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Abstract

Continuous queries in wireless sensor networks are es-
tablished on the premise of a routing tree that provides each
sensor with a path over which answers can be transmitted to
the query processor. We found that these structures are sub-
optimality constructed in predominant data acquisition sys-
tems leading to an enormous waste of energy. In this paper
we present MicroPulse1, a workload-aware optimization al-
gorithm for query routing trees in wireless sensor networks.
Our algorithm is established on profiling recent data acqui-
sition activity and on identifying the bottlenecks using an
in-network execution of the critical path method. A node S
utilizes this information in order to locally derive the time
instance during which it should wake up, the interval during
which it should deliver its workload and the workload in-
crease tolerance of its parent node. We additionally provide
an elaborate description of energy-conscious algorithms for
disseminating and maintaining the critical path cost in a
distributed manner. Our trace-driven experimentation with
real sensor traces from Intel Research Berkeley shows that
MicroPulse can reduce the data acquisition costs by many
orders.

1 Introduction

Recent advances in embedded computing have made it
feasible to produce small scale sensors, actuators and pro-
cessors that can be used in ad-hoc deployments of environ-
mental monitoring infrastructures [16, 8, 12]. The longevity
of a Wireless Sensor Network (WSN) heavily relies on the
existence of power-efficient algorithms for the acquisition,
aggregation and storage of the sensor readings.

Communicating over the radio in a WSN is the most en-
ergy demanding factor among all other functions, such as
storage [21] and processing [12]. The energy consumption

1A preliminary version of this paper appeared in [20]

for transmitting 1 bit of data using the MICA mote [1] is
approximately equivalent to processing 1000 CPU instruc-
tions [12]. One way to cope with the energy challenge is to
power down the radio transceiver during periods of inactiv-
ity. In particular, it has been shown that sensors operating
at a 2% duty cycle can achieve lifetimes of 6-months using
two AA batteries [13].

The continuous interval during which a sensor node S
enables its transceiver, collects and aggregates the results
from its children, and then forwards them all together to its
own parent is defined as the waking window τ . Note that τ is
continuous because it would be very energy-demanding to
suspend the transceiver more than once during the interval
of an epoch, which specifies the amount of time that sensors
have to wait before re-computing a continuous query.

It is important to mention that the exact value of τ is
query-specific and can not be determined accurately using
current techniques. For instance, a sensor cannot easily es-
timate how many tuples will be transmitted from its chil-
dren. Choosing the correct value for τ is a challenging task
as any wrong estimate might disrupt the synchrony of the
query routing tree. The objective of this work is to auto-
matically tune τ , locally at each sensor without any a priori
knowledge or user intervention. Note that in defining τ we
are challenged with the following trade-off:
• Early-Off Transceiver: Shall S power-off its

transceiver too early reduces energy consumption but
also increases the number of tuples that are not deliv-
ered to the sink, the root of the routing tree. As a result
the sink will generate an erroneous answer to the query
Q; and

• Late-Off Transceiver: Shall S keep the transceiver
active for too long decreases the number of tuples that
are lost due to powering down the transceiver too early
but also increases energy consumption. Thus, the net-
work will consume more energy than necessary which
is not desirable given the scarce energy budget of each
sensor.
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Figure 1. Nine sensing devices and their re-
spective workload (shown as edges) during
the execution of a continuous query Q. Mi-
croPulse utilizes this information in order to
locally adapt the waking window of each sen-
sor using the Critical Path Method.

In this paper we present MicroPulse, a novel algorithm
for adapting the waking window of a sensing deviceS based
on the data workload incurred by a query Q. Our ideas are
established on profiling recent data acquisition activity and
on identifying the bottlenecks using an in-network execu-
tion of the Critical Path Method.

