
2. Dayal U. and Bernstein P. On the correct translation of update

operations on relational views. ACM Trans. Database Syst.,

8(3):381–416, 1982.

3. Gupta A., Jagadish H.V., and Mumick I.S. Data integration using

self-maintainable views. In Advances in Database Technology,

Proc. 5th Int. Conf. on Extending Database Technology, 1996,

pp. 140–144.

4. Gupta H., Harinarayan V., Rajaraman A., and Jeffrey D.U. Index

selection for OLAP. In Proc. 13th Int. Conf. on Data Engineer-

ing, 1997, pp. 208–219.

5. Kotidis Y. and Roussopoulos N. DynaMat: a dynamic view

management system for data warehouses. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1999, pp. 371–382.

6. Roussopoulos N. View indexing in relational databases. ACM

Trans. Database Syst., 7(2):258–290, 1982.

7. Roussopoulos N. An incremental access method for viewCache:

concept, algorithms, and cost analysis. ACM Trans. Database

Syst., 16(3):535–563, 1991.

View Maintenance

ALEXANDROS LABRINIDIS
1, YANNIS SISMANIS

2

1Department of Computer Science, University of

Pittsburgh, Pittsburgh, PA, USA
2IBM Almaden Research Center, Almaden, CA, USA

Synonyms
View update; Materialized view maintenance

Definition
View maintenance typically refers to the updating of a

materialized view (also known as a derived relation) to

make it consistent with the base relations it is derived

from. Such an update typically happens immediately,

with the transaction that updates the base relations

also updating the materialized views. However, such

immediate updates impose significant overheads on

update transactions that cannot be tolerated by many

applications. Deferred view maintenance, on the other

hand, allows the view to become inconsistent with its

definition, and a refresh operation is required to estab-

lish consistency. Typically, under deferred mainte-

nance, a view is incrementally updated only just

before data is retrieved from it (i.e., on-demand, just

before a query is performed on the view).

Historical Background
Early systems that supported views did so in their

‘‘pure form,’’ i.e., by storing just the view definition

and using query rewriting to take advantage of views in

other queries [11].

Incremental view maintenance is introduced in [1]

through a technique to efficiently detect relevant

updates to materialized views, thus streamlining their

maintenance.

Deferred view maintenance is introduced in [10] as

a scheme for materializing copies of views on work-

stations attached to a mainframe that maintains a

shared global database. The workstations update local

copies of the views while processing queries. In [7],

deferred view maintenance is defined as the application

of incremental view maintenance whenever desired,

unlike the immediate view maintenance, where any

database update triggers the incremental view main-

tenance algorithm. [5] has a nice survey of view

maintenance techniques.

Foundations
Algorithms and techniques for maintenance of materi-

alized views can be classified according to three differ-

ent criteria:

 Whether the view is recomputed from scratch or not:

recomputation versus incremental maintenance.

 Whether the view is updated whenever the base

data change or not: immediate versus deferred

maintenance.

 Whether queries can be executed while the view is

being updated or not: online versus offline

maintenance.

All the above dimensions are typically orthogonal. We

explain the different options below.

View Recomputation

Recomputing a materialized view from the base rela-

tions it is derived from is the most general technique of

updating. As such, it can be applied on any type of view,

regardless of the complexity of the query definition.

The disadvantage is that, in most cases, such recompu-

tation is costly, and, in many cases, the view can be

updated incrementally instead, at a fraction of the cost.

Incremental View Maintenance

It is possible to update a materialized view incrementally

for many types of view definitions (i.e., queries). One

such class is the general case of SPJ views (i.e., views

whose definition is just a select-project-join query).

3326V View Maintenance

For example, assume that we have a view V defined

over two relations R and S through a natural join (i.e.,

V = R⋈ S; for simplicity of the presentation we ignore

the selection and projection operators). Further, let us

assume that we have a set of deleted tuples from rela-

tion R, denoted as RD; a set of inserted tuples into

relation R, denoted as RI (i.e., R
0
= R [RI  RD).

Also, assume a set of deleted tuples from relation S,

denoted as SD; and a set of inserted tuples into relation

S, denoted as SI (i.e., S
0
= S [SI  SD). We trivially

represent base relation updates as pairs of deletions

and insertions.

Given the above, the updated version of V , i.e., V
0
,

should be V
0
= R

0
⋈ S

0
= (R [RI  RD) ⋈ (S [SI 

SD). By expanding this further, and grouping all the

deletions from V as V D and all the insertions to V as

V I, we have that: V D = (RD⋈ (S [SI))⋈ ((R [RI)⋈
SD), and V I = (RI⋈ S) [(R⋈ SI) [(RI ⋈ SI), so that

V
0
= V [V I  V D. This, incrementally computed

formula, should be less costly to compute than recom-

puting the entire join from scratch.

The problem of incrementally updating materia-

lized views is difficult in the general case, but there are

additional classes of queries (i.e., besides SPJ views)

that it can be solved for [6].

Immediate View Maintenance

The default way of updating materialized views is to

do so immediately, i.e., batch together, in a single

transaction, the updating of the base relations and

the updating of the materialized views that are derived

from these relations. However, many applications can-

not tolerate this delay, especially if they are interactive

and users are expecting an answer at transaction

commit.

Deferred View Maintenance

Incremental deferred view maintenance requires

(i) techniques for checking what views are affected by

an update to the basic tables, (ii)auxiliary tables that

maintain certain information like updates and deletes

since the last view refresh and finally (iii) techniques

for propagating the changes from the base tuples to

the view tuples without fully recomputing the view

relation.

First, Buneman in [2], proposes a technique for the

efficient implementation of alerters and triggers that

checks each update operation prior to execution to see

whether it can cause a view to change. In [1], an

efficient method for identifying updates that cannot

possibly affect the views is described. Such irrelevant

updates are then removed from consideration while

differentially updating the views.

