ViP: A User-Centric View-Based Annotation
Framework for Scientific Data

Qinglan Li, Alexandros Labrinidis, and Panos K. Chrysanthis

Advanced Data Management Technologies Laboratory
Department of Computer Science, University of Pittsburgh
Pittsburgh, PA 15260, USA
{ginglan, labrinid, panos}@cs.pitt.edu

Abstract. Annotations play an increasingly crucial role in scientific exploration
and discovery, as the amount of data and the level of collaboration among scien-
tists increase. In this paper, we introduce ViP, a user-centric, view-based annota-
tion framework that promotes annotations as first-class citizens. ViP introduces
novel ways of propagating annotations, empowering users to express their prefer-
ences over the time and network semantics of annotations. To efficiently support
such novel functionality, ViP utilizes database views and introduces new caching
techniques. Through an extensive experimental study on a real system, we show
that ViP can seamlessly introduce new annotation propagation semantics while
significantly improving the performance over the current state of the art.

1 Introduction

Without a doubt, data management is playing a pivotal role in scientific exploration
nowadays, constantly fueling the pace of discovery. In addition to efficiently managing
the tsunami of experimental data generated, data management also facilitates effec-
tive collaboration among scientists, by recording data provenance [6] and data lineage
[TI2I0ITTI12]], and by supporting annotations [34I5IT5123]. Data provenance and lin-
eage essentially keep track of where the data is coming from (and what transformations
it has been through), whereas annotations enable users to record additional information
about the data stored (and propagate this information to all “related” data items).

In this paper, we present ViP, a novel annotation framework that introduces new an-
notation propagation methods, utilizes views both as a specification mechanism and as a
user-interface mechanism, and employs caching techniques for improved performance
compared to the state of the art[l.

Our interest in this research area came from our participation in the Center for Mod-
eling Pulmonary Immunity (CMPI). CMPI is bringing together experimentalists and
modelers to study pulmonary immunity in response to three bio-defense pathogens.
Our group is responsible for the design and development of the data sharing platform
(DataXS), where experimental data, analysis, and models will be shared among project
participants. In such a diverse setting, the ability to record annotations and propagate

! This research was supported in part by NIH-NIAID grant NO1-AI50018.

B. Ludischer and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 295 2008.
(© Springer-Verlag Berlin Heidelberg 2008

296 Q. Li, A. Labrinidis, and P.K. Chrysanthis

them to all related data items and interested parties is crucial to the success of the
project.

As part of the design process and during the implementation of our first prototype,
we were able to identify two distinct usage patterns related to the specification and
the propagation of annotations within a Database Management System (DBMS), which
were not currently supported by the state of the art.

Support for user-centric time semantics for annotations. The first usage pattern that
we observed was that experimental data was almost always entered in the database
in an order different than the one it was generated. In fact, even data about the same
experiment was entered at completely different times, since more than one labs were
involved in generating the data (for example, one lab would generate the luminex data
whereas a different lab would produce microarray data for the same tissues). Looking
at annotations, this means that if one wanted to annotate data from a particular exper-
iment with an observation about the tissues, it would not be enough to do this once,
as additional experimental data may be added into the database later (which would not
automatically “inherit” the annotation).

To address this, we propose the concept of valid time of annotations, where annota-
tions should be propagated to all data items matching a certain description within the
validity time interval specified by users. We refer to this feature as “user-centric time
semantics”.

Support for propagation of annotations in user-defined ways. The second usage
pattern that we observed was that there exist many relationships, or paths, between data
items that cannot be inferred by the existing database schema or their lineage. Such
paths materialize because, for example, tissues from multiple, independent experiments
were processed together, in a single assay (for example, on a single plate that needed
to be filled up to minimize costs). Annotations associated with this one assay would be
propagated to all experiments that shared the plate, e.g., in the case of a contamination.

To address this, we propose to enable users to specify explicit annotation paths, thus
allowing for more “interconnections” among data and knowledge. Annotations should
be propagated along these paths, reaching “related” data items, as specified by users.
Since these paths are essentially forming a network, we refer to this feature as “user-
centric network semantics”.

User-friendly Implementation. First of all, we need to identify a way to formally
define data items matching a certain criterion, to be used by our algorithms. The answer
is somewhat obvious: use database views, which describe the results of a query. Similar
approaches have been proposed in the past (e.g., [21]]); ours significantly extends the
use of views with additional semantics. Secondly, we need a realistic way for users to
utilize the new features. Clearly, they are not to be expected to provide view definitions
in SQL! In DataXS, a user can easily specify filtering conditions to locate certain data
items, in other words, to specify views using a point and click interface (Figure [));
these views were initially implemented to provide an easy reference for frequently used
queries (e.g., the In Vitro experiments tab in Figure[T)), but can also be trivially used to
implement all functionality of the ViP framework.

