
QuickStack: A Fast Algorithm for XML Query

Matching

Iyad Batal
Department of Computer Science

University of Pittsburgh
iyad@cs.pitt.edu

Alexandros Labrinidis
Department of Computer Science

University of Pittsburgh
labrinid@cs.pitt.edu

June 6, 2008

Abstract

With the increasing popularity of XML for data representation and
exchange, much research has been done for providing an efficient way
to evaluate twig patterns in an XML database. As a result, many holis-
tic join algorithms have been developed, most of which are derivatives
of the well-known TwigStack algorithm. However, these algorithms
still apply a two phase processing scheme: first identify all root-to-
leaf path solutions and then join these intermediate solutions to form
the twig results. In this paper, we first propose a novel algorithm,
QuickStack, for matching single path queries. The proposed algorithm
extensively optimizes the PathStack algorithm by effectively skipping
the ancestor and descendant elements that do not participate in the
results. Secondly, we generalize QuickStack to answer twig pattern
queries. Unlike the previous algorithms, QuickStack joins the inter-
mediate path solutions incrementally while evaluating the root-to-leaf
paths of the twig query. Our extensive performance study, over a range
of synthetic and real world datasets, shows that QuickStack provides
a drastic improvement gain over TwigStack for a wide variety of both
single path and twig queries. Finally, we compare our algorithm with
YFilter for answering multiple XML queries.

1 Introduction

XML is emerging as the de facto standard for data representation and ex-
change over the Internet. Hence, indexing and querying XML documents
efficiently has been among the major research issues in the database com-
munity. XML documents are semi-structured by nature and can be modeled
as trees. To retrieve such tree-shaped data, several XML query languages
have been proposed in the literature, for example XPath [3] and XQuery [4].
XML queries are typically formed as a twig (small tree) pattern and pred-
icates may be additionally imposed on the contents or attribute values of
the tree nodes. The edges of the twig are either parent-child or ancestor-
descendant relationships. Finding all the occurrences of a twig pattern in an
XML document with all associated predicates satisfied is a core operation
in XML query processing, and is the focus of our work.

Early work on XML twig pattern processing usually involved decompos-
ing the twig pattern into a set of binary structural relationships, matching
these relationships, and stitching the matches to form the final result. In
particular, Al Khalifa et al. [1] proposed two such binary structural join
algorithms: Tree-Merge and Stack-Tree. The stack representation of Stack-
Tree has been used in most follow-up works. However, the main drawback of
binary structural join algorithms is that they may generate a large number
of intermediate results that do not appear in the final results.

To address this problem, Bruno et al. [6] proposed two holistic join algo-
rithms, namely PathStack and TwigStack. These algorithms use a chain of
linked stacks to compactly represent partial results of individual root-to-leaf
paths in the twig pattern. Both algorithms operate in two phases: first,
compute all the relevant root-to-leaf path solutions, then join-merge these
partial solutions to form the answers for the entire twig.

Currently, holistic join algorithms [19, 16, 9, 20, 8] employ the same
two phase processing technique originally proposed in [6]. In this work, we
propose another approach: doing the solution-merging incrementally, while
evaluating the other paths of a twig. This approach allows the algorithm
to quickly skip processing a lot of the elements that are not part of the
solutions for the previously evaluated paths, which speeds up the algorithm.

Another group of XML query processing techniques is the navigation-
based approach, which computes results by analyzing the input document
one tag at a time, and is commonly used in information dissemination sys-
tems. YFilter [13], the current state-of-the-art for navigation-based algo-
rithms, combines all path expressions into a single non-deterministic finite
automaton (NFA), which enables highly efficient, shared processing for a

large number of XPath queries. Although YFilter is designed to optimize
across XML queries, it has to examine all the elements of the document. In
some cases, this could be more expensive than applying a holistic algorithm
able to avoid processing large portions of the document that are not going
to be in any matches. To illustrate this tradeoff, we compared our algorithm
with YFilter for the case of multiple queries.

Contributions This work makes the following contributions:
• We develop QuickStack, an efficient algorithm to match single path XML

queries. QuickStack is based on the PathStack algorithm, but aggres-
sively discards ancestors and descendants that do not participate in any
matches.

• We modify the stop condition used in TwigStack (and many of its ex-
tensions) in order to make the algorithm more efficient, without missing
any results.

• We develop the TQS algorithm, an extension to QuickStack, to efficiently
answer complex twig queries.

• We propose two general techniques that can be applied while building the
element streams in order to reduce the processing time of the algorithm.

• We present experimental results on a range of real and synthetic data
which shows that QuickStack/TQS significantly outperforms TwigStack
for both twig queries and single path queries.

• We also experimentally compare QuickStack against YFilter, when an-
swering multiple queries. Our results establish that QuickStack is more
efficient than YFilter when the number of queries is small and the XML
document is large.
The remainder of the paper is organized as follows. Section 2 is dedi-

cated to background materials and the PathStack and TwigStack algorithms.
Section 3 describes QuickStack, our proposed algorithm for matching single
path queries. In Section 4, we generalize QuickStack to answer twig queries
efficiently. In Section 5, we introduce our framework for answering multiple
XML queries. Section 6 describes how to reduce the number of elements
that participate in the algorithm. In Section 7, we report the experimental
results. Lastly, we conclude in Section 8.

2 Background and related work

2.1 The region encoding scheme

Most existing XML query processing algorithms rely on a positional repre-
sentation of the XML elements (see [12, 23]), where each element is assigned
a triplet of numbers (start, end, depth), based on its position in the data tree.
This scheme is called region encoding. An element x is an ancestor of element
y if the region of y is fully contained within the region of x. Since the regions
cannot partially overlap (according to the strictly nested property of XML),
we say that x is an ancestor of y iff x.start < y.start < x.end. Element x is
a parent of element y if x is an ancestor of y and x.depth = y.depth−1. The
important property of this numbering scheme is that it allows determining
the structural relationship between two elements in the XML document in
constant time. Figure 1 shows a fictitious XML document with the region
encoding for each element (we explain the use of the subscripts later).

Note that only the region encoding is needed to determine that element
c2(12, 13, 4) is a descendant of a2(10, 15, 2); No examination of the tree is
necessary.

Figure 1: A sample XML document

2.2 Preliminaries

Since our main algorithm deals with single path queries, we represent each
query as a chain or a unary tree. Let q denote a node in the query. The
self-explanatory functions isLeaf(q) and isRoot(q) examine whether q is a
leaf or a root node. The functions child(q) and parent(q) return the child
and the parent of q, respectively. The function subTree(q) returns q and all

its descendants in the query tree. q.level gives the depth of the node in the
query tree. In the rest of the paper, “node” refers to a node in the query
tree, whereas “element” refers to an element in the XML document.