The Critical Path Method (CPM) [6] is a graph-theoretic
algorithm for scheduling project activities. It is widely
used in project planning (construction, product develop-
ment, plant maintenance, software development and re-
search projects). The core idea of CPM is to associate each
project milestone with a vertex v and then define the de-
pendencies between the given vertices using activities. For
instance, the activity vi ⇐ vj denotes that the completion
of vi depends on the completion of vj . Each activity is as-

sociated with a weight (denoted as
weight⇐ ) which quantifies

the amount of time that is required to complete vi assuming
that vj is completed. The critical path allows us to define
the minimum time, or otherwise the maximum path, that is
required to complete a project (i.e., milestone v0). Any de-
lay in the activities of the critical path will cause a delay for
the whole project.

In order to adapt the discussion to a sensor network con-
text assume that each sensor si is represented by a CPM ver-
tex. More formally, we map each si to the elements of the
vertex set V = {v1, v2, . . . , vn} using a 1:1 mapping func-
tion f : si → vi, i ≤ n. Also, let the descendent-ancestor
relations of the sensor network be denoted as edges in this
graph.

Figure 1 illustrates an example which will be utilized
throughout the paper and Table 1 summarizes our main
symbols. The weights on the edges of the figure define the
workload of each respective node (as the required time to
propagate the query results between the respective pairs). It
is easy to see that the total time to answer the query at the

sink in the given network is at least ψ=99, since the critical

path is s0
40⇐ s1

30⇐ s3
29⇐ s8.

Having this information at hand enables the scheduling
of transmission between sensors. In particular, sensor si

can be scheduled to wake-up and transmit at the following
deadlines (wi): w1 = ψ − 40 = 59, w2 = w1 − 13 = 46,
w3 = w1 − 30 = 29, w4 = w1 − 22 = 37 while s0 and s1
will be listening for these transmissions during the intervals
τ0=[59..99) and τ1=[29..59) respectively. The same intu-
ition also applies for the leaf nodes, e.g., s5 starts transmis-
sion at w5 = w2 − 11 = 35 and s2 listens for this transmis-
sion in the range τ2=[35..46). Additionally, the critical path
enables a sensor sj (j ≤ n) to estimate the interval during
which its parent si (i ≤ n) will have its transceiver enabled.
This is very useful because in the subsequent epochs and
under a different workload, sj can find out if it can deliver
the new workload without first asking si to adjust its waking
window.

It should be noted that the edges in Figure 1 have dif-
ferent weights. This is very typical for a sensor network as
the link quality can vary across the network [16]. Another
reason is that some sensors might have a different work-
load than other sensors. Note that our scheduling scheme
is distributed which makes it fundamentally different from
centralized scheduling approaches like DTA [19] and TD-
DES [4] that generate collision-free query plans at a cen-
tralized node. Additionally, our approach is also different
from techniques such as [15] which segment the sensor net-
work into sectors in order to minimize collisions during data
acquisition.

Our Contributions

In this paper we make the following contributions:

• We devise techniques that intelligently exploit the crit-
ical path method in order to prolong the longevity of
the network and hence the quality of results. In partic-
ular, we optimize the length of the waking window τ
using an energy efficient distributed algorithm;

• We propose a distributed maintenance algorithm of the
critical path cost which minimizes communication be-
tween sensors;

• We provide an extensive experimental evaluation using
traces from a real sensor network deployment at Intel
Research Berkeley [2].

The remainder of the paper is organized as follows: Section
2 studies the waking window mechanism of popular data
acquisition systems. Section 3 presents the underlying al-
gorithms of the MicroPulse Framework. Section 4 presents
our experimental study using a trace-driven simulator and
Section 5 concludes the paper.
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Table 1. Definition of Symbols
Symbol Definition

Q A Query
si Sensor number i (s0 denotes the sink).
n Number of Sensors {s1, s2, ..., sn}
e, d Epoch duration and Routing tree Depth
ψ The Critical Path Cost of the network
wi Wake-up time instance of si

ψi Critical Path cost of si

τi Waking window of si

λi Workload Increase Tolerance of the parent of si

2 Background and Related Work

In this section we study the query routing tree of the two
most popular declarative acquisition frameworks: TAG [12,
13] and Cougar [18]. We start out our description by assum-
ing that the query Q has been disseminated to the sensors.