ViP: A User-Centric View-Based Annotation Framework for Scientific Data 297

Connected as Qinglan Li (ADMT Lab) | Admin | My Account | My Lab | Logout

%) University of Pittsburgh
CMPI/ Data Exchange Server Analysis Protocols

View Only | View & Edit

Save View | mGroup ltems

Experiments : All

Experiment Name Species Type Treatment Tretment Date Lab

g:::ﬁ""';‘::;" Influenza A (Testing Mouse Invitro Irfiuenza A APR 20071029 ADHT

Monkey Invitro Influenza A Monkey Invitro Influenza A APR 2007-10-18 Ross Lab
Mouse Invitro Influenza A Mouse Invifro Influenza A Fujian 2007-10-04 Ross Lab
Mouse Invitro HIV-1 Mouse Invitro HIV-1 VLP (ADA) 2007-10-03 Ross Lab

Fig. 1. DataXS User Interface

Contributions: This paper has both theoretical and practical contributions:

e based on our experience from a real system implementation, we introduce new an-
notation propagation methods, suitable for scientific data,

e we propose user-centric features (user-centric time semantics, network semantics,
and access control) that enable users to personalize annotation propagation,

e we propose to use views as the formal mechanism to implement the new annotation
propagation features and also as a user-interface paradigm,

e we utilize caching to significantly improve the performance over the state of the art,

e we experimentally evaluate the proposed ViP framework using a real system imple-
mentation and simulated workloads.

Roadmap: Sectionlpresents the details of the proposed annotation framework, along
with related work. Section 3] describes our implementation. Section [presents the re-
sults from our extensive experimental study using a real system.

2 Annotation Propagation Semantics in ViP

In this section, we present the details of our proposed semantics for annotation prop-
agation. In each case, we also present the corresponding statements in ViP-SQL, our
proposal for a simple extension to SQL that would handle the new semantics based on
the concept of views.

2.1 User-Centric Time Semantics

We propose the concept of valid time, which is the validity time interval of an annota-
tion view or path. It allows users to specify what time period to associate the annotations
with corresponding data or to propagate the annotations via a certain path.

If we consider the time dimension of annotation propagation, we can easily distin-
guish four different cases:

e now, where an annotation is only propagated to data items currently in the database,
e future, where an annotation is only propagated to data items that are added in the
database in the future,

298 Q. Li, A. Labrinidis, and P.K. Chrysanthis

e now+future, where an annotation is propagated to data items currently in the
database, and also to those that are added in the database in the future. This is
essentially the combination of the now and future approaches,

e future interval, where an annotation is propagated to data items that are added in the
database in the time interval a user specifies.

These four cases represent all the possible alternatives if one considers the concept of
future time semantics and also wants to give users the flexibility to specify the validity
interval for their annotations.

Related Work. Most of the current annotation management frameworks utilize now
time semantics, propagating annotations to only existing data items [2I3/4T3I14]. In
contrast, our system supports now and future semantics (in all the four “flavors” de-
scribed above), which we will assume for the rest of this paper. To the best of our
knowledge, only the work in functions similar to the now+future time semantics
presented in this paper.

Motivating Example #1. To properly motivate the need for time semantics, let us
assume a setup like that in the DataXS system, where experimental data are stored
(in the Experiments table) and shared among project participants. Let us assume that
a contamination happened in the ADMT Lab between Oct 1, 2007 and Oct 20, 2007,
and we would like to annotate all experimental data accordingly, with now+future time
semantics. Clearly, if we only attach an annotation to all the files matching the ADMT
Lab and happened Oct 1 - 20, 2007 (at the time of annotating), we will miss all the files
that are potentially added into the DataXS system at a later time, and still meet these
conditions. As we discussed earlier, this is a typical usage pattern, making now+future
time semantics a necessity. We can describe such an annotation in ViP-SQL as follows:

CREATE ANNOTATION V1 ON Experiments
AS (SELECT ExpID FROM Experiments
WHERE Lab = "ADMT" and Date >= "10/01/07"
and Date <= "10/20/07")
VALUE "ADMT Lab was contaminated between Oct. 1st
& Oct. 20, 2007. Please use data with caution."
VALIDTIME [now,)

General Case. The main idea behind view-based annotation propagation is that we
can attach an annotation to a view, i.e., a query definition that corresponds to a set of
data items, instead of attaching it to individual data items. If we do not materialize the
view, then the annotations will always be properly associated with the corresponding
data items, according to now+future time semantics.

Given that annotations are associated with views instead of individual data items, the
expected behavior in cases of modifications is straightforward (Figure P). Assuming a
view V; with annotation a, the following actions can be defined:

e INSERT(data) into VIEW:
if Dy becomes a member of view V; (either through insertion or an update or a
creation of an annotation view), then it will also be associated with annotation a
(attached to V;) when it is queried.

ViP: A User-Centric View-Based Annotation Framework for Scientific Data 299

:> Difa}
Vi fa}

Fig. 2. View-based Annotation Propagation: User-centric Time Semantics. (Annotation a is asso-
ciated with view V;. Data item D; € V; receives annotation a.)

e DELETE(data) from VIEW:
if D; is no longer a member of view V; (either through deletion or an update), then
it will not be associated with annotation @ when it is queried.

e DELETE(view):
if V; is deleted, then all the data items that were members of V; and were associated
with annotation a will no longer be associated with it.

2.2 User-Centric Network Semantics

Most annotation-enabled systems propagate annotations along data provenance paths.
In other words, annotations are propagated over existing “schema” paths between source
data and derived data. Although this happens over multiple derivation levels, it fails
to capture relationships between data items that do not share a common source in the
database. As we have witnessed from our involvement in the CMPI project, this can
happen often in scientific databases.