Each node q in the query is associated with a stream of the XML elements
that match q from the document. So before the query can be evaluated by
the algorithm, the document should be scanned to build the element streams
of the query nodes. the A cursor Tq points to the current element of q’s
stream. advance(Tq) forwards Tq to the next element in the stream, while
eos(Tq) tests whether Tq has reached the end of q’s stream. The elements
in the stream are encoded using the positional representation, (start, end,
depth), and sorted by the start attribute. The positional representation of
the element pointed to by Tq can be accessed using Tq.start, Tq.end and
Tq.depth.

In addition to the stream, each node q is also associated with a stack
Sq. Initially, all the stacks are empty and all the cursors point to the first
element of the corresponding stream. During the evaluation of the query,
the cursors advance sequentially and each stack Sq may cache some elements
from the stream that appear before the cursor Tq.

The elements in the stacks should always be strictly nested from bottom
to top, i.e, each element is a descendant of the element below it. In addition,
the stack element e in Sq is also associated with a pointer to its lowest
ancestor in Sparent(q). Using this pointer, we can easily access all of e’s
ancestors in Sparent(q). These cached elements in the stacks represent partial
results that are potentially extended to full results as the algorithm goes
on. The operations for the stacks are the usual push and pop and empty
operations.

2.3 PathStack algorithm

As QuickStack is partially inspired by the PathStack algorithm, we briefly
describe the way PathStack works, and illustrate using an example.

PathStack processes the stream elements in order of their start attribute.
In other words, the elements are examined in order of their appearances in
the pre-order traversal of the document tree. Therefore, the query path
pattern is matched from the query root down to the query leaf. When e is
the current element, PathStack removes from the stacks all the elements that
end before e.start since they can no longer be part of any match. Whenever
an element of the leaf node is pushed into the stack , the algorithm outputs
the current query path answers encoded in the stacks.
Example 1: Consider the path query //a//b//c on the XML document of

Figure 2: Query a//b//c and the element streams from the XML document in
Figure 1

Figure 1. The streams of the XML elements associated with each query node
are visualized in Figure 2. Each line segment represents the (start, end)
interval of the element in the document. A subscript is added to each element
in the order of their start values for easy reference. It can be easily seen from
Figure 2 that (a2, b3, c2) is the only match of the query in this document.
PathStack on Example 1
Initially, the three cursors are at (a1, b1, c1). Element a1 is pushed first
into stack Sa because it is the element with the smallest start value among
the current cursors and Ta advances to a2. In the next iteration, b1 is
pushed in Sb. Then c1 is pushed and it pops out elements a1 and b1 because
c1.start > a1.end and c1.start > b1.end. Since c1 is a leaf node in the query
tree, the algorithm tries to output the solutions encoded in the stacks, but
the stacks are empty at this moment. Later on, when PathStack pushes c2

in Sc, it outputs the solution (a2, b3, c2). After that, PathStack continues to
push and pop all the remaining elements until it reaches c5. At that time,
the algorithm terminates because the stream of the leaf node has ended.

As we see, PathStack had to examine all the elements in the streams in
order to find the single solution for the query.

2.4 TwigStack algorithm

In this section, we describe the TwigStack algorithm and how it evaluates
the query in Example 1 (Figure 2).

The TwigStack algorithm is used to evaluate twig patterns and operates
in two phases. In the first phase, some (but not all) solutions to individual
query root-to-leaf paths are computed. In the second phase, these solutions
are merge-joined to compute the answers to the twig query. A key difference
between PathStack and TwigStack is that when the twig pattern has only
ancestor-descendant edges, TwigStack ensures that each root-to-leaf solution
is merge-joinable with at least one solution to each of the other root-to-leaf
query paths. Thus, none of the intermediate path solutions is superfluous.

TwigStack works by repeatedly calling a routine called getNext, which
returns the next node for processing. getNext(q) only returns a node q′ if it
has a descendant extension, which means that there is a solution for the sub-
query rooted at q′ composed entirely of the current elements of the nodes in
that tree1. To do this, getNext first traverses down to the left-most leaf node
of the query tree (by self recursive calls). Then, starting from that node, it
tries to find the highest possible query node with a descendant extension.

In the case where the twig pattern contains a parent-child edge between
two nodes, the algorithm might produce some extraneous intermediate so-
lutions. However, we observed that TwigStack can still be optimal, in
terms of the size of the intermediate solutions, when the document
does not have a recursive definition2.

Another important observation is that TwigStack is not only more effi-
cient than PathStack for twig queries, but also for single path queries. The
following example illustrates the behavior of TwigStack for a single path
query.
TwigStack on Example1 (Figure 2)
Initially, the cursors point to (a1, b1, c1). The first call to getNext advances
Tb to b2 (since b1 does not have a c child) and returns the element c1 (trivially,
the leaf node c has a descendant extension at all elements in its stream).
The second getNext call advances Tb to b3, Ta to a2 and returns a2 as the
next element to process. After that, the elements b3 and c2 are returned (in
this order) and the solution is output from the stacks. Next, the elements
b4, c3, c4 and c5 are all returned by consecutive calls to getNext and the
algorithm stops after processing c5.

From this example, we can see that TwigStack has skipped some elements
that PathStack had to process, namely: a1, b1, b2 and b5. However, it had
to examine some extra elements that do not participate in the solution,
namely: c1, b4, c3, c4 and c5.

We will return to this example again at the end of Section 3 to see how
QuickStack, our proposed algorithm, evaluates this query.

2.5 Other related algorithms

J. Lu et al. [19] presented the TwigStackList algorithm, which generates
fewer intermediate results than TwigStack when there are parent-child edges

1More specifically, getNext(q)=q′ if the current element e′, pointed to by Tq′ , has a
descendant ei, pointed to by Tqi , for all qi ∈ children(q′).

2The document has a recursive definition if an element can have a descendant with the
same label.

in the query. [16] proposed the TSGeneric+ algorithm that can utilize avail-
able indices, such as the XR-tree (XML Region Tree) index [15], to accelerate
the running time of TwigStack. But their algorithm imposes the additional
overhead of building the index over the element streams. Chen et al. [9] pro-
posed a method to perform holistic twig pattern matching using different
data partition strategies. Lu et al. [20] proposed TJFast that uses the ex-
tended Dewey labeling scheme to answer a twig query by accessing the labels
of its leaf nodes. Finally, Chen et al. [8] proposed Twig2Stack, a bottom-up
algorithm based on the hierarchical stack encoding scheme. This algorithm
is also capable of processing the more complex GTP queries. However, the
memory requirement for Twig2Stack is higher than TwigStack and it may
keep the entire document in memory.

3 QuickStack for single path queries

In this section, we describe our proposed algorithm, QuickStack, for finding
all matches of a single path query against an XML document. The algorithm
is based on the PathStack algorithm, but adds a lot of features to effectively
skip ancestors and descendants that do not participate in any match.

