Data Broadcasting, Caching and Replication in Mobile Computing

557

» Data Compression in Sensor Networks

» Data Fusion in Sensor Networks

Recommended Reading

1.

10.

11.

12.

13.

14.

15.

Considine J., Li E, Kollios G., and Byers J. Approximate aggre-
gation techniques for sensor databases. In Proc. 20th Int. Conf.
on Data Engineering, 2004, pp. 449-460.

. Cormode G., Garofalakis M., Muthukrishnan S., and Rastogi R.

Holistic aggregates in a networked world: distributed tracking of
approximate quantiles. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 2005, pp. 25-36.

. Cormode G., Tirthapura S., and Xu B. Time-decaying sketches

for sensor data aggregation. In Proc. ACM Symposium on
Principles of Distributed Computing, 2007, pp. 215-224.

. Deligiannakis A., Kotidis Y., and Roussopoulos N. Hierarchical

in-network data aggregation with quality guarantees. In
Advances in Database Technology, In Proc. 9th Int. Conf. on
Extending Database Technology, 2004, pp. 658-675.

. Gandhi S., Hershberger J., and Suri S. Approximate isocontours

and spatial summaries for sensor networks. In Proc. 6th Int.
Symp. Inf. Proc. in Sensor Networks, 2007, pp. 400—409.

. Gao J., Guibas L.J., Milosavljevic N., and Hershberger J. Sparse

data aggregation in sensor networks. In Proc. 6th Int. Symp. Inf.
Proc. in Sensor Networks, 2007, pp. 430-439.

. Greenwald M. and Khanna S. Power-conserving computation of

order-statistics over sensor networks. In Proc. 23rd ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, 2004, pp. 275-285.

. Hellerstein J.M., Hong W., Madden S., and Stanek K. Beyond

average: toward sophisticated sensing with queries. In Proc. 2nd
Int. Workshop Int. Proc. in Sensor Networks, 2003, pp. 63-79.

. Intanagonwiwat C., Govindan R., and Estrin D. Directed diffu-

sion: a scalable and robust communication paradigm for sensor
networks. In Proc. 6th Annual Int. Conf. on Mobile Computing
and Networking, 2000, pp. 56—67.

Kempe D., Dobra A., and Gehrke J. Gossip-based computation
of aggregate information. In Proc. 44th Annual Symp. on Foun-
dations of Computer Science, 2003, pp. 482-491.

Luo H., Y. Liu, and S. Das. Routing correlated data with fusion
cost in wireless sensor networks. IEEE Transactions on Mobile
Computing, 11(5):1620-1632, 2006.

Madden S., Franklin M.J., Hellerstein J.M., and Hong W. TAG: a
tiny aggregation service for ad-hoc sensor networks. In Proc. 5th
USENIX Symp. on Operating System Design and Implementa-
tion, 2002.

Manjhi A., Nath S., and Gibbons P.B. Tributaries and deltas:
efficient and robust aggregation in sensor network streams. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, 2005,
pp. 287-298.

Nath S., Gibbons P.B., Seshan S., and Anderson Z.R. Synopsis
diffusion for robust aggregation in sensor networks. In Proc. 2nd
Int. Conf. on Embedded Networked Sensor Systems, 2004,
Pp. 250-262.

Silberstein A., Braynard R., Ellis C., and Munagala K.
A sampling-based approach to optimizing top-k queries in sen-
sor networks. In Proc. 22nd Int. Conf. on Data Engineering,
2006.

16. Silberstein A., Munagala K., and Yang J. Energy-efficient moni-
toring of extreme values in sensor networks. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, 2006.

17. Xue W,, Luo Q., Chen L., and Liu Y. Contour map matching
for event detection in sensor networks. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, 2006, pp. 145-156.

|
Data Analysis

» Data Mining

| .
Data Anomalies

» Data Conflicts

|
Data Broadcasting, Caching and
Replication in Mobile Computing

Panos K. CHRYSANTHISI, EVAGGELIA PITOURA®
1University of Pittsburgh, Pittsburgh, PA, USA
*University of loannina, Toannina, Greece