Tiny Aggregation (TAG): In this approach, the epoch e
is divided into a number of fixed-length time intervals
{e1, e2, . . . , ed}, where d is the depth of the routing tree,
rooted at the sink, that conceptually interconnects the n sen-
sors. The core idea of this framework is summarized as fol-
lows: “when nodes at level i+1 transmit then nodes at level
i listen”. More formally, a sensor si enables its transceiver
at time instancewi = �e/d�∗(d−depth(si)) and keeps the
transceiver active for τi = �e/d� time instances. Note that∑0

i=d(ei) provides a lower-bound on e, thus the answer will
always arrive at the sink before the end of the epoch. Set-
ting e as a prime number ensures the following inequality∑0

i=d(ei) < e, which is desirable given that the answer has
to reach the sink at time instance e.

For instance, if the epoch is 31 seconds and we have a
three-tiered network (i.e., d = 3) like Figure 2 (top, left),
then the epoch is sliced into three segments {10,10,10}.
During interval [0..10), nodes at level 3 will transmit while
nodes at level 2 will listen; during interval [10..20) level 2
nodes transmit while level 1 nodes listen; and finally during
[20..30), level 1 nodes transmit and the sink (level 0) listens.
Thus, the answer will be ready prior the completion of time
instance 31 which is the end of the epoch.

The main drawback of the TAG query routing tree is
that the waking window τ is an over-estimation of the ex-
pected workload that incurs on the edges of the tree (in
the above example 10 seconds!). The rationale behind this
over-estimation is to offset the limitations in the quality of
the clock synchronization algorithms [12], but in reality it
is too coarse. In the experimental Section 4, we found that
this over-estimation is two orders of magnitude larger than
necessary. Additionally, it is not clear how τ is set under
a variable workload which occurs under the following cir-
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Figure 2. The Waking (Listening) Window (τ )
in TAG, Cougar and MicroPulse.

cumstances: i) from a non-balanced topology, where some
nodes have many children and thus require more time to
collect the results from their dependents; and ii) from multi-
tuple answers, which are generated because some nodes re-
turn more tuples than other nodes (e.g. due to the query
predicate).

The MicroPulse algorithm presented in this paper grace-
fully handles both cases of variable workload by utilizing
the Critical Path Method. Our algorithm, like TAG, utilizes
the TinyOS [7] MAC layer [17] to handle the collisions that
will occur if nodes in the same vicinity transmit during the
same interval.

Cougar: In this approach, each sensor maintains a wait-
ing list that specifies its children. Such a list can be con-
structed by having each child explicitly acknowledging its
parent during the query dissemination phase. Having the
list of children enables a sensor to shut down its transceiver
as soon as all its children have answered. This yields a set
of non-uniform waking windows {τ1, τ2, . . .}2 as opposed
to TAG where we have a single τ which is uniform for all
sensors (i.e., �e/d�).

The main drawback of Cougar is that a parent node has
to recursively keep its transceiver active from the beginning
of the epoch until all children have answered. In order to
cope with children sensor that may not respond, Cougar de-
ploys a timeout h. To understand the drawback of Cougar
consider Figure 2 (top, right), where level 2 and level 1
nodes are expected to enable their transceivers at time in-
stance zero and wait until all their children have responded.
Given a failure at some arbitrary node si (1 ≤ i ≤ n), will
require that each node on the path si → . . .→ s0, will keep
its transceiver active for h additional seconds.

2In particular, if depth(vi) < depth(vj) then τi > τj (∀i, j ≤ n) .
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3 The MicroPulse Algorithm

In this section we describe the underlying algorithms of
MicroPulse. We divide our description in the following
three conceptual phases:

1. Construction Phase, executed once prior the execution
of Q, during which the sink constructs the routing tree
and becomes aware of the critical path cost ψ.