The algorithm is outlined in Figure 3. The argument q is the root of
the path query. Lines 3-4 identify the nodes qmin and qmax that have the
minimal and maximal start position among the current cursors. Lines 5-6
pop out all the elements that end before qmin.start because they cannot
contribute to the solutions any more. Lines 7-8 terminate the algorithm if
the condition of QuickEnd is satisfied. In lines 9-13: we call skipAncestors
on qmax’s parent node if qmax is lower in the query tree, i.e. closer to the
leaf; otherwise, we call skipDescendants on qmin if its parent stack is empty.
Both skipAncestors and skipDescendants return true if they skipped any
elements from the streams.

If no skipping happened, qmin is pushed to its stack. Finally, when qmin

is a leaf node, we call outputSolutions to output the current solutions from
the stacks (Lines 16-18).

Algorithm QuickStack(q)
01: repeat (forever)
02: skipping=false
03: qmin=getMinSource(q)
04: qmax=getMaxSource(q)
05: for qi in subTree(q)
06: cleanStack(Sqi

,Tqmin
.start)

07: if(QuickEnd(q))
08: break
09: if(qmax.level > qmin.level)
10: skipping=skipAncestors(parent(qmax), Tqmax

.start)
11: else
12: if(empty(Sparent(qmin)))
13: skipping=skipDescendants(qmin, Tparent(qmin).start))
14: if (¬ skipping)
15: moveStreamToStack(qmin)
16: if (isLeaf(qmin))
17: outputSolutions(Sqmin

)
18: pop(Sqmin

)

Function getMinSource(q)
return qi ∈ subTree(q) s.t. Tqi

.start is minimal

Function getMaxSource(q)
return qi ∈ subTree(q) s.t. Tqi

.start is maximal

Procedure cleanStack(Sq, start)
pop all the elements from Sq that end before start.

Procedure moveStreamToStack(q)
1: push the element pointed by Tq in Sq, assign

its pointer to point to the top of Sparent(q).
2: advance(Tq).

Procedure outputSolutions(Sq)
output all the solutions contained in the stacks.

Figure 3: The QuickStack algorithm

In order to fully understand our algorithm, we should first introduce the
three main functions: QuickEnd, skipAncestors and skipDescendants.

3.1 The QuickEnd function

The end function proposed for PathStack and TwigStack, which was adopted
in most of the follow-up works [16, 19, 9, 8], stops the algorithm when the
stream of any of the query’s leaf nodes ends. In this section, we propose a
different stop criterion, QuickEnd, to terminate the algorithm earlier without
missing any results.

Theorem 1 No more solutions can be found for an XML path query if the
stream of any node ends and its stack is empty.

To show the correctness of Theorem 1, notice that the elements of the
streams are pushed into the stacks in an increasing order of their start posi-
tion. So, if the stream of a node n has finished, we know there are no more
n elements to participate in future solutions. Furthermore, if the stack Sn

is empty, then none of the remaining elements from n’s descendants can
be part of the results. Thus, the algorithm can terminate safely without
missing any solutions.

Function QuickEnd(q): boolean
1: if (∃ qi ∈ subTree(q): eos(Tqi) ∧ empty(Sqi))
2: return true
3: return false

Figure 4: The QuickEnd function

Note that the use of QuickEnd is not restricted to QuickStack ; it can
also be used with other similar algorithms like PathStack and TwigStack.
Example 2: Consider query //a//b//c and the element sets in Figure 5;
the only match is (a1, b1, c1).

Figure 5: The early termination of QuickStack using the QuickEnd function. The
skipped elements appear as the thick line segments

Right after finding the solution (a1, b1, c1): the cursors are (null, b2, c2).
In the next iteration, c2 is pushed to Sc and it empties all the stacks. At this
point, the condition of QuickEnd is satisfied because a’s stream has ended
and its stack is empty. Therefore, the algorithm terminates without having
to examine all the remaining elements. In comparison, if we use the original
end function, then we have to examine all the elements up to c9.

3.2 The skipAncestors function

The key idea for skipping ancestors is that if an element e from node q does
not contain an element e′ from child(q), then there is no need to examine e
and all its ancestors.

Function skipAncestors(q, childStart): boolean
1: skipping=false
2: while(¬ eos(Tq) ∧ Tq.end < childStart)
3: skipping=true
4: advance(Tq)
5: if(isRoot(q))
6: return skipping
7: else
8: return skipAncestors(parent(q), max(Tq.start, childStart))

∨ skipping

Figure 6: The skipAncestors function

The skipAncestors function takes two arguments: a query node q and
the start value of the current element of child(q) (Figure 3: line 10). The
function is called recursively on all the parents of q (up to the root) and
it returns true if any element is skipped along the whole path. In line
2, all the elements that end before childStart are skipped. In line 8, the
function is called on q’s parent and the second parameter gets the maximum
Tq.start and childStart. The reason for taking the maximum is that the
element with the biggest start is the first element that could participate in
a solution. Therefore, we can skip to the further element, while maintaining
the correctness of the results.
Example 3: Consider query a//b//c//d and the elements in Figure 7 ;this
query does not have any matches.

Initially, the cursors point to (a1, b1, c1, d1). QuickStack identifies node
d as qmax (since d1 has the highest start value among the current elements)
and it calls skipAncestors on node c to skip all the elements from c, b and a
that end before d1.start. As a result, the cursors advance directly to c5, b6

Figure 7: The application of the skipAncestors function. The skipped elements
appear as the thick line segments

and a5 and skip processing all of the elements before.

3.3 The skipDescendants function

The skipDescendants function applies a similar technique as skipAncestors:
if an element e from node q is not contained within an element e′ from
parent(q), then there is no need to examine e and all its descendants.

Function skipDescendants(q, parentStart): boolean
1: skipping=false
2: while(¬ eos(Tq) ∧ Tq.start < parentStart)
3: skipping=true
4: advance(Tq)
5: if(isLeaf(q))
6: return skipping
7: else
8: return skipDescendants(child(q), Tq.start) ∨ skipping

Figure 8: The skipDescendants function

The skipDescendants function takes two arguments: the query node q
and the start value of the current element of parent(q) (Figure 3: line 13).
Like skipAncestors, the function returns true if skipping happened. In line
2, all the elements that start before parentStart are skipped because they do
not have a parent element (remember that the intervals could not partially
overlap). In line 8, the function is recursively called on the child node of q3.

Before we call skipDescendants on the node qmin in the QuickStack al-
gorithm, we check that the stack of parent(qmin) is empty (Figure 3: line
12). The reason for this is that if there are some elements in Sparent(qmin),
then these would be legitimate parents of Tqmin (otherwise, they would have

3Here, there is no need to take the maximum as in skipAncestors because Tq.start is
always bigger than parentStart.

been popped out when qmin was pushed). Consequently, we cannot skip the
descendants of qmin.

