
▶Data Compression in Sensor Networks

▶Data Fusion in Sensor Networks

Recommended Reading
1. Considine J., Li F., Kollios G., and Byers J. Approximate aggre-

gation techniques for sensor databases. In Proc. 20th Int. Conf.

on Data Engineering, 2004, pp. 449–460.

2. Cormode G., Garofalakis M., Muthukrishnan S., and Rastogi R.

Holistic aggregates in a networked world: distributed tracking of

approximate quantiles. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2005, pp. 25–36.

3. Cormode G., Tirthapura S., and Xu B. Time-decaying sketches

for sensor data aggregation. In Proc. ACM Symposium on

Principles of Distributed Computing, 2007, pp. 215–224.

4. Deligiannakis A., Kotidis Y., and Roussopoulos N. Hierarchical

in-network data aggregation with quality guarantees. In

Advances in Database Technology, In Proc. 9th Int. Conf. on

Extending Database Technology, 2004, pp. 658–675.

5. Gandhi S., Hershberger J., and Suri S. Approximate isocontours

and spatial summaries for sensor networks. In Proc. 6th Int.

Symp. Inf. Proc. in Sensor Networks, 2007, pp. 400–409.

6. Gao J., Guibas L.J., Milosavljevic N., and Hershberger J. Sparse

data aggregation in sensor networks. In Proc. 6th Int. Symp. Inf.

Proc. in Sensor Networks, 2007, pp. 430–439.

7. Greenwald M. and Khanna S. Power-conserving computation of

order-statistics over sensor networks. In Proc. 23rd ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2004, pp. 275–285.

8. Hellerstein J.M., Hong W., Madden S., and Stanek K. Beyond

average: toward sophisticated sensing with queries. In Proc. 2nd

Int. Workshop Int. Proc. in Sensor Networks, 2003, pp. 63–79.

9. Intanagonwiwat C., Govindan R., and Estrin D. Directed diffu-

sion: a scalable and robust communication paradigm for sensor

networks. In Proc. 6th Annual Int. Conf. on Mobile Computing

and Networking, 2000, pp. 56–67.

10. Kempe D., Dobra A., and Gehrke J. Gossip-based computation

of aggregate information. In Proc. 44th Annual Symp. on Foun-

dations of Computer Science, 2003, pp. 482–491.

11. Luo H., Y. Liu, and S. Das. Routing correlated data with fusion

cost in wireless sensor networks. IEEE Transactions on Mobile

Computing, 11(5):1620–1632, 2006.

12. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. TAG: a

tiny aggregation service for ad-hoc sensor networks. In Proc. 5th

USENIX Symp. on Operating System Design and Implementa-

tion, 2002.

13. Manjhi A., Nath S., and Gibbons P.B. Tributaries and deltas:

efficient and robust aggregation in sensor network streams. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 287–298.

14. Nath S., Gibbons P.B., Seshan S., and Anderson Z.R. Synopsis

diffusion for robust aggregation in sensor networks. In Proc. 2nd

Int. Conf. on Embedded Networked Sensor Systems, 2004,

pp. 250–262.

15. Silberstein A., Braynard R., Ellis C., and Munagala K.

A sampling-based approach to optimizing top-k queries in sen-

sor networks. In Proc. 22nd Int. Conf. on Data Engineering,

2006.

16. Silberstein A., Munagala K., and Yang J. Energy-efficient moni-

toring of extreme values in sensor networks. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2006.

17. Xue W., Luo Q., Chen L., and Liu Y. Contour map matching

for event detection in sensor networks. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2006, pp. 145–156.

Data Analysis

▶Data Mining

Data Anomalies

▶Data Conflicts

Data Broadcasting, Caching and
Replication in Mobile Computing

PANOS K. CHRYSANTHIS
1, EVAGGELIA PITOURA

2

1University of Pittsburgh, Pittsburgh, PA, USA
2University of Ioannina, Ioannina, Greece

Synonyms
Data dissemination; Push/pull delivery; Data copy

Definition
Mobile computing devices (such as portable computers

or cellular phones) have the ability to communicate

while moving by being connected to the rest of the

network through a wireless link. There are two general

underlying infrastructures: single-hop and multi-hop

ones. In single-hop infrastructures, each mobile device

communicates with a stationary host, which corre-

sponds to its point of attachment to the wired network.