2. Pulse Phase, during which each sensor si tunes its
wake-up time instance wi and waking window τi ac-
cording to the value ψ.

3. Adaptation Phase, executed when a topology or work-
load change occurs.

3.1 The Critical Path Construction Phase

This phase starts out by having each node select one
node as its parent. This results in a waiting list similarly to
Cougar [18]. To accomplish this task, the parent is notified
through an explicit acknowledgement or becomes aware of
the child’s decision by snooping the radio. Note that in
both TAG [12] and Cougar [18] nodes select as their par-
ent whichever sensor forwarded the query first. Alterna-
tively, nodes could have chosen as their parent the neighbor
with the smallest hop count from the sink or the one with
the highest signal strength. In more recent frameworks, like
GANC [14] and Multi-Criteria Routing [11], sensors select
their parents based on query semantics, power consumption,
remaining energy and others. In more unstable topologies
a node can maintain several parents [5] in order to achieve
fault tolerance but this might impose some limitations on
the type of supported queries. Nevertheless, all these alter-
natives are supplementary to this step.

In the next step, we profile the activity of the incoming
and outgoing links and then propagate this information to-
wards the sink. In particular, we execute one round of data
acquisition where each sensor si maintains one counter for
its parent connection (denoted as sout

i ) and one counter per
child connection (denoted as sin

i,j), where j denotes the iden-
tifier of the child. These counters measure the workload be-
tween the respective sensors and will be utilized to identify
the critical path cost in the subsequent epochs. Note that
these counters account for more time than what is required
had we assumed a collision-free MAC channel. Addition-
ally, it is important to mention that we could have deployed
a more complex structure rather than the counters sout

i and
sin

i,j , that would allow a sensor to obtain a better statistical
indicator of the link activity. By projecting the time costs
obtained for each edge to a virtual spanning tree creates a
distributed Query Routing Tree, similar to the one depicted
in Figure 1.

The final step is to percolate these local edge costs to
the sink by recursively executing the following in-network
function f at each sensor si:

f(si) =

{
0 if si is a leaf,

max∀j∈children(si)(f(sj) + sin
i,j) otherwise.

The critical path cost is then f(s0) (denoted for brevity as
ψ). Using our working example of Figure 1, we will end
up with the following values : f(s5≤i≤9) = 0, f(s4) = 4,
f(s3) = 29, f(s2) = 11, f(s1) = 59 and ψ = f(s0) = 99.

3.2 The Pulse Phase

In this phase each sensor si (i ≤ n) locally defines three
parameters using the critical path cost ψ. These parame-
ters enable si to derive: i) the time instance during which
it should wake up (i.e., wi), ii) the interval during which it
should transmit (i.e., τi), and iii) the workload increase tol-
erance of the parent of si (i.e., λi) which signifies when the
synchrony of the query routing tree might be disrupted.

Algorithm 1 presents the main steps of this procedure
which propagatesψ top-down, from the sink to the leaf sen-
sors, with a message complexity of O(n). The first step
aborts the impossible case where the critical path is larger
than the epoch. The second step calculates the wake up
time instance wi, such that si has enough time to collect
the tuples from all its children sj (∀j ∈ children(si)). In
practice, this is defined by the child of si with the largest
workload (i.e., sin

i,maxchild). The second step also defines
the waking window of τi, which is the complete window
during which si will enable its transceiver. In the third step,
the children of si are notified with the adjusted critical path
cost (i.e., ψ − sout

j ). Concurrently with step three, si also
notifies its children sj with the workload increase tolerance
of si (i.e., λi) and a flag which signifies whether these nodes
belong to the critical path. Thus, sj can intelligently sched-
ule its transmissions in cases of local workload deviations.