Figure 9: The application of skipDescendants function. The skipped elements
appear as the thick line segments

Example 4: Consider query a//b//c and the elements in Figure 9; the
query has one match: (a1,b5,c10).
In this example, QuickStack identifies node b as qmin and calls skipDescen-
dants on b to skip all the elements from b and c that start before a1.start.
As a result, Tb and Ta advance directly to b5 and c10.
QuickStack on Example 1 (Figure 2)
Consider again the example of Figure 2. First, the algorithm calls skipAnces-
tors on node b4 and skips elements b1 and a1. Next, it calls skipDescendants
to skip c1 and skipAncestors to skip b2. The algorithm pushes the elements
a2, b3 and c2 in the stacks and calls outputSolutions to output this result.
Then, when b4 is pushed in Sb, it pops out a2, b3 and c2 from their stacks.
At this point, the condition of QuickEnd is satisfied since a’s stream is fin-
ished and its stack is empty, thus the algorithm terminates safely. From this
example, we can see that QuickStack had to examine fewer elements than
TwigStack.

4 QuickStack for twig queries (TQS)

In this section, we propose our TQS (Twig QuickStack) algorithm to answer
twig queries efficiently. Recall that the solutions of a twig pattern can be seen
as an intersection of all the solutions for its individual root-to-leaf paths. A
näıve approach would be to use QuickStack to evaluate each path separately,
then join all of the intermediate solutions afterward. A much more efficient
approach (in terms of execution time and intermediate solution sizes) is
our proposed TQS algorithm: each time the algorithm evaluates a path,
it outputs the solutions that satisfy both the current path and all of the

4c1 is Tqmax in this case, so skipAncestors is called on its parent node b.

previously evaluated paths, i.e., it merges the solutions incrementally while
matching the individual paths.

In order to explain our proposed TQS algorithm, we should first intro-
duce the QuickStack2 algorithm, which evaluates the paths of the twig and
is at the crux of TQS. QuickStack2 is similar to the original QuickStack
algorithm (Figure 3), but has the ability to incorporate the solutions of the
previously evaluated paths, while evaluating the current path q from the
twig. Let us refer to the part of the twig that has already been evaluated as
the processed sub-twig. Each time QuickStack2 evaluates a path q, it outputs
only the twig solutions that satisfy both q and the processed sub-twig.

Algorithm QuickStack2(q, bn, bn sol)
01: repeat (forever)
02: skipping=false
03: qmin=getMinSource(q)
04: if(qmin=bn)
05: if(synchronize(Tqmin

, Tbn sol)
06: continue
07: qmax=getMaxSource(q)
08: for qi in subTree(q)
09: cleanStack(Sqi ,Tqmin .start)
10: if(QuickEnd(q))
11: break
12: if(qmax.level > qmin.level)
13: skipping=skipAncestors(parent(qmax),Tqmax

.start)
14: else
15: if(empty(Sparent(qmin)))
16: skipping=skipDescendants(qmin,Tparent(qmin).start))
17: if (¬ skipping)
18: moveStreamToStack(qmin)
19: if (isLeaf(qmin))
20: outputSolutions(Sqmin

)
21: pop(Sqmin)

Function synchronize(Tq,Tbn sol): boolean
1: advance Tq and Tbn sol to the next common element

to both streams
2: if eos(Tbn sol) then

set Tq to the end of q’s stream (so eos(Tq)=true)
3: return true only if any elements are skipped from q’s stream

Figure 10: The QuickStack2 algorithm

The QuickStack2 algorithm is outlined in Figure 10. In addition to the

path q, the algorithm takes two more arguments: bn, the lowest branching
node5 shared between q and the processed sub-twig, and bn sol, the elements
of the bn node that appear in the solutions of the processed sub-twig. The
elements in bn sol form an ordered stream and we define Tbn sol to be its
cursor. The code in Figure 10 in bold is the extra code needed to upgrade
QuickStack to QuickStack2. In line 4, if qmin is the branching node, we
call the synchronize function to skip all the elements of qmin that do not
match any elements from bn sol. If any elements were skipped from qmin,
we start over at line 1 to find a new qmin. Therefore, QuickStack2 can skip
the elements that are not part of the processed sub-twig solutions, even if
they are part of q’s solutions.

To minimize the number of processed elements by TQS, we need to evalu-
ate the paths that are very selective (expected to return the smallest number
of matches) before the paths that have lower selectivity. Our heuristic for
ordering the paths by selectivity is based on the following observation.

Proposition 1 The number of stream elements of the leaf node in an XML
path query provides an upper bound on the total number of solutions for that
query.

We can verify that this claim is true because any descendant element
in the XML document cannot belong to more than one ancestor element
according to the strictly nested property of the XML document.

Motivated by Proposition 1, we evaluate the paths of the twig in an
ascending order according to the number of elements associated with their
leaf nodes.

Putting it all together, TQS works as follows:

1. Decompose the twig into root-to-leaf paths.

2. Order the paths pi according the number of elements in their leaf nodes
(ascending order).

3. Call QuickStack on the first path p1 and output sol1, the matches of
p1

4. For i = 2 to numPaths:

(a) Identify the lowest branching node, bn, between pi (the current
path) and the processed sub-twig (currently contains all the paths
from p0 to pi−1).

5A branching node is a query node with more than one child.

(b) Extract bn sol, the elements of bn from soli−1.
(c) Call QuickStack2 on the current path pi, given the elements in

bn sol. The algorithm outputs soli, the solutions that satisfy
both pi and the processed sub-twig.

(d) Update the processed sub-twig to include path pi.

5. Finally, output solnumPaths, the solutions for the full twig.

We can see that TQS may produce more intermediate solutions than
TwigStack because, when TQS evaluates path i, some of the solutions in
soli may not be part of the final twig results. However, TQS can skip a lot
of the elements that TwigStack has to examine, as the following example
illustrates.

Figure 11: An example showing how TQS Skips the elements that are not in the
twig Solutions

Example 4: Consider the twig query /a[b][c] and the elements in Figure
11. This query has only two solutions a4[b9][c1] and a4[b10][c1].
TQS and TwigStack on Example 4
To evaluate this query, TQS first calls QuickStack on the path /a/c (because
c has fewer elements than b) and it outputs the solution a4/c1. Next, TQS
calls QuickStack2 to evaluate /a/b. At this point, the synchronize function
advances Ta all the way to a4 (since a4 is the only a element in the solutions
for /a/c) and then skipDescendents advances Tb directly to b9. After finding
the two relevant solutions a4/b9 and a4/b10, synchronize jumps Ta to the end
of a’s stream. Consequently, QuickEnd ends the algorithm since eos(Ta) ∧
empty(Sa).

In comparison, when TwigStack evaluates the path a/b, it has to examine
all of the irrelevant elements b1 to b9 because b is a descendant extension
for all of them.

5 Multiquery QuickStack (MQS)

In this section, we consider the scenario of matching multiple queries against
an XML document, which usually occurs in XML filtering systems.