In [7], the hypothetical relations technique devel-

oped in [12] is adapted to the purpose of storing and

indexing the deltas to the base tables. The main idea is

to use a single table AD that stores deletions and

insertions for the base tables (updates can be modeled

as a deletion followed by an update). Whenever a view

is accessed, the base tables and the AD table need to be

accessed (in order to check for new or deleted tuples).

A bloom filter however, is used to check if a tuple from

the base relation exists in AD significantly reducing

irrelevant accesses to AD.

In [4], the authors demonstrate that the ordering of

the updates from the base tuples to the view tuples is

critical and call this phenomenon state bug. Typically,

an ‘‘incremental query’’ – during the refresh operation –

avoids recomputing the full view and only incremen-

tally computes the delta view to bring it up to date,

based on updates/deletes made to the base tables. Such

incremental queries can evaluated in two states: The

pre-update state, where the base table updates have not

been applied yet or the post-update state where changes

have been applied. In most techniques a pre-update

state is assumed which severely limits the class of

updates and views considered. The post-update state

allows for a much larger class of view to be deferred

maintained, however direct application of pre-update

techniques results in incorrect answers (state bug) and

new techniques are proposed.

Offline View Maintenance

Typically, maintaining materialized views is done off-

line, without allowing queries to the materialized view

to execute concurrently with the processing of the

materialized view updates. This simplifies the view

maintenance algorithms significantly, at the expense

of delaying queries. Traditionally, in data warehousing

environments [3], updates of materialized views are

performed at night, thus minimizing the possibility

of delaying user queries.

Online View Maintenance

The need of most companies for continuous operation

(especially in the presence of the Web), has precipi-

tated the need for online view maintenance, where

View Maintenance V 3327

V

queries can be answered while the materialized views

are being updated.

In a centralized setting, this is typically achieved

through some sort of multi-versioning, either as hori-

zontal redundancy, where extra columns are added to

hold the different versions [9], or as vertical redundan-

cy, where extra rows are needed to hold the different

versions [8]. In a distributed setting, this is typically

achieved through determination of additional queries

to ask of the data sources [13].

Key Applications
Materialized views help speed up the execution of

frequently accessed queries, giving interactive response

times to even the most complex queries. The cost of

maintaining materialized views is typically amortized

over multiple accesses (i.e., queries to the view). This

has been utilized/transferred in many different appli-

cation domains, from data warehousing to web data

management. Beyond efficient algorithms and techni-

ques to update materialized views, special attention has

also been given to the view selection problem: how to

identify which views should be materialized, and also to

the issue of how to effectively use materialized views to

answer other queries (i.e., by utilizing subsumption or

caching).

Cross-references
▶Recursive View Maintenance

▶View Selection

Recommended Reading
1. Blakeley J.A., Larson P.Å., and Tompa F.W. Efficiently Updating

Materialized Views. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1986, pp. 61–71.

2. Buneman P. and Clemons E.K. Efficient Monitoring Relational

Databases. ACM Trans. Database Syst., 4(3):368–382, 1979.

3. Chaudhuri S. and Dayal U. An overview of data warehousing

and OLAP technology. ACM SIGMOD Rec., 26(1):65–74, 1997.

4. Colby L.S., Griffin T., Libkin L., Mumick I.S., and Trickey H.

Algorithms for deferred view maintenance. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1996, pp. 469–480.

5. Gupta A. and Mumick I.S. Maintenance of materialized

views: problems, techniques, and applications. IEEE Data Eng.

Bull., 18(2):3–18, 1995.

6. Gupta A., Mumick I.S., and Subrahmanian V.S. Maintaining

views incrementally. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1993, pp. 157–166.

7. Hanson E.N. A performance analysis of view materialization

strategies. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1987, pp. 440–453.

8. Labrinidis A. and Roussopoulos N. A performance evaluation

of online warehouse update algorithms. Tech. Rep. CS-TR-3954,

Department of Computer Science, University of Maryland,

1998.

9. Quass D. and Widom J. On-line warehouse view maintenance.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1997, pp. 393–404.

10. Roussopoulos N. and Kang H. Principles and Techniques in

the Design of ADMS. IEEE Comp., 19(12):19–25, 1986.

11. Stonebraker M. Implementation of integrity constraints

and views by query modification. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1975, pp. 65–78.

12. Woodfill J. and Stonebraker M. An implementation of hypothet-

ical relations. In Proc. 9th Int. Conf. on Very Data Bases, 1983,

pp. 157–166.

13. Zhuge Y., Garcia-Molina H., Hammer J., and Widom J.

View maintenance in a warehousing environment. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1995, pp.

316–327.

View Maintenance Aspects

ANTONIOS DELIGIANNAKIS

University of Athens, Athens, Greece

Definition
Database systems often define views in order to pro-

vide conceptual subsets of the data to different users.

Each view may be very complex and require joining

information from multiple base relations, or other

views. Aview can simply be used as a query modification

mechanism, where user queries referring to a particular

view are appropriately modified based on the definition

of the view. However, in applications where fast response

times to user queries are essential, views are often mate-

rialized by storing their tuples inside the database. This

is extremely useful when recomputing the view from

the base relations is very expensive. When changes

occur to their base relations, materialized views need to

be updated, with a process known as view maintenance,

in order to provide fresh data to the user.

Historical Background
The use of relational views has long been proposed in

relational database systems. The notion of materialized

views, or snapshots, was first proposed in [1]. A snap-

shot represents the state of some portion of the database

at the time when the snapshot was computed. Since the

publication of [1], a large number of mechanisms for

refreshing materialized views has been proposed. These

3328V View Maintenance Aspects

