-case performance, the Balance Slow-

down (BSD) and the Balance Response Time (BRT)

Scheduling Strategies for Data Stream Processing S 2477

S



policies have been proposed in [14]. To avoid starva-

tion, the two policies consider the amount of time an

operator Ok
x has been waiting for scheduling (i.e.,W

k
x ).

Specifically, under BSD, each operator Ok
x is assigned

a priority value Vk
x which is the product of the

operator’s normalized rate and the current highest

slowdown of its pending tuples. That is:

Vk
x ¼

Skx

C
k

xTk

 !
Wk

x

Tk

 
ð3Þ

As such, under BSD, an operator is selected either

because it has a high weighted rate or because its

pending tuples have acquired a high slowdown.

Application-Specific QoS: Aurora also proposes a

QoS-aware scheduler which attempts to satisfy appli-

cation-specified QoS requirements [9]. Specifically,

under that QoS-aware scheduler, each query is asso-

ciated with a QoS graph which defines the utility of

stale output.

Given, a QoS graph, the scheduler computes for each

operator a utility value which is basically the slope of

the QoS graph at the tuple’s output time. The schedul-

er also computes for each operator its urgency value

which is an estimation of how close is an operator to a

critical point on the QoS graph where the QoS changes

sharply. Then, at each scheduling point, the scheduler

chooses for execution the operators with the highest

utility value and among those that have the same

utility, it chooses the one that has the highest urgency.

Memory Usage: Multi-query scheduling has also

been exploited to optimize metrics beyond QoS. For

example, Chain is a multi-query scheduling policy that

optimizes memory usage in order to minimize space

requirements for buffering tuples [2]. Towards this, for

each query plan, Chain constructs what is called a

progress chart. A progress chart is basically a set of

segments where the slope of each segment represents

the rate of change in the size of a tuple being processed

by a set of consecutive operators along the query plan.

Given that progress chart, at each scheduling point,

Chain schedules for execution the tuple that lies on the

segment with the steepest slope. The intuition is to give

higher priority to segments of operators with higher

tuple consumption rate which will lead to quickly

freeing more memory.

Quality of Data (QoD): Another metric to optimize

is Quality of Data (QoD). For instance, the work in

[15] proposes the freshness-aware scheduling policy for

improving the QoD of data streams, when QoD is

defined in terms of freshness. The proposed scheduler

exploits the variability in query costs, divergence in

arrival patterns, and the probabilistic impact of selec-

tivity in order to maximize the freshness of output data

streams.

Multiple-Objective Scheduling: In DSMSs, and in

computer systems in general, it is often desirable to

optimize for multiple metrics at the same time. How-

ever, those metrics might be in conflict most of the

time. This motivated the proposals of schedulers that

are able to balance the trade-off between certain

conflicting metrics.

For instance, the work in [3] attempts to balance

the trade-off between memory usage and latency by

formalizing latency requirements as a constraint to the

Chain scheduler. This formulation lead to the Mixed

policy which can be viewed as a heuristic strategy that

is intermediate between Chain and FIFO. Specifically,

Mixed is tuned via a parameter where a high value of

that parameter causesMixed to behave more like FIFO,

whereas a lower value makes it behave more like Chain.

In another attempt towards multiple-objective

scheduling, the work in [16] proposes AMoS which is

an Adaptive Multi-objective Scheduling selection

framework. Given several scheduling algorithms,

AMoS employs a learning mechanism to learn the

behavior of the scheduling algorithms over time. It

then uses the learned knowledge to continuously select

the algorithm that has statistically performed the best.

Scheduler Implementation: To ensure the applicabil-

ity of scheduling policies in DSMSs, a low-overhead

implementation is needed in order to reduce the

amount of computation involved in computing prio-

rities. For static policies (i.e., policies where an opera-

tor priority is constant over time), priorities are

computed only once when a query is registered in the

DSMS which naturally leads to a low-overhead imple-

mentation. Examples of such static policies include

HR, HNR, and Chain. On the other hand, for dynamic

policies where priority is a function of time, the prior-

ity of each operator should be re-computed at each

instant of time. Such a naive implementation renders

that class of policies very impractical. This motivated

several approximation methods for efficient imple-

mentation of dynamic policies to balance the trade-

off between scheduling overhead and accuracy.

For instance the work in [9] proposes using bucketing

as well as pre-computation for an efficient

2478S Scheduling Strategies for Data Stream Processing



implementation of the QoS-aware scheduling in

Aurora. Similarly, [14] proposes using search space

reduction and pruning methods in addition to clus-

tered processing of continuous queries.