The problem definition is: Given an XML document D and a set of
queries Q = {q1, ..., qn}, find the set R = {r1, ..., rn}, where ri is the answer
for query qi on D.

We saw that the first step to evaluate a query is to build the streams of
the elements from the XML document that match the query nodes. In this
multiquery framework, we use the concept of the generalized index, which
is a structure that contains all the elements that could participate in any
of the input queries. This structure is represented by a tree that contains
all the nodes from the input queries. The predicate on each node is the
union of all the predicates on the corresponding nodes from the queries. For
example, consider the following three queries:
• Q1=/bookstore[num=1]/book[price<50]/ title
• Q2=/bookstore[num=50]/book[price<30]/ chapter/ title
• Q3=/bookstore[num>10 and num<20]/book[title=“XML tutorial” and

price <20 and price >80]/ chapter/ title.

Figure 12: the structure of the generalized index for queries Q1, Q2, and Q3

The generalized index from these three queries contains all the stream
elements that the algorithm needs to evaluate any of them, and is shown
in Figure 12. Note that the predicate on the book element (price<50) is
a general predicate that allows the stream of book to contain all the book
elements that are needed in queries Q1, Q2 and Q3. The two title leaves
in the generalized index will have different elements since we can check the
direct parent of the title element in the document to determine which node
it belongs to.

When using QuickStack/TQS to evaluate multiple queries against an
XML document, we have several options to consider:

1. Option 1 (Näıve way): Parse the document for each query to build its
element streams and execute the algorithm.

2. Option 2: Parse the document once and construct the generalized in-
dex. Then run the algorithm for each query on this common structure
and check the query’s predicates during the execution of the algorithm.

3. Option 3: Build the generalized index as in option 2, but then for
each query: run the algorithm on the query’s own element streams
after extracting them from this common index. We extract the ele-
ment streams of a query Qi simply by applying Qi’s predicates on the
corresponding nodes from the generalized index.

Clearly, the näıve way (option 1) is very wasteful because parsing the
document is an expensive operation, and we do not want to do it for ev-
ery input query. Option 2 is also not a good idea, because running Quick-
Stack/TQS on the generalized index restricts its ability to skip the elements,
and thus hurts its performance. For instance, when we execute QuickStack
on Q3’s own element streams, the algorithm skips a lot of bookstore, chap-
ter, and title elements because the predicate on book is very selective (book ’s
stream is very short). But, if we evaluate Q3 on the generalized index in
Figure 12, the stream of the book node will be much longer, and the al-
gorithm will spend a lot of time processing extra elements that cannot be
part of Q3’s result. Option 3 is more efficient than the others and it will be
considered in our experiments.

6 Pre-processing Techniques

In this section we explain some techniques we can apply while scanning
the document to reduce the number of elements in the streams, and thus
speed up the evaluation time of the algorithm. These techniques are general
and can be applied on any XML processing algorithm that uses the same
intermediate structure.

First, it is more efficient to evaluate the predicates while building the
element streams, instead of doing it during the course of the algorithm. So
if the predicate on a node is selective, the stream of this node will be short
and the algorithm will skip a lot of irrelevant elements.

In addition, when a path in the twig has only one direct child of the
branching node, we can evaluate this path as a predicate on the branching
node. For example, consider the three paths query: a[b][c]//d. This query
can be rewritten as a[b and c]//d, and the two paths a/b and a/c can be
evaluated as a predicate on a while building the element streams. In other
words, we only add the a elements that have two children b and c to a’s

stream while scanning the document, then we evaluate the path query a//d
using QuickStack to get the answers for the full twig query.

The second technique we introduce is the depth evaluation technique.
Recall that each edge from a node p to a node n in the query tree imposes
a constraint on the number of elements that can appear between n and p
in the results. We call this number the relative depth of n from its parent p
and denote it as RD(n). RD(n) is zero for a parent-child edge and is greater
or equal to zero for an ancestor-descendant edge. With the relative depth
concept introduced, we are able to represent queries that contain wild cards,
since wild cards may impose new conditions on the relative depth, which
cannot be represented by a parent-child edge nor an ancestor-descendant
edge. For example, the query /x/*/*/y/*//z specifies that RD(x) = 0,
RD(y) = 2 and RD(z) >= 1.

When we build the element streams, we examine the XML elements one
after the other and we add only the elements that satisfy the relative depth
condition. Specifically, we define a boolean flag Fn and an integer variable
Dn for each node n in the query. We set Fn to true when we encounter an
open tag < n > and set it to false when the tag is closed < /n >. If Fn is
true, we increment Dn for each open tag and decrement it for each close tag
in the document. Consequently, when Fn is true, Dn measures the depth
of the current XML element from its ancestor n. Thus, before adding an
element to the stream of child(n), we first check that Dn=RD(child(n)).

Note that the depth evaluation for wild cards is more complicated for
documents with recursive definitions. However, it is still easy to evaluate
the basic parent-child and ancestor-descendant edges.

7 Experiments

We implemented our proposed QuickStack algorithm, as well as the TwigStack
and PathStack algorithms in JAVA using JDK 1.5, sharing as much code
and as many data structures as possible for a fair comparison. We used the
YFilter system (version 1.0) [22] developed at the University of California
at Berkeley, which is also implemented in Java.

We conducted our experiments on both synthetic and real-world data.
For synthetic data, we used a bookstores dataset and another randomized
dataset. We also used two real-world datasets: DBLP [18] and NASA [21].
We chose different types of queries over the datasets in order to give a
comprehensive comparison between the algorithms.

The machine we used in our experiments is a Dell PowerEdge 2950 server

with two Dual-Core Intel Xeon 3GHz CPU processors and 4MB L2 cache.
It is equipped with 16GB RAM, running Redhat Linux Version 3.4.6-3.

In section 7.1, we present experimental results on processing single path
queries using QuickStack, TwigStack and PathStack. In section 7.2, we
compare the performance of QuickStack with TwigStack on more complex
twig queries. In section 7.3, we show the results of applying our MQS
approach to process multiple queries and compare it against YFilter.

7.1 Single path queries

7.1.1 The bookstores dataset

Dataset description (Figure 13 and Table 1)
This dataset contains information about bookstores and the books they

Figure 13: The DTD of the bookstores dataset

have. The DTD of bookstores is shown in Figure 13. The bookstores are
numbered sequentially according to their appearance in the XML file (the
num element) and are randomly distributed among 7 different states (the
state attribute). The books are given sequential titles (book1, book2, ...),
so that each title is unique. The book prices vary from 10 to 100. Each
bookstore has between 50 and 250 books and each book contains 5 to 20
chapters. The dataset file size is 121MB, and the frequency of each element
is shown in Table 1.

Element’s name Number of occurrences
bookstore (num) 1,000
book (price) 147,680
chapter (num of pages) 1,846,217
title 1,993,897

Table 1: Element frequencies of bookstores

Results (Table 3 and Figure 14)
We used the single root-to-leaf queries in Table 2. The last column of this
table characterizes the selectivity for each query by showing the number of
results the query has in the file.