In multi-hop infrastructures, an ad-hoc wireless net-

work is formed in which mobile hosts participate in

routing messages among each other. In both infrastruc-

tures, the hosts between the source (or sources) and the

requester of data (or data sink) form a dissemination

tree. The hosts (mobile or stationary) that form the

dissemination tree may store data and participate in

computations towards achieving in network processing.

Challenges include [14], (i) intermittent connectivity,

which refers to both short and long periods of network

Data Broadcasting, Caching and Replication in Mobile Computing D 557

D



unavailability, (ii) scarcity of resources, including stor-

age and battery life, and (iii) mobility itself.

To handle these challenges, data items may be

stored locally (cached or replicated) at the requester

or at the intermediate nodes of the dissemination tree.

Cache and replication aim at increasing availability in

the case of network disconnections or host failures as

well as at handling intermittent connectivity. Mobility

introduces additional challenges in maintaining cache

and replica consistency and in replica placement pro-

tocols. Wireless data delivery in both infrastructures

physically supports broadcasting. This broadcast facil-

ity has been used for providing a push-mode of

data dissemination where a server broadcasts data to

a large client population often without an explicit

request from the clients. Issues addressed by related

research include broadcast scheduling and organiza-

tion (i.e., which items to broadcast and in which order),

indexing broadcast data, and update propagation.

Historical Background
Mobile computing can be traced back to file systems

and the need for disconnected operations in the late

1980s. With the rapid growth in mobile technologies

and the cost effectiveness in deploying wireless networks

in the 1990s, the goal of mobile computing was the

support of AAA (anytime, anywhere and any-form)

access to data by users from their portable computers,

mobile phones and other devices with small displays

and limited resources. These advances motivated

research in data management in the early 1990s.

Foundations

Data Broadcasting

Many forms of wireless network infrastructures rely on

broadcast technology to deliver data to large client

populations. As opposed to point-to-point data deliv-

ery, broadcast delivery is scalable, since a single broad-

cast response can potentially satisfy many clients

simultaneously. There are two basic modes of broad-

cast data delivery: pull-based and push-based. With

push-based data delivery, the server sends data to cli-

ents without an explicit request. With pull-based or on-

demand broadcast delivery, data are delivered only

after a specific client request. In general, access to

broadcast data is sequential with clients monitoring

the broadcast channel and retrieving any data items

of interest as they arrive. The smallest access unit of

broadcast data is commonly called a bucket or page.

Scheduling and Organization

A central issue is determining the content of the broad-

cast or broadcast scheduling. Scheduling depends on

whether we have on demand, push or hybrid delivery.

In on-demand broadcast, there is an up-link channel

available to clients to submit requests. The item to be

broadcast next is chosen among those for which there

are pending requests. Common heuristics for on-de-

mand scheduling include First Come First Served and

Longest Wait First [7]. The R  W strategy selects the

data item with the maximal R  W value, where R is

the number of pending requests for an item and W the

amount of time that the oldest pending request for that

item has spent waiting to be served [3]. More recent

schemes extended R W to consider the semantics of

the requested data and applications such as subsump-

tion properties in data cubes [15]. Push-based broad-

cast scheduling assumes a-priori knowledge of client

access distributions and prepares an off-line schedule.

Push-based data delivery is often periodic. In hybrid

broadcast, the set of items is partitioned, so that some

items are pushed, i.e., broadcast continuously, and

the rest are pulled, i.e., broadcast only after being

requested [2]. Commonly, the partition between push

and pull data is based on popularity with the most

popular items being pushed periodically and the rest

delivered on demand. One problem is that for push

items, there is no way to detect any changes in their

popularity. One solution is to occasionally stop broad-

casting some pushed items. This forces clients to send

explicit requests for them, which can be used to esti-

mate their popularity [16]. An alternative that avoids

flooding of requests requires a percentage of the clients

to submit an explicit request irrespective of whether or

not a data item appears on the broadcast [5].