To facilitate our presentation we will now simulate the
execution of Algorithm 1 on the example of Figure 1. To
simplify the discussion, assume that the costs a, b and c
(which account for processing, the inaccurate clock and
the collisions at the MAC layer) are all equal to zero.
Additionally, assume that the critical path cost is small
enough to fit within the epoch (i.e., ψ << e). In particular,
with ψ = 99 we get the following quadruples (si, wi, τi, λi)
at each sensor: { (s0, 59, [59..99), 0), (s1, 29, [29..59), 0),
(s2, 46, [46..59), 17), (s3, 29, [29..59), 0), (s4, 37, [37..59),
8), (s5, 35, [35..46), 0), (s6, 39, [39..46), 4), (s7, 27,
[27..29), 27), (s8, 0, [0..29), 0), (s9, 33, [33..37), 0) }

To understand the benefits of λi, consider the scenario
where node s7 increases its workload by 15 time instances.
Since λ7 = 29 − 2 = 27, s7 knows that the transceiver of

192192
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Algorithm 1 : MicroPulse Pulse Phase
Input: n sensing devices {s1, s2, . . . , sn} and the sink s0,
the Critical Path cost ψ, the epoch e.
Output: A set of n waking windows τi (∀i ≤ n), wake-up
time instanceswi (∀i ≤ n) and workload increase tolerance
thresholds λi (∀i ≤ n)
Execute these steps beginning from s0 (top-down):

1. If ψ > e then abort “The Critical Path is larger than
the Epoch”.

2. Find the maximum sin
i,j in si’s children and denote the

identifier of this sensor as maxchild. Now calculate
the wake time wi as follows:

wi = ψ − sin
i,maxchild − a− b− c, (1)

where a, b and c are three variables which offset the
costs of processing, the inaccurate clock and collisions
at the MAC layer. The waking window is the interval:

τi = [wi..(wi + sin
i,maxchild)) (2)

3. Now disseminate ψi to si’s children sj (∀j ∈
children(si)). Upon receiving ψi, each sj decreases
ψi locally, as follows:

ψj = ψi − sout
j (3)

4. At the same time with step 3, disseminate sin
i,maxchild

to si’s children sj (∀j ∈ children(si)). sj will uti-
lize this information in order to define the workload
increase tolerance (λi) of si, as follows:

λj = sin
i,maxchild − sout

j (4)

5. Repeat steps 2-5, recursively until all sensors in the
network have set wi, τi and λi respectively (i ≤ n).

its parent s3 is enabled for 27 additional time instances, thus
s7 can start delivering the workload earlier (i.e., w7 = 12
instead of w7 = 27) succeeding in completing the transmis-
sion on-time.

3.3 Adaptation Phase

In this section we describe an efficient distributed al-
gorithm for adapting the MicroPulse query routing tree in
cases of workload changes.

First notice that the naive approach to cope with work-
load changes is to reconstruct the MicroPulse tree in every
epoch. The message cost of such an approach is analyzed as
follows: the MicroPulse construction phase has a message
complexity of O(1) as it can be executed in parallel with
the acquisition of data tuples from sensors (i.e., the critical
path cost can be piggybacked with data tuples). The Pulse
phase on the other hand, has a message complexity ofO(n)
as it requires the dissemination of the critical path cost to
all n nodes in the network. The algorithm we propose in

Algorithm 2 : MicroPulse Adaptation Phase
Input: A sensor si, the critical path value ψi, the wake-up time
wi, the waking window τi, a flag which indicates if si lies on the
critical path, an error threshold δ.
Output: An updated set of wi, τi and λi values.