Through the ViP framework, we propose to empower users to specify explicit an-
notation paths between data items, thus establishing additional annotation propagation
paths. Such explicit paths are defined using views as follows:

e given a source view, V;, and a destination view, Vg,
e an explicit annotation propagation path Vs — Vj; is defined, such that any annotation
that is added in a member of V; must be propagated to all members of Vj;.

Motivating Example #2. Continuing from Motivating Example #1, we have that the
ADMT Lab and the Ross Lab are next to each other, and the ADMT Lab provides
the Ross Lab with tissues for model analysis. As such, there is a need to propagate all
annotations regarding ADMT Lab experiments to the Ross Lab (to properly record, for
example, if there has been any contamination). We can describe such an annotation in
ViP-SQL as follows:

CREATE ANNOTATION V2
ON Experiments
AS (select Date from Experiments

where Lab = "ADMT" and Treatment = "Influenza A")
TO Experiments
AS (select Date from Experiments

where Lab = "Ross" and Treatment = "Influenza A")
VALIDTIME [now,)

300 Q. Li, A. Labrinidis, and P.K. Chrysanthis
COE
Vi Vi

Fig.3. View-based Annotation Propagation: User-centric Network Semantics (Disjoint
source/destination). There exists an annotation propagation path from V; to V;. Data item
Ds € V; has annotation b. Data item D3 € Vj receives annotation b.

:> Ds{c}

Vi

Fig.4. View-based Annotation Propagation: User-centric Network Semantics (Identical
source/destination). There exists an annotation propagation path from V; to self. Data item
D4 € V; has annotation c. Data item D5 € V; receives annotation c.

Vl Vn
B @Bziii
i’ ()
Vm

Fig.5. View-based Annotation Propagation: User-centric Network Semantics (Overlapping
source/dest.). There exists an annotation propagation path from Vj, to V; and another path from
Vi to Vi, Vi and Vy, overlap. Data item Dg € V}, has annotation aa. Data item D7 is a member
of both V; and V/,,,. Data item D~ receives annotation aa. Data item Dsg receives annotation aa.

General Case. Considering the general case of using source/destination views to de-
scribe explicit paths for annotation propagation, we can see that such paths essentially
form a network, hence the need for network semantics. With regards to view member-
ship, the behavior is very similar to that in the case of time semantics, as presented in
the previous section. With regards to the relation between the source and destination
views, we consider the following cases:

e source and destination views are disjoint (Figure3))
e source and destination views are identical (Figure H)
e source and destination views are overlapping (Figure [3)

Related Work. In the context of metadata management, [21]] considered implicit paths
from queries to queries but they have not considered the explicitly-defined network

ViP: A User-Centric View-Based Annotation Framework for Scientific Data 301

paths as we do in this paper. In the context of schema mapping, there are multiple
works that consider paths of “similar” tables [8119].

2.3 User-Centric Access Control

We advocate that scientific annotation must have a strong access control component.
First of all, much of the data is not public, so appropriate access controls need to be in
place for the raw data, and the annotations on them. Secondly, even for public data, the
annotations are often private, since they reflect additional analysis that is not ready to be
made available to all. Thirdly, in many cases, even the way that raw data are associated
with each other (i.e., by specifying explicit paths for annotation propagation) corre-
sponds to private information that should not be made public. Given all these reasons,
the ViP framework includes multiple user-centric access control features.

On the annotation level. First of all, we implement access control at the level of indi-
vidual annotations. In other words, when an individual data item receives an annotation
from a user, the user can specify who can access the annotation. We support arbitrary
user hierarchies (i.e., specific users, groups of users, groups of groups of users, etc).

On the view level. We expect the majority of annotations to happen through views,
to take advantage of time semantics. In this case, user access controls are also imple-
mented, with the expected behavior.

On the path level. One important innovation of the ViP framework is the explicit path
functionality (network semantics). We support three different access control features,
as they apply to user-centric network semantics:

e Access control: Users would want to control who can take advantage of the explicit
annotation propagation paths that they introduce. This is necessary for two reasons:
(a) confidentiality of paths, i.e., not willing to make relationships between data pub-
lic; and (b) scalability of paths from a information absorption point of view, i.e., not
everybody is interested in everybody else’s beliefs on which data is related. This of
course means that certain paths will not be visible to some users.

o Maximum HAP: Given explicit annotation paths and the ensuing network seman-
tics, an annotation can theoretically be propagated over an unreasonable number of
paths, if left unconstrained. Towards this, the ViP framework includes a system vari-
able, MAX-HAP, short for maximum number of hops allowed to propagate, which
puts a system-wide upper bound over how many hops any annotation is allowed to
propagate. The number of hops starts counting after we follow the first “direct” path
(i.e., in Figure 3 the number of hops is 2). This was inspired by the TTL value of
queries in unstructured peer-to-peer networks.

e HAP on insert: The ViP framework enables users to specify a variable, HAP-i,
or Hops Allowed to Propagate at insertion, to indicate how far the newly-inserted
annotation can be propagated. HAP-i = 0 means the annotator just wants to limit
this annotation to data items specified in the view. HAP-i = 1 means the annotator
allows this annotation to be propagated only to neighboring nodes. HAP-i = MAX-
HAP means the annotator is not placing any restriction on the propagation of his/her
annotation.