The organization of the broadcast content is

often called broadcast program. In general, broadcast

organizations can be classified as either flat where each

item is broadcast exactly once or skewed where an item

may appear more than once. One can also distinguish

between clustered organizations, where data items

having the same or similar values at some attribute

appear consecutively, and non-clustered ones, where

there is no such correlation. In skewed organizations,

the broadcast frequency of each item depends on its

popularity. For achieving optimal access latency or

558D Data Broadcasting, Caching and Replication in Mobile Computing



response time, it was shown that (i) the relative number of

appearances of items should be proportional to the square

root of their access probabilities and (ii) successive broad-

casts of the same item should be at equal distances [7]. It

was also shown that the Mean Aggregate Access (MAD)

policy that selects to broadcast next the item whose

access probability  the interval since its last broadcast

is the highest achieves close to optimal response time

[17]. Along these lines, a practical skewed push broad-

cast organization is that of broadcast disks [1]. Items

are assigned to virtual disks with different ‘‘speeds’’

based on their popularity with popular items being

assigned to fast disks. The spin speed of each disk is

simulated by the frequency with which the items

assigned to it are broadcast. For example, the fact

that a disk D1 is three times faster than a disk D2,

means that items assigned to D1 are broadcast

three times as often as those assigned to D2. To achieve

this, each disk is split into smaller equal-sized units

called chunks, where the number of chunks per disk is

inversely proportional to the relative frequence of the

disk. The broadcast program is generated by broad-

casting one chunk from each disk and cycling through

all the chunks sequentially over all the disks.

Indexing

To reduce energy consumption, a mobile device may

switch to doze or sleep mode when inactive. Thus,

research in wireless broadcast also considers reducing

the tuning time defined as the amount of time a mobile

client remains active listening to the broadcast. This is

achieved by including index entries in the broadcast so

that by reading them, the client can determine when to

tune in next to access the actual data of interest. Adding

index entries increases the size of the broadcast and thus

may increase access time. The objective is to develop

methods for allocating index entries together with data

entries on the broadcast channel so that both access and

tuning time are optimized. In (1, m) indexing [18], an

index for all data items is broadcast following every

fraction (1 ∕m) of the broadcast data items. Distributed

indexing [18] improves over this method by instead of

replicating the whole index m times, each index seg-

ment describes only the data items that follow it.

Following the same principles, different indexing

schemes have been proposed that support different

query types or offer different trade-offs between access

and tuning time. Finally, instead of broadcasting an

index, hashing-based techniques have also been applied.

Data Caching and Replication

A mobile computing device (such as a portable com-

puter or cellular phone) is connected to the rest of

the network through a wireless link. Wireless commu-

nication has a double impact on the mobile device

since the limited bandwidth of wireless links increases

the response times for accessing remote data from a

mobile host and transmitting as well as receiving of

data are high energy consumption operations. The

principal goal of caching and replication is to store

appropriate pieces of data locally at the mobile device

so that it can operate on its own data, thus reducing the

need for communication that consumes both energy

and bandwidth. Several cost-based caching policies

along the principles of greedy-dual ones have been

proposed that consider energy cost.

In the case of broadcast push, the broadcast itself

can be viewed as a ‘‘cache in the air.’’ Hence, in contrast

to traditional policies, performance can be improved

by clients caching those items that are accessed fre-

quently by them but are not popular enough among all

clients to be broadcast frequently. For instance, a cost-

based cache replacement policy selects as a victim the

page with the lowest p ∕x value, where p is the local

access probability of the page and x its broadcast fre-

quency [1]. Prefetching can also be performed with

low overhead, since data items are broadcast anyway.

A simple prefetch heuristic evaluates the worth of each

page on the broadcast to determine whether it is more

valuable than some other page in cache and if so, it

swaps the cache page with the broadcast one.

Replication is also deployed to support disconnec-

ted operation that refers to the autonomous operation

of a mobile client, when network connectivity becomes

either unavailable (for instance, due to physical con-

straints), or undesirable (for example, for reducing

power consumption). Preloading or prefetching data

to sustain a forthcoming disconnection is often termed

hoarding. Optimistic approaches to consistency control

are typically deployed that allow data to be accessed

concurrently at multiple sites without a priori synchro-

nization between the sites, potentially resulting in short

term inconsistencies. At some point, operations per-

formed at the mobile device must be synchronized

with operations performed at other sites. Synchroniza-

tion depends on the level at which correctness is sought.