1: procedure Adapt(si)
2: � Step 1: Calculate Workload Indicators
3: workload′i = ψi − wi; � Workload of previous epoch
4: for j = 1 to children(si) do
5: add(tuples(sj), workloadi); � Build new workload
6: end for
7: add(tuples(si), workloadi); � Append local tuples
8: x = |workloadi − workload′i| � Workload Deviation
9: if (x < δ) then

10: signal(finished); � Negligible Workload Change
11: end if

12: � Step 2: Important Workload Change on the CP
13: if (cpi) then
14: send(”Request Critical Path Reconstruction”, sj);
15: signal(finished);
16: end if

17: � Step 3: Important Workload Change NOT on the CP
18: if (workloadi decreased by x) then
19: wi = wi + x; � Adjust local wakeup time
20: else� Workload was Increased by x
21: if (x ≤ λi) then � x is less than the available slack
22: wi = wi − x; � Adjust local wakeup time
23: else
24: send(”Request Critical Path Reconstruction”, sj);
25: end if
26: end if

27: signal(finished);
28: end procedure

this section can circumvent the O(n) cost incurred by the
pulse phase in every epoch by deploying a set of rules we
describe next.

Algorithm 2, presents the MicroPulse Adaptation algo-
rithm which proceeds in three steps. The first step of the
algorithm (lines 2-11) calculates the workload indicators of
the current epoch (i.e., workloadi) and the previous epoch
(i.e., workload′i). If the workload has changed by more
than a user defined user threshold δ in line 9, we consider
this change as significant and proceed with the adaptation
of the routing tree in line 12. Otherwise, we disregard this
deviation and abort the algorithm. Assuming a significant
deviation, step 2 handles the case where the change occurs
on the critical path. In such a case, si has to request the re-
construction of the routing tree using the construction and
pulse phases. For instance, if the workload of s3 changes
from 30 time instances to 35 time instances (see Figure 1)
then this will trigger the reconstruction of the MicroPulse
tree and this change should be propagated to all nodes in
the network. Although this case is possible, our experimen-
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tal study in section 4.1 has shown that it is not frequent.
Finally, step 3 of Algorithm 2 (lines 17-26) handles the

more common case where the change does not occur on
the critical path. In such a case, if the workload is de-
creased by x (line 18) then a sensor locally delays its wake
up variable by x (i.e., to wi + x). For instance, if the
workload of s2 drops from 13 to 11 (thus, x = 2), then
wnew

2 = w2 + x = 46 + 2 = 48. Similarly if the workload
is increased by x (line 20) then there are two cases: i) the
increase is less or equal to the slack λi and ii) the increase
is greater than the slack λi. For the first case (i) consider a
workload increase at s2 from 13 to 18 (thus, x = 5 that is
smaller than λ2 = 17). This yields the following adapta-
tion of the wake up time wnew

2 = wi − x = 46 − 5 = 41.
For the second case (ii) consider a workload increase at s2
from 13 to 32 (thus, x = 19 that is larger than λ2 = 17).
This yields the reconstruction of the tree as such an increase
might potentially create a new critical path.

4 Experimental Evaluation

In this section we describe the trace-driven experimental
methodology we adopt and the results of our evaluation.

4.1 Experimental Methodology

Datasets: We utilize a real trace of sensor readings that
is collected from 58 sensors deployed at the premises of
the Intel Research in Berkeley [2] between February 28th
and April 5th, 2004. The sensors utilized in the deployment
were equipped with weather boards and collected time-
stamped topology information along with humidity, temper-
ature, light and voltage values once every 31 seconds (i.e.,
the epoch). The dataset includes 2.3 million readings col-
lected from these sensors. Using this dataset we derive the
following two datasets:

i. Intel54: This is a subset of readings from the 54 sen-
sors that had the largest amount of local readings. The
rest four sensors were excluded from our experiments
because they had many missing values.

ii. Intel540: This is a set of 540 sensors that is randomly
derived from the of Intel54 dataset. In particular, we
randomly replicate nodes from the Intel54 dataset until
we obtain a set of 540 nodes.

Query Sets: We utilize three representative queries from
two predominant classes of queries in wireless sensor net-
works.

