Semantics-based Concurrency Control

2591

15. Puustjarvi J. Using advanced transaction and workflow models
in composing web services. In Adv. Comput. Sci. Technol., 2007.

16. Soparkar N., Levy E., Korth H.E, and Silberschatz A. Adaptive
commitment for distributed real-time transactions. In Proc. Int.
Conf. on Information and Knowledge Management, 1994,
pp. 187-194.

17. Weikum G. Principles and realization strategies of multilevel
transaction management. ACM Trans. Database Syst., 16(1):
132-180, 1991.

|
Semantics-based Concurrency
Control

KriTHI RAMAMRITHAMI, Panos K. CHRYSANTHIS?
"Indian Institute of Technology Bombay, Mumbai,
India

2University of Pittsburgh, Pittsburgh, PA, USA

Definition

Specifications of data contain semantic information that
can be exploited to increase concurrency. For example,
two insert operations on a multiset object commute and
hence, can be executed in parallel; further, regardless of
whether one operation commits, the other can still
commit. Applying the same rule, two push operations
on a stack object do not commute and hence cannot be
executed concurrently. Several schemes have been pro-
posed for exploiting the semantics of operations have to
provide more concurrency than obtained by the con-
ventional classification of operations as reads or writes.

Key Points
In most semantics-based protocols, conflicts between
operations is based on commutativity, an operation o;
which does not commute with other uncommitted
operations will be made to wait until these conflicting
operations abort or commit. Some protocols use
operations’ return value commutativity, wherein infor-
mation about the results of executing an operation is
used in determining commutativity, and some use the
arguments of the operations in determining whether
or not two operations commute. An example of the
former, two increment operations on a counter object
commute as long as they do not return the new or old
value of the counter. An example of the latter, two
insert operations on a set object commute as long as
they do not insert the same item.

In the scheme reported in [1], non-commuting but
recoverable operations are allowed to execute in parallel;

but the order in which the transactions invoking the
operations should commit is fixed to be the order in
which they are invoked. If 0; is executed after o; and o; is
recoverable relative to o;, then, if transactions T; and T;
that invoked o; and o; respectively commit, T; should
commit before Tj. Thus, based on the recoverability
relationship of an operation with other operations, a
transaction invoking the operation sets up a dynamic
commit dependency relation between itself and
other transactions. If an invoked operation is not
recoverable with respect to an uncommitted operation,
then the invoking transaction is made to wait. For
example, two pushes on a stack do not commute, but
if the push operations are forced to commit in the
order they were invoked, then the execution of the
two push operations is serializable in commit order.
Further, if either of the transactions aborts the other
can still commit.

In [2] authors make an effort to discover, from first
principles, the nature of concurrency semantics inherent
in objects. Towards this end, they identify the dimen-
sions along which object and operation semantics can be
modeled. These dimensions are then used to classify and
unify existing semantic-based concurrency control
schemes. To formalize this classification, a graph repre-
sentation for objects that can be derived from the ab-
stract specification of an object is proposed. Based on
this representation, which helps to identify the semantic
information inherent in an object, a methodology is
presented that shows how various semantic notions ap-
plicable to concurrency control can be effectively com-
bined to improve concurrency. A new source of semantic
information, namely, the ordering among component
objects, is exploited to further enhance concurrency.
Lastly, the authors present a scheme, based on this
methodology, for deriving compatibility tables for
operations on objects.

Cross-references
» ACID Properties
» Concurrency Control — Traditional Approaches

Recommended Reading

1. Badrinath B.R. and Ramamritham K. Semantics-based con-
currency control: beyond commutativity. ACM Trans. Database
Syst., 17(1):163-199, 1991.

2. Chrysanthis PX., Raghuram S., and Ramamritham K. Extracting
concurrency from objects: a methodology. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data, 1991.