This can be roughly categorized as replica-level correct-

ness and transaction-level correctness. At the replica

level, correctness or coherency requirements are

Data Broadcasting, Caching and Replication in Mobile Computing D 559

D



expressed per item in terms of the allowable divergence

among the values of the copies of each item. At the

transaction level, the strictest form of correctness is

achieved through global serializability that requires

the execution of all transactions running at mobile

and stationary hosts to be equivalent to some serial

execution of the same transactions. With regards to

update propagation with eager replication, all copies

of an item are synchronized within a single transaction,

whereas with lazy replication, transactions for keeping

replica coherent execute as separate, independent data-

base transactions after the original transaction commits.

Common characteristics of protocols for consis-

tency in mobile computing include:

 The propagation of updates performed at the

mobile site follows in general lazy protocols.

 Reads are allowed at the local data, while updates of

local data are tentative in the sense that they need to

be further validated before commitment.

 For integrating operations at the mobile hosts with

transactions at other sites, in the case of replica-

level consistency, copies of each item are reconciled

following some conflict resolution protocol. At the

transaction-level, local transactions are validated

against some application or system level criterion.

If the criterion is met, the transaction is committed.

Otherwise, the execution of the transaction is either

aborted, reconciled or compensated.

Representative approaches along these lines include

isolation-only transactions in Coda, mobile open-nested

transactions [6], two-tier replications [8], two-layer

transactions [10] and Bayou [9].

When local copies are read-only, a central issue

is the design of efficient protocols for disseminating

server updates to mobile clients. A server is called

stateful, if it maintains information about its clients

and the content of their caches and stateless otherwise.

A server may use broadcasting to efficiently propagate

update reports to all of its clients. Such update reports

vary on the type of information they convey to

the clients, for instance, they may include just the

identifiers of the updated items or the updated values

themselves. They may also provide information for

individual items or aggregate information for sets of

items. Update propagation may be either synchronous

or asynchronous. In asynchronous methods, update

reports are broadcast as the updates are performed.

In synchronous methods, the server broadcasts an

update report periodically. A client must listen for the

report first to decide whether its cache is valid or not.

This adds some latency to query processing, however,

each client needs only tune in periodically to read the

report. The efficiency of update dissemination proto-

cols for clients with different connectivity behavior,

such as for workaholics (i.e., often connected clients)

and sleepers (i.e., often disconnected clients), is evalu-

ated in [4].

Finally, in the case of broadcast push-data delivery,

clients may read items from different broadcast pro-

grams. The currency of the set of data items read by

each client can be characterized based on the current

values of the corresponding items at the server and on

the temporal discrepancy among the values of the

items in the set [13]. A more strict notion of correct-

ness may be achieved through transaction-level cor-

rectness by requiring the client read-only transactions

to be serializable with the server transactions. Meth-

ods for doing so include: (i) an invalidation method

[12], where the server broadcasts an invalidation re-

port that includes the data items that have been

updated since the broadcast of the previous report,

and transactions that have read obsolete items are

aborted, (ii) serialization graph testing (SGT) [12],

where the server broadcasts control information related

to conflicting operations, and (iii) multiversion broad-

cast [11], where multiple versions of each item are

broadcast, so that client transactions always read a

consistent database snapshot.

Key Applications
Data broadcasting, caching and replication techniques

are part of the core of any application that requires

data sharing and synchronization among mobile

devices and data servers. Such applications include

vehicle dispatching, object tracking, points of sale

(e.g., ambulance and taxi services, Fedex/UPS), and

collaborative applications (e.g., homecare, video

gaming). They are also part of embedded or light ver-

sions of database management systems that extend en-

terprise applications to mobile devices. These include

among others Sybase Inc.’s SQL Anywhere, IBM’s DB2

Everyplace, Microsoft SQL Server Compact, Oracle9i

Lite and SQL Anywhere Technologies’ Ultralite.

Cross-references
▶Concurrency Control

▶Hash-Based Indexing

560D Data Broadcasting, Caching and Replication in Mobile Computing



▶MANET Databases

▶Mobile Database

▶Replicated Database Concurrency Control

▶Transaction Management

Recommended Reading
1. Acharya S., Alonso R., Franklin M.J., and Zdonik S.B. Broadcast

disks: data management for asymmetric communications envir-

onments. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1995, pp. 199–210.

2. Acharya S., Franklin M.J., and Zdonik S.B. Balancing push

and pull for data broadcast. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1997, pp. 183–194.

