3326

View Maintenance

2. Dayal U. and Bernstein P. On the correct translation of update
operations on relational views. ACM Trans. Database Syst.,
8(3):381-416, 1982.

3. Gupta A, Jagadish H.V,, and Mumick L.S. Data integration using
self-maintainable views. In Advances in Database Technology,
Proc. 5th Int. Conf. on Extending Database Technology, 1996,
pp. 140-144.

4. Gupta H., Harinarayan V., Rajaraman A., and Jeffrey D.U. Index
selection for OLAP. In Proc. 13th Int. Conf. on Data Engineer-
ing, 1997, pp. 208-219.

5. Kotidis Y. and Roussopoulos N. DynaMat: a dynamic view
management system for data warehouses. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data, 1999, pp. 371-382.

6. Roussopoulos N. View indexing in relational databases. ACM
Trans. Database Syst., 7(2):258-290, 1982.

7. Roussopoulos N. An incremental access method for viewCache:
concept, algorithms, and cost analysis. ACM Trans. Database
Syst., 16(3):535-563, 1991.

re. .
View Maintenance

ALEXANDROS LABRINIDIS', YANNIS SISMANIS®
'Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA, USA

2IBM Almaden Research Center, Almaden, CA, USA

Synonyms
View update; Materialized view maintenance

Definition

View maintenance typically refers to the updating of a
materialized view (also known as a derived relation) to
make it consistent with the base relations it is derived
from. Such an update typically happens immediately,
with the transaction that updates the base relations
also updating the materialized views. However, such
immediate updates impose significant overheads on
update transactions that cannot be tolerated by many
applications. Deferred view maintenance, on the other
hand, allows the view to become inconsistent with its
definition, and a refresh operation is required to estab-
lish consistency. Typically, under deferred mainte-
nance, a view is incrementally updated only just
before data is retrieved from it (i.e., on-demand, just
before a query is performed on the view).

Historical Background
Early systems that supported views did so in their
“pure form,” i.e., by storing just the view definition

and using query rewriting to take advantage of views in
other queries [11].

Incremental view maintenance is introduced in [1]
through a technique to efficiently detect relevant
updates to materialized views, thus streamlining their
maintenance.

Deferred view maintenance is introduced in [10] as
a scheme for materializing copies of views on work-
stations attached to a mainframe that maintains a
shared global database. The workstations update local
copies of the views while processing queries. In [7],
deferred view maintenance is defined as the application
of incremental view maintenance whenever desired,
unlike the immediate view maintenance, where any
database update triggers the incremental view main-
tenance algorithm. [5] has a nice survey of view
maintenance techniques.

Foundations

Algorithms and techniques for maintenance of materi-
alized views can be classified according to three differ-
ent criteria:

e Whether the view is recomputed from scratch or not:
recomputation versus incremental maintenance.

e Whether the view is updated whenever the base
data change or not: immediate versus deferred
maintenance.

e Whether queries can be executed while the view is
being updated or not: online versus offline
maintenance.

All the above dimensions are typically orthogonal. We
explain the different options below.

View Recomputation

Recomputing a materialized view from the base rela-
tions it is derived from is the most general technique of
updating. As such, it can be applied on any type of view,
regardless of the complexity of the query definition.
The disadvantage is that, in most cases, such recompu-
tation is costly, and, in many cases, the view can be
updated incrementally instead, at a fraction of the cost.

Incremental View Maintenance

It is possible to update a materialized view incrementally
for many types of view definitions (i.e., queries). One
such class is the general case of SPJ views (i.e., views
whose definition is just a select-project-join query).

View Maintenance

3327

For example, assume that we have a view V defined
over two relations R and S through a natural join (i.e.,
V=R S; for simplicity of the presentation we ignore
the selection and projection operators). Further, let us
assume that we have a set of deleted tuples from rela-
tion R, denoted as Rp; a set of inserted tuples into
relation R, denoted as R; (i.e., R =RU R; — Rp).
Also, assume a set of deleted tuples from relation S,
denoted as Sp; and a set of inserted tuples into relation
S, denoted as S; (i.e., S=Su St — Sp). We trivially
represent base relation updates as pairs of deletions
and insertions.

Given the above, the updated version of V, i.e., v,
should be V' =R 1 8 = (RUR, — Rp) X (SU §; —
Sp). By expanding this further, and grouping all the
deletions from Vas V p and all the insertions to Vas
V p we have that: V= (Rp < (SU S))) > ((RU Ry) X4
Sp)sand V= (R; > S) U (R Sp) U (Ry < Syp), so that
V' = VU V- Vp This, incrementally computed
formula, should be less costly to compute than recom-
puting the entire join from scratch.

The problem of incrementally updating materia-
lized views is difficult in the general case, but there are
additional classes of queries (i.e., besides SP] views)
that it can be solved for [6].

Immediate View Maintenance

The default way of updating materialized views is to
do so immediately, i.e., batch together, in a single
transaction, the updating of the base relations and
the updating of the materialized views that are derived
from these relations. However, many applications can-
not tolerate this delay, especially if they are interactive
and users are expecting an answer at transaction
commit.

Deferred View Maintenance

Incremental deferred view maintenance requires
(1) techniques for checking what views are affected by
an update to the basic tables, (ii)auxiliary tables that
maintain certain information like updates and deletes
since the last view refresh and finally (iii) techniques
for propagating the changes from the base tuples to
the view tuples without fully recomputing the view
relation.

First, Buneman in [2], proposes a technique for the
efficient implementation of alerters and triggers that
checks each update operation prior to execution to see
whether it can cause a view to change. In [1], an

efficient method for identifying updates that cannot
possibly affect the views is described. Such irrelevant
updates are then removed from consideration while
differentially updating the views.