The first class of such queries are aggregate se-
lection queries [18, 12] (i.e., SELECT agg() FROM
sensors). Roughly, these queries can be distinguished

in: i) distributive aggregates, where records can be aggre-
gated in-network without compromising correctness (e.g.,
Max, Min, Sum, Count) and ii) holistic aggregates,
where in-network aggregation might compromise the result
correctness (e.g., Median), thus all tuples have to be trans-
mitted to the sink before the query can be executed. The
separation between the above cases is important as each in-
dividual case defines a different workload per edge (i.e., dis-
tributive aggregates have a fixed workload of one tuple per
edge while holistic aggregates a variable workload).

The second class of representative queries are non-
aggregate selection queries (e.g., SELECT moteid
FROM sensors). Assuming a static topology such
queries generate a fixed workload per edge, unless we ap-
ply a predicate on the query (e.g., temperature > X)
and generate a variable workload per edge in this manner.

In our experiments we utilize the following query-sets
which encapsulate all the above cases:

• Single-Tuple queries (ST): where a sensor transmits
exactly one tuple per epoch. Distributive aggregates
belong to this category. We utilize the following
non-aggregate selection query in our study: SELECT
moteid, temp
FROM sensors
WHERE temp = (SELECT MAX(temp) FROM
sensors)

• Multi-Tuple queries with Fixed size (MTF): where a
sensor transmits a set on f tuples per epoch with f be-
ing a constant. Holistic aggregates and non-aggregate
selection queries with a fixed workload belong to this
category. We utilize the following representative query
in our study:

SELECT moteid, temp
FROM sensors

• Multi-Tuple results with Arbitrary size (MTA): where
a sensor transmits a set of f ′ tuples per epoch with
f ′ being a variable that might change across different
epochs. Non-aggregate selection queries with a vari-
able workload belong to this category. We utilize the
following representative query in our study:

SELECT moteid, temp
FROM sensors
WHERE temp>39

Sensing Device & Communication: We use the energy
model of Crossbow’s new generation TelosB [1] sensor de-
vice to validate our ideas. TelosB is an ultra-low power
wireless sensor that consumes 23mA in receive mode (Rx),
19.5mA in transmit mode (Tx), 7.8mA in active mode
(MCU active) with the radio off and 5.1µA in sleep mode.
Our performance measure is Energy, in Joules, that is re-
quired at each discrete time instance to resolve the query.
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The energy formula is as following: Energy(Joules) =
V olts × Amperes × Seconds. Our communication pro-
tocol is based on the ubiquitous for sensor networks IEEE
standard 802.15.4 (i.e., the basis for ZigBee [3] which is
used by many sensor devices including TelosB). Our data
frames are structured as following [10]: Each message is
associated with a 5B (Byte) TinyOS header [9]. This is aug-
mented with an additional 6B application layer header that
includes: (i) the sensor identifier (1B), (ii) the message size
(4B) and the depth of a cell from the querying node (1B).
In each message we allocate 2B for environmental readings
(e.g., temperature, humidity, etc.), 4B for aggregate values
(Max, Min and Sum) and 8B for timestamps. ZigBee’s
MAC layer [3] dictates a maximum data payload of 104
bytes thus we segment our data packets whenever this is re-
quired.

4.2 Energy for Single-Tuple Answers

In the first experimental series we assess the energy ef-
ficiency of the MicroPulse algorithm compared to its com-
petitors TAG and Cougar. We choose to conduct this eval-
uation in isolation from the rest components (flash, weather
board, etc.) in order to identify the distinct properties of the
three algorithms we compare.

Figure 3 shows the energy consumption for the Intel54
dataset using the single-tuple query ST. We observe that
TAG requires 11,227±2mJ, which is two orders of mag-
nitude more energy than the energy required by MicroPulse
(i.e., only 53±35mJ). This is attributed to the fact that the
transceiver of a sensor in TAG is enabled for ≈2.14 sec-
onds in each epoch (i.e., �e/d� = 30/14), while in Mi-
croPulse it is only enabled for ≈146ms on average. En-
abling the transceiver for over two seconds in TAG is clearly
the driving force behind its inefficiency. Figure 3 also shows
that the MicroPulse energy curve quickly drops to the mean
value of 53mJ within the first epoch (i.e., the sudden drop
at the beginning of the curve). Notice that MicroPulse runs
very much like Cougar during the first epoch but our algo-
rithm then intelligently exploits the waking window cost to
preserve energy.