Query XPath expression
Number of
matches

Q1 / */bookstore [num=1] /book/price 120
Q2 //bookstore [num > 100 and num < 105] /book/ chapter/ title 7,148
Q3 //bookstore [num = 10 or num =120] /book/ chapter/num of pages 5,209
Q4 //bookstore [num = 200] /book [price ≥ 20 and price ≤30] / chapter/ title 374
Q5 //bookstore/book [title=“book6985”] / chapter/ title 20
Q6 //bookstore [@state=“PA”] /book [price < 30] / chapter [title=“chapter4”] /num of pages 4,464
Q7 //bookstore /book/ chapter/ title 1,846,217

Table 2: Queries over the bookstores dataset

Table 3 gives the execution times of the three algorithms in milliseconds.
The first column is the query and the second column is the time taken to
parse the XML document and build the element streams for the query nodes
(similar to Figure 2). This cost is mainly IO cost and it is the same for
each of the three algorithms. The last three columns show the execution
time of PathStack, TwigStack and QuickStack. We can see that QuickStack
consistently outperforms PathStack and TwigStack (except for Q7 as we
explain later).

Query scanning cost PathStack TwigStack QuickStack
Q1 2,558 1,540 128 16
Q2 3,264 20,079 1,872 192
Q3 3,456 22,184 1,350 204
Q4 3,560 17,742 1,320 84
Q5 3,539 16,924 1,050 22
Q6 3,500 8,956 716 370
Q7 3,105 25,614 26,894 26,772

Table 3: Bookstores dataset: the evaluation time (in ms) of the three algorithms
and the time to build the element streams for the queries in Table 2. The evaluation
times for TwigStack and QuickStack are plotted in Figure 14

Figure 14 shows the execution time of the algorithms. We omit PathStack
from all the figures because it is much slower than both TwigStack and
QuickStack. We also omit Q7 since the time to process this query is much
higher than the other queries, for both TwigStack and QuickStack.

To understand the reason behind the superior behavior of QuickStack

Figure 14: Bookstores dataset: the evaluation time (in ms) of QuickStack and
TwigStack for the queries in Table 2 (excluding Q7, since it is out of range)

over TwigStack, consider the case of query Q36. First, QuickStack calls
skipDescendants to skip all the book, chapter, and num of pages elements
that are before the 10th bookstore (remember that the bookstores are sorted
in the file according to the num element). Then skipDescendants also skips
the elements between the two bookstores in the predicate7. Finally, after
processing the descendants of the 120th bookstore, QuickEnd terminates the
algorithm. On the other hand, TwigStack has to examine all the elements
in the streams since they all have descendant extension solutions.

Notice that Q7 is an extreme case because all the elements in the streams
participate in the result (since it does not impose any predicate), and Path-
Stack performs slightly better than both algorithms for this special case.
The execution time of PathStack for this query is similar to the other queries
since it processes all elements in the streams regardless of whether they par-
ticipate in the results or not.

Query Q1 is a good example of the benefit of using the QuickEnd func-
tion since it allows the algorithm to stop immediately after processing the
books of the first bookstore.

As we can see, one of the highest performance gain occurs for query
Q5, where QuickStack is about 50 times faster than TwigStack. The reason
is that Q5 is very selective: it has only one element in the stream of the
book node (the book title is unique in the file) and has long streams for the

6Q3 asks about the number of pages for the chapters of all the books in the 10th or
the 120th bookstore.

7skipDescendants will be activated on these elements since they do not have a parent.

chapter and title elements. Therefore the skipping abilities of QuickStack
are fully exploited. However, the difference is less significant for Q6 because
it returns a lot of results and skipping the elements in the streams becomes
less effective. In this case, QuickStack is about twice as fast as TwigStack.

7.1.2 The DBLP dataset

Query XPath expression Number of
matches

Q1 // inproceedings [author=“Michael Stonebraker” and year=2003] / title 5

Q2 // inproceedings [title=“Ratio Rules: A New Paradigm for Fast, Quantifiable 4Data Mining.”] / author

Q3 // inproceedings [(author=“Christos Faloutsos” or author=“Rajeev Agrawal” 46or author=“Soumen Chakrabarti”) and year=2000] / author
Q4 // inproceedings [title=“Spatial Join Selectivity Using Power Laws.”] / cite 35
Q5 // article [author=“Michael Stonebraker”] / cite 332
Q6 // article [journal=“VLDB J.”] / title 241

Table 4: Queries over DBLP dataset

Query scanning cost PathStack TwigStack QuickStack
Q1 4,692 2,110 128 22
Q2 4,596 3,614 214 26
Q3 5,015 3,006 230 32
Q4 4,117 1,188 88 22
Q5 4,036 960 80 28
Q6 4,080 2,290 144 33

Table 5: DBLP dataset: the evaluation time (in ms) of the three algorithms and
the time to build the element streams for the queries in Table 4. The evaluation
times for TwigStack and QuickStack are plotted in Figure 15

Dataset description
The DBLP (Digital Bibliography Library Project) file provides bibliographic
information on major computer science journals and proceedings. The
DBLP file that we used has size of 210 MB and 4,884,836 elements in
total. It contains information about 1,075,088 authors, 298,413 inproceed-
ings entries and 173,630 articles. The file has a maximum depth of 6 and
an average depth of about 2.9.
Results (Table 5 and Figure 15)
The execution times for the queries in Table 4 appear in Table 5 and Fig-

ure 15. For the given queries, QuickStack performs from 60% to 90% faster
than TwigStack and from 97% to 99% faster than PathStack.

Figure 15: DBLP dataset: the evaluation time (in ms) of QuickStack and
TwigStack for the queries in Table 4

7.1.3 The NASA dataset

Dataset description
This dataset is converted from a legacy flat-file format into XML format
and it represents astronomical data from NASA. The file size is 23 MB. It
has 476,646 elements with a max depth of 8 and an average depth of about
5.58.
Results (Table 7 and Figure 16)
Table 7 and Figure 16 show the execution time of the algorithms for the
queries in Table 6. For the given queries, QuickStack performs from 65% to
96% faster than TwigStack and from 97% to 98% faster than PathStack.
Section Summary: QuickStack consistently outperforms TwigStack for
single-path queries and the gap increases for queries with very selective
predicates.