In [7], the hypothetical relations technique devel-
oped in [12] is adapted to the purpose of storing and
indexing the deltas to the base tables. The main idea is
to use a single table AD that stores deletions and
insertions for the base tables (updates can be modeled
as a deletion followed by an update). Whenever a view
is accessed, the base tables and the AD table need to be
accessed (in order to check for new or deleted tuples).
A bloom filter however, is used to check if a tuple from
the base relation exists in AD significantly reducing
irrelevant accesses to AD.

In [4], the authors demonstrate that the ordering of
the updates from the base tuples to the view tuples is
critical and call this phenomenon state bug. Typically,
an “incremental query” — during the refresh operation —
avoids recomputing the full view and only incremen-
tally computes the delta view to bring it up to date,
based on updates/deletes made to the base tables. Such
incremental queries can evaluated in two states: The
pre-update state, where the base table updates have not
been applied yet or the post-update state where changes
have been applied. In most techniques a pre-update
state is assumed which severely limits the class of
updates and views considered. The post-update state
allows for a much larger class of view to be deferred
maintained, however direct application of pre-update
techniques results in incorrect answers (state bug) and
new techniques are proposed.

Offline View Maintenance

Typically, maintaining materialized views is done off-
line, without allowing queries to the materialized view
to execute concurrently with the processing of the
materialized view updates. This simplifies the view
maintenance algorithms significantly, at the expense
of delaying queries. Traditionally, in data warehousing
environments [3], updates of materialized views are
performed at night, thus minimizing the possibility
of delaying user queries.

Online View Maintenance

The need of most companies for continuous operation
(especially in the presence of the Web), has precipi-
tated the need for online view maintenance, where

3328

View Maintenance Aspects

queries can be answered while the materialized views
are being updated.

In a centralized setting, this is typically achieved
through some sort of multi-versioning, either as hori-
zontal redundancy, where extra columns are added to
hold the different versions [9], or as vertical redundan-
¢y, where extra rows are needed to hold the different
versions [8]. In a distributed setting, this is typically
achieved through determination of additional queries
to ask of the data sources [13].

Key Applications

Materialized views help speed up the execution of
frequently accessed queries, giving interactive response
times to even the most complex queries. The cost of
maintaining materialized views is typically amortized
over multiple accesses (i.e., queries to the view). This
has been utilized/transferred in many different appli-
cation domains, from data warehousing to web data
management. Beyond efficient algorithms and techni-
ques to update materialized views, special attention has
also been given to the view selection problem: how to
identify which views should be materialized, and also to
the issue of how to effectively use materialized views to
answer other queries (i.e., by utilizing subsumption or
caching).

Cross-references
» Recursive View Maintenance
» View Selection

Recommended Reading

1. Blakeley J.A., Larson P.A., and Tompa FW. Efficiently Updating
Materialized Views. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1986, pp. 61-71.

2. Buneman P. and Clemons E.K. Efficient Monitoring Relational
Databases. ACM Trans. Database Syst., 4(3):368-382, 1979.

3. Chaudhuri S. and Dayal U. An overview of data warehousing
and OLAP technology. ACM SIGMOD Rec., 26(1):65-74, 1997.

4. Colby L.S., Griffin T., Libkin L., Mumick LS., and Trickey H.
Algorithms for deferred view maintenance. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data, 1996, pp. 469—480.

5. Gupta A. and Mumick LS. Maintenance of materialized
views: problems, techniques, and applications. IEEE Data Eng.
Bull,, 18(2):3-18, 1995.

6. Gupta A., Mumick LS., and Subrahmanian V.S. Maintaining
views incrementally. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1993, pp. 157-166.

7. Hanson ENN. A performance analysis of view materialization
strategies. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, 1987, pp. 440—453.

8. Labrinidis A. and Roussopoulos N. A performance evaluation
of online warehouse update algorithms. Tech. Rep. CS-TR-3954,
Department of Computer Science, University of Maryland,
1998.

9. Quass D. and Widom J. On-line warehouse view maintenance.
In Proc. ACM SIGMOD Int. Conf. on Management of Data,
1997, pp. 393-404.

10. Roussopoulos N. and Kang H. Principles and Techniques in
the Design of ADMS. IEEE Comp., 19(12):19-25, 1986.

11. Stonebraker M. Implementation of integrity constraints
and views by query modification. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, 1975, pp. 65-78.

12. Woodfill J. and Stonebraker M. An implementation of hypothet-
ical relations. In Proc. 9th Int. Conf. on Very Data Bases, 1983,
pp. 157-166.

13. Zhuge Y., Garcia-Molina H., Hammer J., and Widom J.
View maintenance in a warehousing environment. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, 1995, pp.
316-327.

. .
View Maintenance Aspects

ANTONIOS DELIGIANNAKIS
University of Athens, Athens, Greece

Definition

Database systems often define views in order to pro-
vide conceptual subsets of the data to different users.
Each view may be very complex and require joining
information from multiple base relations, or other
views. A view can simply be used as a query modification
mechanism, where user queries referring to a particular
view are appropriately modified based on the definition
of the view. However, in applications where fast response
times to user queries are essential, views are often mate-
rialized by storing their tuples inside the database. This
is extremely useful when recomputing the view from
the base relations is very expensive. When changes
occur to their base relations, materialized views need to
be updated, with a process known as view maintenance,
in order to provide fresh data to the user.

Historical Background

The use of relational views has long been proposed in
relational database systems. The notion of materialized
views, or snapshots, was first proposed in [1]. A snap-
shot represents the state of some portion of the database
at the time when the snapshot was computed. Since the
publication of [1], a large number of mechanisms for
refreshing materialized views has been proposed. These