302 Q. Li, A. Labrinidis, and P.K. Chrysanthis

CREATE ANNOTATION \3
ON Vx {a1, Gs, 0}
VALUE “at1”
VALIDTIME [now,)
FOR USER G3
WITH HAP-i 1

(a1, G3, 3}
MAX-HAP = 5

(a1, G3, 3

Fig. 6. User-Centric Annotation Propagation Example

e HAP on query: Although if A — B and B — C implies that A — C, this may
not be applicable for all cases (i.e., because of information “decay”). In cases of a
network of paths (e.g., as in Figure), it may not be prudent to exhaustively fol-
low all paths in the network to propagate annotations. Similarly with the HAP on
insert, the ViP framework gives the option to specify a maximum number of hops
an annotation is allowed to propagate at query time, or HAP-q. Given these three
parameters (some of which are optional), the maximum number of hops followed
is MIN(MAX-HAP, HAP-i, HAP-q). By setting HAP-i or MAX-HAP to 0, we ef-
fectively disable explicit annotation direct paths; by setting MAX-HAP to 1, we
effectively disable cascading annotation propagation.

Motivating Example #3. We illustrate the user-centric semantics of the ViP framework
using the example in Figure[@l Figure [@/Before has a network of paths; Figure[6/Action
indicates that an annotation is added on node V,.; Figure[6/After shows how annotations
would be propagated (the third number in the set corresponds to the number of hops
required to reach each node). We see that the annotation a; is propagated to V), within
HAP 1 as (a1, Gs, 1), and to V,, within HAP 4 (which is bigger than HAP-i). Clearly,
users that neither belong to group G's nor specify a HAP-q high enough will not “see”
annotation a;. Besides, if HAP-i of a; is set to 0, even if users specify a high HAP-q
will still not “see” annotation a;. The queries and the results are shown in Table[ll

Related work. There is significant related work in personalization, especially in con-
nection with information retrieval [16/18]). There is also additional work in user-centric
data management, allowing users to express their preferences on the execution of their

Table 1. Queries and Results for Figure [0

HAP-i Query Result User HAP-q Annotation
1 1 Vy U- 1 Q GJ 3 No al
1 2 V; U3 g G3 3 No al
0 3 VZ U3 g G3 5 No al

MAX-HAP 4 V. UsCGs 5 ai

ViP: A User-Centric View-Based Annotation Framework for Scientific Data 303

Table 2. Standard Annotation Management Features Comparison

Standard Features DBNotes[3] Mondrian[14] ULDB[2] bdbms[13] MMSI[21] ViP

Annotation Yes Yes Confidence Yes Yes Yes
Provenance Yes Yes Lineage Yes Yes Yes
Time Semantics:

- Implicitly-defined No No No No Yes Yes

- Explicitly-defined No No No No No Yes
Network Semantics:

- Implicitly-defined Limited Limited Limited Limited Yes Yes

- Explicitly-defined No No No No No Yes
Propagation Type Eager On-demand On-demand Eager On-demand Hybrid
Annotation Storage Naive Naive x-relations Anno. table g-type A-table
Scalability Small Medium Medium Medium Large Large
Query pSQL Color algebra TriQL A-SQL Predicate ViP-SQL

queries, such as [[17/20]. However, to the best of our knowledge, this is the first work to
address in a unifying framework all the user-centric features that we proposed as part
of ViP.

2.4 Discussion

There are many systems that support in isolation, some of the features that are part of
ViP without any one single system incorporating all of them. Additionally, many of the
semantics introduced by ViP are not found in other systems.

Most current systems, for example, do not support annotations that are also valid in
the future (Table 2)). Only MMS [21]] supports future time semantics in an implicitly-
defined way (i.e., without giving the user options to select as ViP is doing through the
valid time concept).

One of ViP’s novel ideas is the explicit paths for annotation propagation, which also
have privacy controls. Although existing systems support implicit annotation propaga-
tion paths, none except for ViP supports explicit, user-defined annotation propagation
paths. ViP supports large scale annotation management, thus employs a hybrid propa-
gation scheme while [3I13]] use eager propagation, whereas [2/14121]] use an on-demand
scheme.

To the best of our knowledge, ViP brings user-centric features in many aspects that
are not considered in most related work as shown in Table 3l ViP enables users to
specify the propagation method. In DBNotes [3], users can specify custom propagation
scheme to bind the source and target tuples while there is a join operation, so that the
annotations that are associated to the source tuples will be propagated to the target
tuples. ViP provides a stronger and more complex scheme, that is the annotation path.

Some systems consider access control on the data level, or even on the update autho-
rization part [13]]. Instead, we propose to fully support this feature in a broader domain,
on annotations, annotation views, and annotation paths.