Synonyms
Data dissemination; Push/pull delivery; Data copy

Definition

Mobile computing devices (such as portable computers
or cellular phones) have the ability to communicate
while moving by being connected to the rest of the
network through a wireless link. There are two general
underlying infrastructures: single-hop and multi-hop
ones. In single-hop infrastructures, each mobile device
communicates with a stationary host, which corre-
sponds to its point of attachment to the wired network.
In multi-hop infrastructures, an ad-hoc wireless net-
work is formed in which mobile hosts participate in
routing messages among each other. In both infrastruc-
tures, the hosts between the source (or sources) and the
requester of data (or data sink) form a dissemination
tree. The hosts (mobile or stationary) that form the
dissemination tree may store data and participate in
computations towards achieving in network processing.
Challenges include [14], (i) intermittent connectivity,
which refers to both short and long periods of network

558

Data Broadcasting, Caching and Replication in Mobile Computing

unavailability, (ii) scarcity of resources, including stor-
age and battery life, and (iii) mobility itself.

To handle these challenges, data items may be
stored locally (cached or replicated) at the requester
or at the intermediate nodes of the dissemination tree.
Cache and replication aim at increasing availability in
the case of network disconnections or host failures as
well as at handling intermittent connectivity. Mobility
introduces additional challenges in maintaining cache
and replica consistency and in replica placement pro-
tocols. Wireless data delivery in both infrastructures
physically supports broadcasting. This broadcast facil-
ity has been used for providing a push-mode of
data dissemination where a server broadcasts data to
a large client population often without an explicit
request from the clients. Issues addressed by related
research include broadcast scheduling and organiza-
tion (i.e., which items to broadcast and in which order),
indexing broadcast data, and update propagation.

Historical Background

Mobile computing can be traced back to file systems
and the need for disconnected operations in the late
1980s. With the rapid growth in mobile technologies
and the cost effectiveness in deploying wireless networks
in the 1990s, the goal of mobile computing was the
support of AAA (anytime, anywhere and any-form)
access to data by users from their portable computers,
mobile phones and other devices with small displays
and limited resources. These advances motivated
research in data management in the early 1990s.

Foundations

Data Broadcasting

Many forms of wireless network infrastructures rely on
broadcast technology to deliver data to large client
populations. As opposed to point-to-point data deliv-
ery, broadcast delivery is scalable, since a single broad-
cast response can potentially satisfy many clients
simultaneously. There are two basic modes of broad-
cast data delivery: pull-based and push-based. With
push-based data delivery, the server sends data to cli-
ents without an explicit request. With pull-based or on-
demand broadcast delivery, data are delivered only
after a specific client request. In general, access to
broadcast data is sequential with clients monitoring
the broadcast channel and retrieving any data items

of interest as they arrive. The smallest access unit of
broadcast data is commonly called a bucket or page.

Scheduling and Organization

A central issue is determining the content of the broad-
cast or broadcast scheduling. Scheduling depends on
whether we have on demand, push or hybrid delivery.
In on-demand broadcast, there is an up-link channel
available to clients to submit requests. The item to be
broadcast next is chosen among those for which there
are pending requests. Common heuristics for on-de-
mand scheduling include First Come First Served and
Longest Wait First [7]. The R x W strategy selects the
data item with the maximal R x W value, where R is
the number of pending requests for an item and Wthe
amount of time that the oldest pending request for that
item has spent waiting to be served [3]. More recent
schemes extended R x Wto consider the semantics of
the requested data and applications such as subsump-
tion properties in data cubes [15]. Push-based broad-
cast scheduling assumes a-priori knowledge of client
access distributions and prepares an off-line schedule.
Push-based data delivery is often periodic. In hybrid
broadcast, the set of items is partitioned, so that some
items are pushed, i.e., broadcast continuously, and
the rest are pulled, i.e., broadcast only after being
requested [2]. Commonly, the partition between push
and pull data is based on popularity with the most
popular items being pushed periodically and the rest
delivered on demand. One problem is that for push
items, there is no way to detect any changes in their
popularity. One solution is to occasionally stop broad-
casting some pushed items. This forces clients to send
explicit requests for them, which can be used to esti-
mate their popularity [16]. An alternative that avoids
flooding of requests requires a percentage of the clients
to submit an explicit request irrespective of whether or
not a data item appears on the broadcast [5].