7.2 Twig queries

7.2.1 The Random dataset

Dataset description (Figure 17 and Table 8)
To test the performance for twig queries, we chose to generate another syn-
thetic dataset that allows us to better control the relationship between the

Query XPath expression Number of
matches

Q1 //dataset [title=“Astrographic Catalogue”] / reference// author/ lastName 4
Q2 //dataset//fields/field [name=“DE”] /definition 10
Q3 //dataset// reference/ source// author [lastName=“Mermilliod”] / initial 40
Q4 //dataset//fields/field [name=“L”] /definition/ footnote/para 9

Table 6: Queries over NASA dataset

Query scanning cost PathStack TwigStack QuickStack
Q1 410 948 54 2
Q2 373 1,076 72 18
Q3 360 860 52 18
Q4 394 1,316 106 26

Table 7: NASA dataset: the evaluation time (in ms) of the three algorithms and
the time to build the element streams for the queries in Table 6. The evaluation
times for TwigStack and QuickStack are plotted in Figure 16

Figure 16: NASA dataset: the evaluation time (in ms) of QuickStack and
TwigStack for the queries in Table 6

algorithms and the characteristics of the queries over the dataset. The struc-
ture of this randomized dataset is shown in Figure 17. We label the edges
in the figure by their selectivity. For instance, there is a 60% probability

Figure 17: The structure of the random dataset

that a specific element r will have a child with label s. Also, each element r
has between 1 and 3 children with label a. We omit the labels on the edges
connected to the leaves because they have a 100% selectivity.

The dataset size is 15,747KB and it has 2,187,515 elements in total.
Table 8 shows the frequencies of the elements.

Element’s name Number of occurrences
r 300,000
s 179,813
a 599,131

b (xb) 359,736
c (xc) 179,524
d (xd) 30,019
e (xe) 1

x 569,280

Table 8: Element frequencies of the random dataset

Results (Table 10 and Figure 18)
We tested the algorithms for the twig queries in Table 9. For these experi-
ments, we evaluate the queries as twig patterns without applying the tech-
niques in Section 6 to evaluate simple paths as predicates on the branching
node. For instance, Q2 is evaluated as a twig with two paths: //a/b and
//a/c. However, we still do the depth evaluation to reduce the number of
elements in the streams.

Table 10 shows the execution time for the three algorithms, as well as the
number of intermediate solutions they produced. Näıve QuickStack denotes
the algorithm that executes QuickStack on each path independently.

Query XPath expression Number of
matches

Q1 // a [b/ x] / e 1
Q2 // a [b] / c 107,658
Q3 // a [b] [c] /d 5,473
Q4 // a [b] [c/ x] /d 5,473
Q5 // a [b/ xb] [c/ xc] /d/ xd 5,473
Q6 // r [s] / a [b] /d/ x 10,672

Table 9: Twig queries over the random dataset

Näıve QuickStack TwigStack TQS
Query Intermediate evaluation time Intermediate evaluation time Intermediate evaluation time

path solutions (ms) path solutions (ms) path solutions (ms)

Q1 359,737 1,555 2 302 2 4

Q2 539,260 1,629 215,316 1,297 287,182 693

Q3 569,279 1,575 16,419 532 44,601 287

Q4 569,279 2,036 16,419 1,391 44,601 319

Q5 569,279 2,234 16,419 1,710 44,601 368

Q6 569,568 2,498 32,016 1,567 58,736 606

Table 10: Random dataset: the evaluation time (in ms) and the number of inter-
mediate solutions of the twig queries in Table 9. The evaluation times are plotted
in Figure 18

Let us take a look at how TQS evaluates query Q3. First, QuickStack
evaluates the most selective path (// a/d) since the number of elements in
d is the least among the leaf nodes. Next, QuickStack2 evaluates // a/ c
utilizing the a elements from the solutions of the first path. Lastly, Quick-
Stack2 evaluates // a/b and it skips the elements that do not match any
solution for the processed sub-twig // a[c]/d.

We can see that TQS is about 75 times faster than TwigStack for Q1.
The reason is that Q1 has only one match in the document (because we have
only one e element). Therefore, TQS can directly pinpoint the only solution
to // a/b/ x that is relevant. On the other hand, Näıve QuickStack is very
slow in this case because it generates enormous number of intermediate
solutions (equal to the number of b elements plus 1 for element e).

Finally, consider the complex query Q6. This query has two branching
nodes: r and a. Thanks to our depth evaluation techniques, the number
of elements in x’s stream will be equal to the number of d elements. Thus,
TQS identifies path /r//a/d/x as the most selective and evaluates it first
using QuickStack. After that, it evaluates //r/s and /r/a/b (in this order)

Figure 18: Random dataset: the evaluation time (in ms) of Näıve QuickStack,
TwigStack, and TQS

using QuickStack2.

7.2.2 The bookstores, DBLP and NASA datasets

Query XPath expression
Number of
matches

BS Q1 / */bookstore [@state=“MA”] [book [price=10]] /book [price=90] 2,006
BS Q2 //bookstore [book [title=“book77555”]]/book [price=50] / chapter/ title 252
BS Q3 //bookstore[book [title=“book98000”]] [book [title=“book98010”]] /book/ title 50

DBLP Q1 // inproceedings [author=“Michael Stonebraker”] [year=2003] / title 5
DBLP Q2 // article [journal=“VLDB J.”] / title 241
DBLP Q3 // inproceedings [author=“Nicolas Bruno”] [author=“Nick Koudas”] [year=2002] / title 1

NASA Q1 // journal[author [lastName=“pereira”] / initial] / title 1
NASA Q2 //fields[field [name=“H1-36”]] [field[name=“lambda”]] /field [name=“He2-38”] /definition 1
NASA Q3 //fields[field [definition=”Distance”]] /field/units 859

Table 11: Twig queries over bookstores, DBLP, and NASA datasets

Results (Table 12 and Figure 19)
We also tested the evaluation of the twig queries in Table 11 over the book-
stores, DBLP and NASA datasets. The results appear in Table 12 and
Figure 19. We can observe some cases, like BS Q2, NASA Q1, NASA Q2,
where even Näıve QuickStack can outperform TwigStack. To explain the
reason, consider NASA Q2 for instance. This query is not only very se-
lective as a whole, but also each of its individual paths are very selective.
Hence, the number of the excess intermediate solutions that Näıve Quick-

Näıve QuickStack TwigStack TQS
Query Intermediate evaluation time Intermediate evaluation time Intermediate evaluation time

path solutions (ms) path solutions (ms) path solutions (ms)

BS Q1 4,656 86 4,012 182 4,326 91
BS Q2 202,001 1,589 253 2,200 253 33
BS Q3 147,680 1,124 52 248 52 10

DBLP Q1 326,955 2,848 15 606 120 34
DBLP Q2 173,871 656 482 495 482 68
DBLP Q3 29,018 1,052 3 750 9 65

NASA Q1 2,383 40 3 56 3 6
NASA Q2 204 16 3 270 3 8
NASA Q3 60,663 424 917 230 917 51

Table 12: Bookstores, DBLP, NASA datasets: the evaluation time (in ms) and the
number of intermediate solutions for the twig queries in Table 11. The evaluation
times are plotted in Figure 19

Figure 19: Bookstores, DBLP, NASA datasets: the evaluation time (in ms) of
Näıve QuickStack, TwigStack, and TQS

Stack produces is small and it can still outperform TwigStack in such cases.
Section Summary: Although the number of intermediate solutions that
TwigStack generates lower-bounds that of TQS, TQS can be several times
faster in practice. The performance gap increases when there is a very
selective path in the twig pattern.