304 Q. Li, A. Labrinidis, and P.K. Chrysanthis

Table 3. User Centric Annotation Management Features Comparison

User-centric Features DBNotes[3] Mondrian[14] ULDB[2] bdbms[13] MMS|21] ViP
Time Semantics:

- Valid Time No No No No No Yes
Network Semantics:

- Propagation Method Yes No No Limited No Yes
Access Control:

- Annotations No No No Limited No Yes
- Annotation Views No No No No No Yes
- Annotation Paths No No No No No Yes

3 Implementation

3.1 The ViP Framework

The ViP framework is illustrated in Figure [Zl ViP-SQL queries are rewritten automat-
ically into SQL queries evaluated by the annotation query processor, then registered
with the annotation register and the path setup manager. They are sent to DBMS and
the resulting annotation set is merged with the regular query result by the postprocessor
for matching and presentation. Our DataXS application “fits” on top of this framework,
providing a point-and-click user interface.

3.2 Annotations Registration

Explicit annotations could be a string or a file; while implicit annotations include an-
notation views and annotation paths. If it is an annotation view, the annotation register

TOS-dIA

Annotation Path Setup Angt[)]t:hon
Register Manager Procesrzor
%] P §>
<)
RS - 5
Data , DBMS = Cache
Source M‘(y/

JInsay
suonejouuy

PostProcessor

Fig.7. ViP System Architecture

ViP: A User-Centric View-Based Annotation Framework for Scientific Data 305

is responsible for insertion, deletion and updating. If it is an annotation path, the path
setup manager will update the auxiliary table to record path source and target, with ap-
propriate path query conditions. Obviously, sorting views or addressing the view con-
tainment problem [7IT0/22]] may bring significant computation and time complexity.
To simplify the problem setting, we assume that the network formed by the annota-
tion paths forms a directed acyclic graph, when ordered. All views are sorted by topo-
logical order to build a hierarchy/dependency tree, thus guarantee the correctness and
completeness.

3.3 Implementing Auxiliary Tables

It is quite naturally to use auxiliary tables storing the attributes of the annotation views.
Like MMS [21], ViP also uses auxiliary tables to store annotation view conditions,
which will work as filters to drop unrelated annotation lookups. However, MMS uses
Q-indexes (index on queries, which is similar to views in ViP) to maintain indexes on
the Q-values (query values); as such, for every data change, all related index tables need
to be updated. Unlike MMS, we use caching to improve the performance of computing
annotations. The reason is that for the index to be useful, it would need to be efficiently
updateable when data and annotations are inserted, deleted and updated; therefore, such
index maintenance may require a high cost in space and time. In addition, from the
usage pattern we observed in DataXS project, data updates happen more often than
annotation views/paths updates, in which case an index approach would require a lot of
Q-value updating. Thus, ViP relies on caching instead of indexing.

3.4 Querying Result with Annotations

We use ViP-SQL to allow users to retrieve regular results with annotations. A query with
annotation is rewritten as standard SQL with preprocessing and postprocessing. Prepro-
cessing checks the auxiliary table for possible early annotation filtering. If a query result
is satisfied in an annotation view, then the annotation query processor will lookup the
annotations associated with the query result. The cache is used to optimize system per-
formance. We present the pseudocode for the corresponding algorithms accordingly.

Caching to Optimize Annotation Search. If a data tuple is not found in the cache,
ViP will execute the annotation query and save its annotation result set into the cache. If
a data tuple is found in the cache, we need to verify if it is still “fresh.” Cache manage-
ment will take no action if a data item is inserted, deleted, or updated in the database.
Whenever an annotation registration is updated/inserted, our system will reset the cache
appropriately. If an annotation registration is removed, our system will remove its re-
lated entries from the cache as well. The algorithm is shown in Figure[8]

Search Associated Annotations. To Search the annotations associated with of a data
item, we need to search in both directions: its direct annotations (via annotation views)
and its inherited annotations (via annotation paths) as shown in Figure [0l

306 Q. Li, A. Labrinidis, and P.K. Chrysanthis

hit_caching(Ti)
Tj = search_in_cache_index(Ti.table, Ti.col, Ti.id)
if Tj is found,
compare(Ti.data, Tj.datasnapshot)
if matches
hit-counter+-+
return Tj.CachedAnnotationQueryResult
return false

insert_into_caching(Ti)
if cache is full
evict as LFU algo
insert Ti to cache
save a snapshot of data referred by Ti

after annotation_delete(Ti)
delete cached AnnotationQueryResult R
where R.table = Ti.table and R.id = Ti.id

Fig. 8. Algorithm of Annotation Cache Management

search_associated_annotation(Ti)
find_direct_associated annotation(Ti)
find_dependent_associated_annotation(Ti)
return Ti.annotationQueryResult

find_direct_associated_annotation(Ti)
A = search_in_Annotation_Attribute table(Ti.table, Ti.col)
for each annotation Aj in A
compare_condition_parameter (Aj, Ti)
if match, add Aj.id to Ti.annotationQueryResult

find_dependent_associated annotation(Ti)
H = search_in Inhertance Definition_table(Ti.table, Ti.col)
for each Hj in H
R = find_records_in_associated_table(Hj.inheritance_rule)
R_column = Hj.inhertance_through_rule.attribute
for each record Rm in R
search_associated_annotation(Rm.R_column)

Fig. 9. Algorithm of Searching Associated Annotations

4 Experimental Results

We have implemented the ViP system as a Ruby on Rails application that interfaces to
MySQL. We used simulated users, annotations, and query workloads to be able to scale
our experiments to desired levels.