3. Aksoy D. and Franklin M.J. RxW: a scheduling approach for

large scale on-demand broadcast. IEEE/ACM Trans. Netw.,

7(6):846–860, 1999.

4. Barbará D. and Imielinski T. Sleepers and workaholics: caching

strategies in mobile environments. VLDB J., 4(4):567–602, 1995.

5. Beaver J., Chrysanthis P.K., and Pruhs K. To broadcast push or

not and what? In Proc. 7th Int. Conf. on Mobile Data Manage-

ment, 2006, pp. 40–45.

6. Chrysanthis P.K. Transaction processing in a mobile computing

environment. In Proc. IEEE Workshop on Advances in Parallel

and Distributed Systems, 1993, pp. 77–82.

7. Dykeman H.D., Ammar M.H., and Wong J.W. Scheduling algo-

rithms for videotex systems under broadcast delivery. In Proc.

IEEE Int. Conf. on Communications, 1986, pp. 1847–1851.

8. Gray J., Helland P., Neil P.O., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

9. Petersen K., Spreitzer M., Terry D.B. Theimer M., and

Demers A.J. Flexible update propagation for weakly consistent

replication. In Proc. 16th ACM Symp. on Operating System

Principles, 1997, pp. 288–301.

10. Pitoura E. and Bhargava B. Data consistency in intermittently

connected distributed systems. IEEE Trans. Knowl. Data Eng.,

11(6):896–915, 1999.

11. Pitoura E. and Chrysanthis P.K. Exploiting versions for handling

updates in broadcast disks. In Proc. 25th Int. Conf. on Very

Large Data Bases, 1999, pp. 114–125.

12. Pitoura E. and Chrysanthis P.K. Scalable processing of read-only

transactions in broadcast push. In Proc. 19th Int. Conf. on

Distributed Computing Systems, 1999, pp. 432–439.

13. Pitoura E., Chrysanthis P.K., and Ramamritham K. Character-

izing the temporal and semantic coherency of broadcast-based

data dissemination. In Proc. 9th Int. Conf. on Database Theory,

2003, pp. 410–424.

14. Pitoura E. and Samaras G. Data Management for Mobile

Computing. Kluwer, Boston, USA, 1998.

15. Sharaf MA. and Chrysanthis P.K. On-demand data broadcasting

for mobile decision making. MONET, 9(6):703–714, 2004.

16. Stathatos K., Roussopoulos N., and Baras J.S. Adaptive data

broadcast in hybrid networks. In Proc. 23th Int. Conf. on Very

Large Data Bases, 1997, pp. 326–335.

17. Su C.J, Tassiulas L., and Tsotras V.J. Broadcast scheduling for

information distribution. Wireless Netw., 5(2):137–147, 1999.

18. T I., Viswanathan S., and Badrinath B.R. Data on air:

organization and access. IEEE Trans. Knowl. Data Eng.,

9(3):353–372, 1997.

Data Cache

▶ Processor Cache

Data Cleaning

VENKATESH GANTI

Microsoft Research, Redmond, WA, USA

Definition
Owing to differences in conventions between the exter-

nal sources and the target data warehouse as well as

due to a variety of errors, data from external sources

may not conform to the standards and requirements at

the data warehouse. Therefore, data has to be trans-

formed and cleaned before it is loaded into a data

warehouse so that downstream data analysis is reliable

and accurate. Data Cleaning is the process of standar-

dizing data representation and eliminating errors in

data. The data cleaning process often involves one or

more tasks each of which is important on its own.

Each of these tasks addresses a part of the overall data

cleaning problem. In addition to tasks which focus

on transforming and modifying data, the problem of

diagnosing quality of data in a database is important.

This diagnosis process, often called data profiling, can

usually identify data quality issues and whether or not

the data cleaning process is meeting its goals.

Historical Background
Many business intelligence applications are enabled

by data warehouses. If the quality of data in a data

warehouse is poor, then conclusions drawn from busi-

ness data analysis could also be incorrect. Therefore,

much emphasis is placed on cleaning and maintaining

high quality of data in data warehouses. Consequently,

the area of data cleaning received considerable atten-

tion in the database community. An early survey of

automatic data cleaning techniques can be found in

[14]. Several companies also started developing do-

main-specific data cleaning solutions (especially for

the customer address domain). Over time, several ge-

neric data cleaning techniques have been also been

Data Cleaning D 561

D