The organization of the broadcast content is
often called broadcast program. In general, broadcast
organizations can be classified as either flat where each
item is broadcast exactly once or skewed where an item
may appear more than once. One can also distinguish
between clustered organizations, where data items
having the same or similar values at some attribute
appear consecutively, and non-clustered ones, where
there is no such correlation. In skewed organizations,
the broadcast frequency of each item depends on its
popularity. For achieving optimal access latency or

Data Broadcasting, Caching and Replication in Mobile Computing

559

response time, it was shown that (i) the relative number of
appearances of items should be proportional to the square
root of their access probabilities and (ii) successive broad-
casts of the same item should be at equal distances [7]. It
was also shown that the Mean Aggregate Access (MAD)
policy that selects to broadcast next the item whose
access probability x the interval since its last broadcast
is the highest achieves close to optimal response time
[17]. Along these lines, a practical skewed push broad-
cast organization is that of broadcast disks [1]. Items
are assigned to virtual disks with different “speeds”
based on their popularity with popular items being
assigned to fast disks. The spin speed of each disk is
simulated by the frequency with which the items
assigned to it are broadcast. For example, the fact
that a disk D, is three times faster than a disk D,,
means that items assigned to D; are broadcast
three times as often as those assigned to D,. To achieve
this, each disk is split into smaller equal-sized units
called chunks, where the number of chunks per disk is
inversely proportional to the relative frequence of the
disk. The broadcast program is generated by broad-
casting one chunk from each disk and cycling through
all the chunks sequentially over all the disks.

Indexing

To reduce energy consumption, a mobile device may
switch to doze or sleep mode when inactive. Thus,
research in wireless broadcast also considers reducing
the tuning time defined as the amount of time a mobile
client remains active listening to the broadcast. This is
achieved by including index entries in the broadcast so
that by reading them, the client can determine when to
tune in next to access the actual data of interest. Adding
index entries increases the size of the broadcast and thus
may increase access time. The objective is to develop
methods for allocating index entries together with data
entries on the broadcast channel so that both access and
tuning time are optimized. In (I, m) indexing [18], an
index for all data items is broadcast following every
fraction (1/m) of the broadcast data items. Distributed
indexing [18] improves over this method by instead of
replicating the whole index m times, each index seg-
ment describes only the data items that follow it.
Following the same principles, different indexing
schemes have been proposed that support different
query types or offer different trade-offs between access
and tuning time. Finally, instead of broadcasting an
index, hashing-based techniques have also been applied.

Data Caching and Replication

A mobile computing device (such as a portable com-
puter or cellular phone) is connected to the rest of
the network through a wireless link. Wireless commu-
nication has a double impact on the mobile device
since the limited bandwidth of wireless links increases
the response times for accessing remote data from a
mobile host and transmitting as well as receiving of
data are high energy consumption operations. The
principal goal of caching and replication is to store
appropriate pieces of data locally at the mobile device
so that it can operate on its own data, thus reducing the
need for communication that consumes both energy
and bandwidth. Several cost-based caching policies
along the principles of greedy-dual ones have been
proposed that consider energy cost.

In the case of broadcast push, the broadcast itself
can be viewed as a “cache in the air” Hence, in contrast
to traditional policies, performance can be improved
by clients caching those items that are accessed fre-
quently by them but are not popular enough among all
clients to be broadcast frequently. For instance, a cost-
based cache replacement policy selects as a victim the
page with the lowest p/x value, where p is the local
access probability of the page and x its broadcast fre-
quency [1]. Prefetching can also be performed with
low overhead, since data items are broadcast anyway.
A simple prefetch heuristic evaluates the worth of each
page on the broadcast to determine whether it is more
valuable than some other page in cache and if so, it
swaps the cache page with the broadcast one.

Replication is also deployed to support disconnec-
ted operation that refers to the autonomous operation
of a mobile client, when network connectivity becomes
either unavailable (for instance, due to physical con-
straints), or undesirable (for example, for reducing
power consumption). Preloading or prefetching data
to sustain a forthcoming disconnection is often termed
hoarding. Optimistic approaches to consistency control
are typically deployed that allow data to be accessed
concurrently at multiple sites without a priori synchro-
nization between the sites, potentially resulting in short
term inconsistencies. At some point, operations per-
formed at the mobile device must be synchronized
with operations performed at other sites. Synchroniza-
tion depends on the level at which correctness is sought.
This can be roughly categorized as replica-level correct-
ness and transaction-level correctness. At the replica
level, correctness or coherency requirements are

560

Data Broadcasting, Caching and Replication in Mobile Computing

expressed per item in terms of the allowable divergence
among the values of the copies of each item. At the
transaction level, the strictest form of correctness is
achieved through global serializability that requires
the execution of all transactions running at mobile
and stationary hosts to be equivalent to some serial
execution of the same transactions. With regards to
update propagation with eager replication, all copies
of an item are synchronized within a single transaction,
whereas with lazy replication, transactions for keeping
replica coherent execute as separate, independent data-
base transactions after the original transaction commits.