To the extent possible, we compare our system with MMS [21]], the latest and the
most related work. In [21]], MMS was compared to other systems, specifically DBNotes
and MONDRIAN [[14]. MMS showed significant benefits over those systems both in
query times and storage space usage. That is because in DBNotes every relational table
column is associated to one additional annotation column, and if a value in a tuple has
more than one annotation, the tuple is recorded multiple times, one for each annotation.
On the other hand, MONDRIAN associates one extra annotation column to each rela-
tion, plus one shadow column for each attribute to indicate whether the annotation refers
to the respective attribute or not. In [21]], the experimental results showed that MMS re-
duced the redundant space used in DBNotes and MONDRIAN; also, it decreased query

ViP: A User-Centric View-Based Annotation Framework for Scientific Data 307

Table 4. Experiment Parameters

Parameter Value Parameter Value
Data tuples 300,000 Queries 1,000
Annotation views [1, 50,000] Users [1, 100]

Annotation paths [1,2,500] Path Depth [1, 10]

time even with the cost of updating the Q-index and querying additional metadata table.
Our system works similar to MMS in the way that there are annotation tables instead
of additional annotation columns. Thus, it is expected our system will perform similar
to MMS when compared to DBNotes and MONDRIAN if the association between the
data and the annotation is explicit and static. In this paper, we focused on implicit an-
notations, i.e., annotation propagation through annotation views and paths. Since both
ViP and MMS can accommodate future tuples and use views to specify annotation reg-
istration, we compared our system with MMS mainly in terms of query time. For those
features that ViP supports and MMS does not (such as the user-centric access control),
we performed a sensitivity study of our framework.

Data. We gathered data from what has already been stored in our DataXS prototype. To
test the scalability, we enlarged the dataset using uniform and Zipf distributions. The
experiment parameters are shown in Table @

Annotation Traces. There are two types of annotations registered: annotation view and
path. Annotation view is a query with static annotation(s) associated to it; annotation
path is the establishment of an annotation(s) propagation from one annotation view to
another annotation view. We generated annotation registrations using two different Zipf
distributions: one to identify how many annotation views a data item should participate
in, and another one to determine how many data items a particular annotation view
should contain. Annotation traces include annotation insertion and update.

Query Traces. We generated queries with Zipf distribution on both (1) data tuples
the query is associated with (2) query arrival sequence. Query conditions vary from 1
to 4 joins. All queries are read-only. Query time is measured in milliseconds unless
otherwise indicated.

4.1 View-Based Annotation Propagation

We compared the query time of our system, ViP, with MMS. Both systems retrieved the
same annotations associated with the same queries. In our first experiment, we varied
the total number of annotation registrations (Figure[TQ)). ViP always outperformed MMS
due to its caching optimization. With more annotation views registered, ViP gained
more benefit. In the case of 50,000 annotation views registered, ViP took about 25%
less time, indicating that ViP works better for large numbers of annotation views.

We also measured the confidence interval of the result to make sure they are sta-
tistically significant. In the case of 1,000 queries with 50,000 annotation views, the
95% confidence interval for ViP mean query time (ms) is (1468.06 F 7.36) = (1460.7,

308 Q. Li, A. Labrinidis, and P.K. Chrysanthis

Query Execution Time (per Query) Setup Time with Different Registered Annotation Views

2000 400

1800

1600

1400

7
1200 E 2507

aviP H aviP
1000 ! E 200 | !
=MMS Ly =MMS
o
g
1 0

1000 5000 10000 20000 30000 40000 50000 1000 5000 10000 20000 30000 40000 50000

Annotation Registration Annotation Registration

=
g
8

Execution Time (ms)

9
2
8

IS
8
8

N
8
8

o

Fig. 10. Query Time Fig. 11. Setup Time

1475.42); the 95% confidence interval for MMS mean query time (ms) is (1878.91 F
4.05) = (1874.86,1882.96). The results presented in the paper were acquired as the
average value from 1000 repeated experiments with random parameter settings. Due to
the limited space, not every confidence interval is listed in the paper; all results were
similar to this experiment.

In all experiments, we started with 80% annotation views and paths insertions. When
the query traces were executed, the remaining 20% of the annotation registrations were
performed, with their arrival times uniformly distributed over the duration of the exper-
iment. We assume each query or annotation registration operation is atomic. The query
time includes (1) data query time, (2) annotation lookup time, (3) cache lookup time if
cache is used, and (4) cache management time. The setup time includes (1) data inser-
tion time, (2) annotation registration time, and (3) cache setup time. The setup time per
query for both systems is shown in Figure [Tl Although ViP took extra time to manage
the cache, the overhead is negligible compared to the gain from the query time.

In the next set of experiments, we investigated the effect of various annotation den-
sities, which is the percentage of data associated with annotation views. In Figure
1000 queries were plotted in each subfigure to display the various query times. The
density was changed from 50% to 200%, and the query time increased accordingly. In
these figures, a vertical line corresponds to a cache hit (near O response time) on all
annotations the query expects to return. We found in the extremely dense case, which
is 200% in Figure that ViP had so many cache hits, that the overall query time
was reduced significantly. The detailed summary of average query time is presented in
Table 3l Again, ViP works better in large scale of annotation views because of its opti-
mized scheme. For fairness, we used only a 10% annotation density, which is the least
beneficial setting for ViP, in all other experiments.