Finally, Figure 3 shows that the Cougar algorithm re-
quires on average 882±250mJ, which is one order of mag-
nitude more than the energy required by MicroPulse. The
disadvantage of the Cougar algorithm originates from the
fact that the parents keep their transceivers enabled until all
the children have answered or until the local timer h 3 has
expired (in cases of failures). Thus, any failure is automati-
cally translated into a chain of delayed waking windows all
of which consume more energy than necessary. One final
observation regarding the Cougar algorithm is that it fea-
tures a large standard deviation (i.e., 250mJ), which sig-

3We configured the child waiting timer h to 200ms.
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Figure 3. Energy Consumption for the Intel54
dataset with the query ST.

Table 2. Energy (in mJ) for the Intel54 Dataset
ST MTF MTA

TAG 11,227±2 11,228±2 11,225±1
Cougar 882±250 893±239 877±239
MicroPulse 53±35 56±37 50±21

nifies that certain nodes consume more energy than oth-
ers. This is attributed to the fact that the cost of failures in
Cougar is proportional to the depth of the node that caused
the failure. In particular, failures at a large depth (i.e., closer
to the leaf nodes) will generate a larger chain of waking
windows, thus will be more energy demanding than failures
that occur at a small depth (i.e., closer to the sink). We have
repeated the experiment for the MTF and MTA queries and
summarize the results in Table 2.

4.3 MicroPulse in a Large-Scale Network

In the second experimental series we evaluate the effi-
ciency of MicroPulse in a large-scale sensor network, as
this is provided by the Intel540 dataset. Figure 4, shows
that MicroPulse requires only 3,446mJ on average (i.e., the
mean of all three queries) while Cougar requires as much
as 7,281mJ for the acquisition of values from all 540 nodes.
This shows that MicroPulse retains a significant competi-
tive advantage over Cougar even for larger-scale wireless
sensor networks. Note that we have omitted the presenta-
tion of the TAG algorithm as it has a very high energy cost
(i.e., 189, 707mJ).

We have repeated the experiment for the MTF and MTA
queries and summarize the results in Table 3. For all queries
we noticed that the MicroPulse-to-Cougar performance ra-
tio is slightly increased (i.e., 47%) compared to the re-
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Figure 4. Energy Consumption for the Intel540
dataset with the query MTF.

Table 3. Energy (in mJ) for the Intel540 Dataset
ST MTF MTA

TAG 189,691±53 189,707±49 189,670±51
Cougar 7,269±374 7,317±376 7,257±376
MicroPulse 3,431±140 3,510±126 3,398±132

spective performance ratio noticed with the Intel54 dataset
(which was only 6%). Such an increase was expected as
larger networks have a higher probability of transient net-
work conditions and arbitrary failures. The above charac-
teristics are causes that lead to the disruption of the query
routing tree synchrony. Nevertheless, the MicroPulse ap-
proach is still 53% more energy efficient than Cougar under
these limitations, thus can have many practical applications
in large-scale environments.

5 Conclusions

This paper studies a workload-aware optimization tech-
nique of the query routing tree in Wireless Sensor Net-
works. In particular, we study the problem of optimizing
the length of the waking window in order to minimize the
consumption of energy. Our ideas are established on pro-
filing recent data acquisition activity and on identifying the
bottlenecks using an in-network execution of the Critical
Path Method. We have provided an elaborate description of
energy-conscious algorithms for disseminating the critical
path cost and for maintaining such a cost in a distributed
manner. Our qualitative and quantitative comparison with
other predominant data acquisition frameworks has shown
that MicroPulse offers tremendous energy reductions under
realistic conditions. In the future we plan to investigate ad-
ditional modules that can yield collision-aware query rout-
ing trees.
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