Common characteristics of protocols for consis-
tency in mobile computing include:

e The propagation of updates performed at the
mobile site follows in general lazy protocols.

e Reads are allowed at the local data, while updates of
local data are tentative in the sense that they need to
be further validated before commitment.

e For integrating operations at the mobile hosts with
transactions at other sites, in the case of replica-
level consistency, copies of each item are reconciled
following some conflict resolution protocol. At the
transaction-level, local transactions are validated
against some application or system level criterion.
If the criterion is met, the transaction is committed.
Otherwise, the execution of the transaction is either
aborted, reconciled or compensated.

Representative approaches along these lines include
isolation-only transactions in Coda, mobile open-nested
transactions [6], two-tier replications [8], two-layer
transactions [10] and Bayou [9].

When local copies are read-only, a central issue
is the design of efficient protocols for disseminating
server updates to mobile clients. A server is called
stateful, if it maintains information about its clients
and the content of their caches and stateless otherwise.
A server may use broadcasting to efficiently propagate
update reports to all of its clients. Such update reports
vary on the type of information they convey to
the clients, for instance, they may include just the
identifiers of the updated items or the updated values
themselves. They may also provide information for
individual items or aggregate information for sets of
items. Update propagation may be either synchronous
or asynchronous. In asynchronous methods, update
reports are broadcast as the updates are performed.
In synchronous methods, the server broadcasts an

update report periodically. A client must listen for the
report first to decide whether its cache is valid or not.
This adds some latency to query processing, however,
each client needs only tune in periodically to read the
report. The efficiency of update dissemination proto-
cols for clients with different connectivity behavior,
such as for workaholics (i.e., often connected clients)
and sleepers (i.e., often disconnected clients), is evalu-
ated in [4].

Finally, in the case of broadcast push-data delivery,
clients may read items from different broadcast pro-
grams. The currency of the set of data items read by
each client can be characterized based on the current
values of the corresponding items at the server and on
the temporal discrepancy among the values of the
items in the set [13]. A more strict notion of correct-
ness may be achieved through transaction-level cor-
rectness by requiring the client read-only transactions
to be serializable with the server transactions. Meth-
ods for doing so include: (i) an invalidation method
[12], where the server broadcasts an invalidation re-
port that includes the data items that have been
updated since the broadcast of the previous report,
and transactions that have read obsolete items are
aborted, (ii) serialization graph testing (SGT) [12],
where the server broadcasts control information related
to conflicting operations, and (iii) multiversion broad-
cast [11], where multiple versions of each item are
broadcast, so that client transactions always read a
consistent database snapshot.

Key Applications

Data broadcasting, caching and replication techniques
are part of the core of any application that requires
data sharing and synchronization among mobile
devices and data servers. Such applications include
vehicle dispatching, object tracking, points of sale
(e.g., ambulance and taxi services, Fedex/UPS), and
collaborative applications (e.g., homecare,
gaming). They are also part of embedded or light ver-
sions of database management systems that extend en-
terprise applications to mobile devices. These include
among others Sybase Incs SQL Anywhere, IBM’s DB2
Everyplace, Microsoft SQL Server Compact, Oracle9i
Lite and SQL Anywhere Technologies’ Ultralite.

video

Cross-references
» Concurrency Control
» Hash-Based Indexing

Data Cleaning

561

» MANET Databases

» Mobile Database

» Replicated Database Concurrency Control
» Transaction Management

Recommended Reading

1.

10.

11.

12.

13.

14.

15.

16.

17.

Acharya S., Alonso R., Franklin M.J., and Zdonik S.B. Broadcast
disks: data management for asymmetric communications envir-
onments. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, 1995, pp. 199-210.

. Acharya S., Franklin M.J.,, and Zdonik S.B. Balancing push

and pull for data broadcast. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, 1997, pp. 183-194.

