
15. Puustjarvi J. Using advanced transaction and workflow models

in composing web services. In Adv. Comput. Sci. Technol., 2007.

16. Soparkar N., Levy E., Korth H.F., and Silberschatz A. Adaptive

commitment for distributed real-time transactions. In Proc. Int.

Conf. on Information and Knowledge Management, 1994,

pp. 187–194.

17. Weikum G. Principles and realization strategies of multilevel

transaction management. ACM Trans. Database Syst., 16(1):

132–180, 1991.

Semantics-based Concurrency
Control

KRITHI RAMAMRITHAM
1, PANOS K. CHRYSANTHIS

2

1Indian Institute of Technology Bombay, Mumbai,

India
2University of Pittsburgh, Pittsburgh, PA, USA

Definition
Specifications of data contain semantic information that

can be exploited to increase concurrency. For example,

two insert operations on a multiset object commute and

hence, can be executed in parallel; further, regardless of

whether one operation commits, the other can still

commit. Applying the same rule, two push operations

on a stack object do not commute and hence cannot be

executed concurrently. Several schemes have been pro-

posed for exploiting the semantics of operations have to

provide more concurrency than obtained by the con-

ventional classification of operations as reads or writes.

Key Points
In most semantics-based protocols, conflicts between

operations is based on commutativity, an operation oi
which does not commute with other uncommitted

operations will be made to wait until these conflicting

operations abort or commit. Some protocols use

operations’ return value commutativity, wherein infor-

mation about the results of executing an operation is

used in determining commutativity, and some use the

arguments of the operations in determining whether

or not two operations commute. An example of the

former, two increment operations on a counter object

commute as long as they do not return the new or old

value of the counter. An example of the latter, two

insert operations on a set object commute as long as

they do not insert the same item.

In the scheme reported in [1], non-commuting but

recoverable operations are allowed to execute in parallel;

but the order in which the transactions invoking the

operations should commit is fixed to be the order in

which they are invoked. If oj is executed after oi, and oj is

recoverable relative to oi, then, if transactions Ti and Tj

that invoked oi and oj respectively commit, Ti should

commit before Tj. Thus, based on the recoverability

relationship of an operation with other operations, a

transaction invoking the operation sets up a dynamic

commit dependency relation between itself and

other transactions. If an invoked operation is not

recoverable with respect to an uncommitted operation,

then the invoking transaction is made to wait. For

example, two pushes on a stack do not commute, but

if the push operations are forced to commit in the

order they were invoked, then the execution of the

two push operations is serializable in commit order.

Further, if either of the transactions aborts the other

can still commit.

In [2] authors make an effort to discover, from first

principles, the nature of concurrency semantics inherent

in objects. Towards this end, they identify the dimen-

sions along which object and operation semantics can be

modeled. These dimensions are then used to classify and

unify existing semantic-based concurrency control

schemes. To formalize this classification, a graph repre-

sentation for objects that can be derived from the ab-

stract specification of an object is proposed. Based on

this representation, which helps to identify the semantic

information inherent in an object, a methodology is

presented that shows how various semantic notions ap-

plicable to concurrency control can be effectively com-

bined to improve concurrency. A new source of semantic

information, namely, the ordering among component

objects, is exploited to further enhance concurrency.

Lastly, the authors present a scheme, based on this

methodology, for deriving compatibility tables for

operations on objects.

Cross-references
▶ACID Properties

▶Concurrency Control – Traditional Approaches

Recommended Reading
1. Badrinath B.R. and Ramamritham K. Semantics-based con-

currency control: beyond commutativity. ACM Trans. Database

Syst., 17(1):163–199, 1991.

2. Chrysanthis P.K., Raghuram S., and Ramamritham K. Extracting

concurrency from objects: a methodology. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1991.

Semantics-based Concurrency Control S 2591

S