Key Applications
There is a plethora of applications that require data

stream management systems and, as such, proper

scheduling strategies. The most well-known class of

applications is that of monitoring applications[8], be it

environmental monitoring (e.g., via sensor networks),

network monitoring (e.g., by collecting router data), or

even financial monitoring (e.g., by observing stock-

market data). In all such cases, the sheer amount of

input data precipitates the use of the data stream

processing paradigm and proper scheduling strategies.

Cross-references
▶Adaptive Query Processing

▶Adaptive Stream Processing

▶Data Stream

▶ Event Stream

▶ Stream Processing

▶ Stream-Oriented Query Languages and Operators

▶ Streaming Applications

Recommended Reading
1. Acharya S. and Muthukrishnan S. Scheduling on-demand

broadcasts: New metrics and algorithms. In Proc. 4th Annual

Int. Conf. on Mobile Computing and Networking, 1998.

2. Babcock B., Babu S., Datar M., and Motwani R. Chain: operator

scheduling for memory minimization in data stream systems. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2003.

3. Babcock B., Babu S., Datar M., Motwani R., and Thomas D.

Operator scheduling in data stream systems. VLDB J.,

13(4), 2004.

4. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and Issues in Data Stream Systems. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2002.

5. Babu S. and Widom J. Continuous queries over data streams.

ACM SIGMOD Rec., 2001.

6. Bansal N. and Pruhs K. Server scheduling in the Lp norm: a

rising tide lifts all boats. In Proc. 35th Annual ACM Symp. on

Theory of Computing, 2003.

7. Bender M.A., Chakrabarti S., and Muthukrishnan S. Flow

and stretch metrics for scheduling continuous job streams. In

Proc. 9th Annual ACM -SIAM Symp. on Discrete Algorithms,

1998.

8. Carney D., Cetintemel U., Cherniack M., Convey C., Lee S.,

Seidman G., Stonebraker M., Tatbul N., and Zdonik S. Monitor-

ing streams: a new class of data management applications.

In Proc. 28th Int. Conf. on Very Large Data Bases, 2002.

9. Carney D., Cetintemel U., Rasin A., Zdonik S., Cherniack M.,

and Stonebraker M. Operator scheduling in a data stream

manager. In Proc. 29th Int. Conf. on Very Large Data Bases,

2003.

10. Chandrasekaran S., Cooper O., Deshpande A., Franklin M.J.,

Hellerstein J.M., Hong W., Krishnamurthy S., Madden S.,

Raman V., Reiss F., and Shah M.A. TelegraphCQ: continuous

dataflow processing for an uncertain world. In Proc. 1st Biennial

Conf. on Innovative Data Systems Research, 2003.

11. Golab L. and Özsu M.T. Issues in data stream management.

ACM SIGMOD Rec., 32(2):5–14, 2003.

12. Mehta M. and DeWitt D.J. Dynamic memory allocation

for multiple-query workloads. In Proc. 19th Int. Conf. on Very

Large Data Bases, 1993.

13. Muthukrishnan S., Rajaraman R., Shaheen A., and Gehrke J.E.

Online Scheduling to Minimize Average Stretch. In Proc. 40th

Annual Symp. on Foundations of Computer Science, 1999.

14. Sharaf M.A., Chrysanthis P.K., Labrinidis A., and Pruhs K.

Efficient Scheduling of Heterogeneous Continuous Queries. In

Proc. 32nd Int. Conf. on Very Large Data Bases, 2006.

15. Sharaf M.A., Labrinidis A., Chrysanthis P.K., and Pruhs K.

Freshness-Aware Scheduling of Continuous Queries in the

Dynamic Web. In Proc. 8th Int. Workshop on the World Wide

Web and Database, 2005.

16. Sutherland T., Pielech B., Zhu Y., Ding L., and Rundensteiner E.

A. An adaptive multi-objective scheduling selection framework

for continuous query processing. In Proc. Int. Database Engi-

neering and Applications Symp, 2005.

17. Urhan T. and Franklin M.J. Dynamic pipeline scheduling

for Improving Interactive Query Performance. In Proc. 27th

Int. Conf. on Very Large Data Bases, 2001.

Schema Evolution

JOHN F. RODDICK

Flinders University, Adelaide, SA, Australia

Definition
Schema evolution deals with the need to retain current

data when database schema changes are performed.

Formally, Schema Evolution is accommodated when a

database system facilitates database schema modifica-

tion without the loss of existing data, (q.v. the stronger

concept of Schema Versioning) (Schema evolution and

schema versioning has been conflated in the literature

with the two terms occasionally being used inter-

changeably. Readers are thus also encouraged to read

also the entry for Schema Versioning.).

Historical Background
Since schemata change and/or multiple schemata are

often required, there is a need to ensure that extant

data either stays consistent with the revised schema or

Schema Evolution S 2479

S