. Aksoy D. and Franklin M.J. RxW: a scheduling approach for

large scale on-demand broadcast. IEEE/ACM Trans. Netw.,
7(6):846-860, 1999.

. Barbara D. and Imielinski T. Sleepers and workaholics: caching

strategies in mobile environments. VLDB J., 4(4):567-602, 1995.

. Beaver J., Chrysanthis P.K., and Pruhs K. To broadcast push or

not and what? In Proc. 7th Int. Conf. on Mobile Data Manage-
ment, 2006, pp. 40-45.

. Chrysanthis P.K. Transaction processing in a mobile computing

environment. In Proc. IEEE Workshop on Advances in Parallel
and Distributed Systems, 1993, pp. 77-82.

. Dykeman H.D., Ammar M.H., and Wong J.W. Scheduling algo-

rithms for videotex systems under broadcast delivery. In Proc.
IEEE Int. Conf. on Communications, 1986, pp. 1847-1851.

. Gray J,, Helland P, Neil P.O., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1996, pp. 173-182.

. Petersen K., Spreitzer M., Terry D.B. Theimer M., and

Demers A.J. Flexible update propagation for weakly consistent
replication. In Proc. 16th ACM Symp. on Operating System
Principles, 1997, pp. 288-301.

Pitoura E. and Bhargava B. Data consistency in intermittently
connected distributed systems. IEEE Trans. Knowl. Data Eng,,
11(6):896-915, 1999.

Pitoura E. and Chrysanthis P.K. Exploiting versions for handling
updates in broadcast disks. In Proc. 25th Int. Conf. on Very
Large Data Bases, 1999, pp. 114-125.

Pitoura E. and Chrysanthis P.K. Scalable processing of read-only
transactions in broadcast push. In Proc. 19th Int. Conf. on
Distributed Computing Systems, 1999, pp. 432—439.

Pitoura E., Chrysanthis P.K., and Ramamritham K. Character-
izing the temporal and semantic coherency of broadcast-based
data dissemination. In Proc. 9th Int. Conf. on Database Theory,
2003, pp. 410-424.

Pitoura E. and Samaras G. Data Management for Mobile
Computing. Kluwer, Boston, USA, 1998.

Sharaf MA. and Chrysanthis P.K. On-demand data broadcasting
for mobile decision making. MONET, 9(6):703-714, 2004.
Stathatos K., Roussopoulos N., and Baras J.S. Adaptive data
broadcast in hybrid networks. In Proc. 23th Int. Conf. on Very
Large Data Bases, 1997, pp. 326-335.

Su C.J, Tassiulas L., and Tsotras V.J. Broadcast scheduling for
information distribution. Wireless Netw., 5(2):137-147, 1999.

18. T 1, Viswanathan S., and Badrinath B.R. Data on air:
organization and access. IEEE Trans. Knowl. Data Eng.,
9(3):353-372, 1997.

! Data Cache

» Processor Cache

! Data Cleaning

VENKATESH GANTI
Microsoft Research, Redmond, WA, USA

Definition

Owing to differences in conventions between the exter-
nal sources and the target data warehouse as well as
due to a variety of errors, data from external sources
may not conform to the standards and requirements at
the data warehouse. Therefore, data has to be trans-
formed and cleaned before it is loaded into a data
warehouse so that downstream data analysis is reliable
and accurate. Data Cleaning is the process of standar-
dizing data representation and eliminating errors in
data. The data cleaning process often involves one or
more tasks each of which is important on its own.
Each of these tasks addresses a part of the overall data
cleaning problem. In addition to tasks which focus
on transforming and modifying data, the problem of
diagnosing quality of data in a database is important.
This diagnosis process, often called data profiling, can
usually identify data quality issues and whether or not
the data cleaning process is meeting its goals.

Historical Background

Many business intelligence applications are enabled
by data warehouses. If the quality of data in a data
warehouse is poor, then conclusions drawn from busi-
ness data analysis could also be incorrect. Therefore,
much emphasis is placed on cleaning and maintaining
high quality of data in data warehouses. Consequently,
the area of data cleaning received considerable atten-
tion in the database community. An early survey of
automatic data cleaning techniques can be found in
[14]. Several companies also started developing do-
main-specific data cleaning solutions (especially for
the customer address domain). Over time, several ge-
neric data cleaning techniques have been also been