Table 5. Query Time with Different Annotation Densities

Anno. Density 40% 50% 60% 70% 80% 90% 100% 150% 200%
MMS Time (ms) 1804.81 1808.66 1812.50 1867.94 1878.02 1895.51 1928.80 1979.92 2178.67
ViP Time (ms) 1471.38 1419.73 1445.81 1499.44 1394.39 1386.27 1484.16 1483.84 1250.99

ViP: A User-Centric View-Based Annotation Framework for Scientific Data 309

Query Execution Time (50% annotation)

2500

2000

ol
1500 o

Time (ms)

1000

500

0

158 115 172 229 286 343 400 457 514 571 628 685 742 799 856 913 970
Query ID

(a) Query Time of 50% Annotation Density

Query Execution Time (100% annotation)

O L e

Time (ms)

159 117 175 233 291 349 407 465 523 581 639 697 755 813 871 929 987
Query D

(b) Query Time of 100% Annotation Density

Query Execution Time (150% annotation)

il

2500

2000

T

Time (ms)

1000

500

*W

’ ;.v
158 115 172 229 286 343 400 457 514 571 628 685 742 799 856 913 970
Query D

—viP —mms

0

Query Execution Time (200% annotation)

2500

2000

1500

Time (ms)

1000

500

L

158 115 172 229 286 343 400 457 514 571 628 685 742 799 856 913 970
Query D

—viP —wmms

04

(c) Query Time of 150% Annotation Density

(d) Query Time of 200% Annotation Density

Fig. 12. Query Time with Different Annotation Densities

4.2 Annotation Propagation with Caching

In our optimization scheme, caching plays a major factor to improve system perfor-
mance. However, the cache management time was insignificant compared to the query
time, shown in Figure [[3l Even with 50,000 annotation views, the cache management

time is just about 3% in query time.

We performed a set of experiments to test the sensitivity of ViP to the cache size
(Figure[T4). We found that ViP worked best at 10% to 17.5% of the overall size. When

1600

Cache Maintenance Time vs Overall Execution Time

1400

1200

1000

Time (ms)

s

o

800
600
400
: M

1000 5000 10000

Annotation Registration

30000 40000 50000

‘ OE: ion Time Cache

B Cache Time

Fig. 13. Cache Management Time

310 Q. Li, A. Labrinidis, and P.K. Chrysanthis

Query Execution Time with Different Cache Sizes Annotation Hits with Different Cache Sizes
2000 25
1800 1#—4- - * * N *
* e N
1600 £y + o2
. =
o - g
2 1200 2 .
E
£ g *
o 1000 <
.E 800 o *
g *
600
£ Ll
400 ER id
z *
200
*
0 0
0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0% 45.0% 50.0% 00% 50% 10.0% 150% 20.0% 25.0% 30.0% 35.0% 40.0% 45.0% 50.0%
Cache Size over Data Set Size Cache Size over Data Set Size

(a) Query Time with Different Cache Sizes (b) Annotation Hits with Different Cache
Sizes

Fig. 14. Various Cache Sizes

the cache size was larger than 30%, not much benefit was gained (i.e., query times did
not improve much) from further cache size increases, although the cache hits may be
increased. This is clearly because a larger size cache brings extra effort to lookup and
manage the cache, so the overall query time will not be reduced.

4.3 View-Based Annotation Path Propagation

We conducted a set of experiments where varied the HAP variable (HAP-q) in annota-
tion path propagation. HAP-i was set as MAX-HAP. We present the results in Table [6]
It is obvious that with deeper hops search, more annotations got matched and more time
it took to retrieve them. Nonetheless, ViP increased the query time gradually.

4.4 User-Centric Access Control

Another interesting feature of ViP is its user-centric access control features. Not only
users may issue queries that include their search preference, but also users can spec-
ify public/private annotation views when they register the annotations. The first set of
experiments, in Figure [[3] and Figure [I€] illustrate how the different search coverage
affected the query times and the number of annotations found. The most restrictive
user-specified condition decreased the query time as well as the associated annotations.

On the other hand, Figure [[7] and Figure [T§] present the query times with different
percentages of public annotation views and annotation paths. In these cases, the remain-
ing “private” annotation views and paths were uniformly distributed among all users.
The query time almost decreased linearly as the public annotation views decreased;
however, it decreased faster when the public annotation paths were decreased. Since

Table 6. Path Propagation in Network Semantics

HAP-q 1 2 3
Time (sec) 10.1445 11.1853 13.5833
Annotations Found 269 278 289

ViP: A User-Centric View-Based Annotation Framework for Scientific Data

Time (ms)

et B

2 3 4 s 6 7 8 9
Number of Months to Search

Fig.15. Query Time for Different User
Search Conditions

Fig. 16. Annotation Found for for Different
User Search Conditions

Query Execution Time of Annotation Views For Users

Query Execution Time of Annotation Paths For Users

311

Time (sec)

itene,..