7.3 Multiple queries

In this section, we compare the performance of QuickStack, TwigStack, and
YFilter, under a varying number of input queries. We used a program that
generates random single-path queries over the bookstores dataset. These
queries vary in their selectivity and are similar to the ones presented in
Table 2 (with different values for the predicates).

We used the same approach in Section 7.3 to evaluate the queries using
TwigStack, which we denote as MTQ. We do the processing (for both MTS
and MQS) in two phases: the first phase builds the element streams for all

the input queries, while the second phase evaluates the queries and output
their results. So the time of the first phase is the time needed to parse
the document, build the generalized index and extract from it the element
streams of all the individual queries. We use the term evaluation time to
denote the time of the second phase, while total time to denote the time for
both phases.

Figure 20: the Evaluation time (in sec.) of MQS and MTS for multiple input
queries over the bookstores dataset

Figure 20 compares the evaluation time of MTS and MQS. Here, we
exclude the time of the first phase because it is the same for both algorithms.
Notice that as the number of queries increases, the gap in the evaluation time
between MQS and MTS becomes bigger. For instance, MQS is more than 7
times faster than MTS for 140 input queries (' 90% reduction in evaluation
time).

Figure 21 compares both algorithms with YFilter. In order to have a fair
comparison, we should use the total time of MTS and MQS since YFilter
evaluates the queries while scanning the document. Note that MQS clearly
outperforms YFilter when the number of queries is relatively small. For
instance, for 60 queries, MQS reduces the execution time by 61% compared
with YFilter. The reason for this is that MQS can avoid processing large
portions of the elements, while YFilter has to consume all the elements in
the document. However, these gains tend to diminish as we increase the
number of queries since the performance of YFilter is almost independent
on the number of input queries.

These results suggest that it would be best to use a hybrid approach that

Figure 21: The total time in sec. of MQS and MTS against YFilter for multiple
input queries over the bookstores dataset

switches automatically between MQS and YFilter based on the number of
input queries and the size of the document. So for a big document and rela-
tively small number of queries, using MQS is definitely better than scanning
the whole document with YFilter. One can draw an analogy between XML
and traditional databases by seeing YFilter as doing sequential scan, while
MQS as accessing the database through an index.
Section Summary: MQS is more efficient than YFilter when the number
of queries is small and the XML document is large.

8 Conclusions and Future work

In this paper we presented QuickStack, an enhanced holistic join algorithm
for matching XML query patterns. QuickStack can effectively avoid pro-
cessing unnecessary elements by skipping both ancestors and descendants
that do not have a match in the document. The algorithm is extended to
process twig queries by joining the query path solutions while matching the
paths, instead of doing the join as a separate phase after the matching. Ex-
perimental results showed that our method is more efficient than TwigStack
for both simple and complex XPath queries.

Regarding our future work, we plan to try augmenting the element
streams with XR-tree [15]. We believe that XR-tree index will work per-
fectly well with our skipAncestors and skipDescendants functions and can

accelerate the evaluation when the node streams are very long.
Another interesting avenue to explore, encouraged by the experimental

results, is to design a new parallel framework similar to the IndexFilter algo-
rithm proposed in [5], but which relies on QuickStack instead of PathStack.

References

[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava,
and Y. Wu. Structural Joins: A Primitive for Efficient XML Query
Pattern Matching. In Proceedings of ICDE, 2002.

[2] M. Altinel and M. J. Franklin. Efficient Filtering of XML Documents
for Selective Dissemination of Information. In Proceedings of the 26th
VLDB, 2000.

[3] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Ro-
bie, and J. Simon. XML Path Language (XPath) 2.0 W3C working
draft 16. Aug. 2002.

[4] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and
J. Simon. XQuery 1.0: An XML Query Language W3C working draft
16. Aug. 2002.

[5] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava. Navigation -vs.
Index-Based XML Multi-Query Processing. In Proceedings of ICDE,
2003.

[6] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal
XML Pattern Matching. In Proceedings of SIGMOD, 2002.

[7] B. Chen, T. W. Ling, M. T. Ozsu, and Z. Zhu. On Label Stream
Partition for Efficient Holistic Twig Join. In proceedings of DASFAA,
2007.

[8] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and K. S.
Candan. Twig2Stack: Bottom-up Processing of Generalized-Tree-
Pattern Queries over XML Documents. In proceedings of VLDB, 2006.

[9] T. Chen, J. Lu, and T. W. Ling. On Boosting Holism in XML Twig
Pattern Matching Using Structural Indexing Techniques. In Proceedings
of SIGMOD, 2005.

[10] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo. Effi-
cient Structural Joins on Indexed XML Documents. In Proceedings of
VLDB, 2002.

[11] B. Choi, M. Mahoui, and D. Wood. On the Optimality of Holistic
Algorithms for Twig Queries. In Proceedings of DEXA, 2003.

[12] M. P. Consens and T. Milo. Algebras for Querying Text Regions. In
Proceedings of PODS, 1995.

[13] Y. Diao and M. J. Franklin. High-Performance XML Filtering: An
Overview of YFilter. In Proceedings of ICDE, 2003.

[14] H. Jiang, H. Lu, and W. Wang. Efficient Processing of XML Twig
Queries with OR-Predicates. In Proceedings of SIGMOD, 2004.

[15] H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree: Indexing XML
Data for Efficient Structural Joins. In Proceedings of ICDE, 2003.

[16] H. Jiang, H. Lu, W. Wang, and J. X. Yu. Holistic Twig Joins on Indexed
XML Documents. In Proceedings of VLDB, 2003.

[17] L. V. S. Lakshmanan and S. Parthasarathy. On Efficient Matching
of Streaming XML Documents and Queries. In proceedings of EDBT,
2002.

[18] M. Ley. Dblp. computer science bibliography.
http://www.informatik.uni-trier.de/∼ley/db.

[19] J. Lu, T. Chen, and T.W. Ling. Efficient Processing of XML Twig Pat-
terns with Parent Child Edges: A Look-ahead Approach. In Proceedings
of CIKM, 2004.

[20] J. Lu, T. W. Ling, C.-Y. Chan, and T. Chen. From Region Encoding
to Extended Dewey: On Efficient Processing of XML Twig Pattern
Matching. In proceedings of VLDB, 2005.

[21] University of Washington XML Repository.
http://www.cs.washington.edu/research/xmldatasets/.

[22] YFilter 1.0 release. http://yfilter.cs.umass.edu.

[23] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On Sup-
porting Containment Queries in Relational Database Management Sys-
tems. In proceedings of SIGMOD, 2001.