0% 20% 0%

SEEEE =

MMS 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% 9% 80% 70% 60% 50% 40%
Percentage of Public Paths

Percentage of Public Views

Fig.17. Query Time with Different Public
Annotation View Percentages

Fig. 18. Query Time with Different Public
Annotation Path Percentages

annotation paths have the transitivity property, once the dependent views are not vis-
ible, it may speed up the query time exponentially. This essentially works like a first
priority “filter” to reduce the query search time. In general, we expect such user-centric
features to have a compound effect if used together, dramatically reducing query times.

5 Conclusions

In this paper we presented ViP, a view-based user-centric annotation framework. ViP
introduced user-centric time semantics, network semantics, and access control for an-
notation propagation. Using database views as the underlying mechanism to implement
these semantics enabled us to have a well-defined formal framework and also have a
natural mapping to the existing user-interface, so that users of ViP do not have to learn
SQL in order to specify their annotations. An other major advantage of ViP, compared
to existing systems, is its use of caching techniques that significantly improve perfor-
mance, as verified by our extensive experimental study on a real system.

References

1. Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.:
Trio: A system for data, uncertainty, and lineage. In: Proc. of the VLDB conference (2006)

2. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs: Databases with uncertainty
and lineage. In: Proc. of the VLDB conference, pp. 953-964 (2006)

3. Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An annotation management system
for relational databases. In: Proc. of the VLDB conference, pp. 900-911 (2004)

4. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated databases. In:
Proc. of the ACM SIGMOD conference, pp. 539-550 (2006)

312

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Q. Li, A. Labrinidis, and P.K. Chrysanthis

Buneman, P., Khanna, S., Tajima, K., Tan, W.-C.: Archiving scientific data. ACM Transaction
Database Systems 29(1), 2-42 (2004)

Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data prove-
nance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316-330.
Springer, Heidelberg (2000)

Buneman, P., Khanna, S., Tan, W.-C.: On propagation of deletions and annotations through
views. In: Proc. of the PODS conference (2002)

Chiticariu, L., Tan, W.-C.: Debugging schema mappings with routes. In: Proc. of the VLDB
conference, pp. 79-90 (2006)

Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: DBNotes: a post-it system for relational
databases based on provenance. In: Proc. of the ACM SIGMOD conference (2005)

Cong, G., Fan, W., Geerts, F.: Annotation propagation revisited for key preserving views. In:
Proc. of the CIKM, pp. 632-641 (2006)

Cui, Y., Widom, J.: Practical lineage tracing in data warehouses. In: Proc. of the ICDE, pp.
367-378 (2000)

Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. The VLDB
Journal, pp. 471-480 (2001)

Eltabakh, M.Y., Ouzzani, M., Aref, W.G.: bdbms — a database management system for bio-
logical data. In: Proc. of the CIDR (January 2007)

Geerts, F., Kementsietsidis, A., Milano, D.: Mondrian: Annotating and querying databases
through colors and blocks. In: Proc. of the ICDE, p. 82 (2006)

Jagadish, H.V., Olken, F.: Database management for life sciences research. The SIGMOD
Record 33(2), 15-20 (2004)

Koutrika, G., Ioannidis, Y.: Personalization of queries in database systems. In: Proc. of the
ICDE, p. 597 (2004)

Labrinidis, A., Qu, H., Xu, J.: Quality contracts for real-time enterprises. In: Bussler, C.J.,
Castellanos, M., Dayal, U., Navathe, S. (eds.) BIRTE 2006. LNCS, vol. 4365, pp. 143-156.
Springer, Heidelberg (2007)

Lauzac, S.W., Chrysanthis, P.K.: Personalizing information gathering for mobile database
clients. In: Proc. of the ACM SAC, March 2002, pp. 49-56 (2002)

Melnik, S., Adya, A., Bernstein, P.A.: Compiling mappings to bridge applications and
databases. In: Proc. of the ACM SIGMOD conference, pp. 461-472. ACM, New York (2007)
Qu, H., Labrinidis, A., Mosse, D.: Unit: User-centric transaction management in web-
database systems. In: Proc. of the ICDE, April 2006, pp. 1-10 (2006)

Srivastava, D., Velegrakis, Y.: Intensional associations between data and metadata. In: Proc.
of the ACM SIGMOD conference, pp. 401-412 (2007)

Tan, W.-C.: Containment of relational queries with annotation propagation. In: Proc. of the
DBPL conference (2003)

Tan, W.-C.: Provenance in databases: Past, current, and future. Special Issue on Data Prove-
nance, Bulletin of the Technical Commmittee on Data Engineering 32(4) (December 2007)

	ViP: A User-Centric View-Based Annotation Framework for Scientific Data
	Introduction
	Annotation Propagation Semantics in ViP
	User-Centric Time Semantics
	User-Centric Network Semantics
	User-Centric Access Control
	Discussion

	Implementation
	The ViP Framework
	Annotations Registration
	Implementing Auxiliary Tables
	Querying Result with Annotations

	Experimental Results
	View-Based Annotation Propagation
	Annotation Propagation with Caching
	View-Based Annotation Path Propagation
	User-Centric Access Control

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

