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Abstract

Web server scalability can be greatly enhanced via
hybrid data dissemination methods that use both unicast
and multicast. Hybrid data dissemination is particularly
promising due to the development of effective end-to-end
multicast methods and tools. Hybrid data dissemination
critically relies on document selection which determines
the data transfer method that is most appropriate for
each data item. In this paper, we study document se-
lection with a special focus on actual end-point imple-
mentations and Internet network conditions. We individ-
uate special challenges such as scalable and robust pop-
ularity estimation, appropriate classification of hot and
cold documents, and unpopular large documents. We
propose solutions to these problems, integrate them in
MBDD (middleware support multicast-based data dis-
semination) and evaluate them on PlanetLab with col-
lected traces. Results show that the multicast server can
effectively adapt to dynamic environments and is sub-
stantially more scalable than traditional Web servers.
Our work is a significant contribution to building prac-
tical hybrid data dissemination services.

1 Introduction

Web server scalability can be greatly enhanced with
hybrid data dissemination that uses both unicast and
multicast [7, 11, 19, 28]. Hybrid data dissemination is
particularly promising due to the development of effec-
tive end-to-end multicast methods and tools [8,9,15,17,
20,22]. Hybrid data dissemination critically relies on
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document selection, which determines the data transfer
method that is most appropriate for each data item. In
this paper, we study document selection with a special
focus on actual end-point implementations and Internet
network conditions. We individuate special challenges
such as scalable and robust popularity estimation, ap-
propriate classification of hot and cold documents, and
unpopular large documents. We propose solutions to
these problems, integrate them in MBDD (middleware
support multicast-based data dissemination) and evalu-
ate them on PlanetLab [1] with collected traces.

Hybrid data dissemination uses a combination of uni-
cast and multicast channels. Multicast channels are used
for hot (popular) documents that are of interest to most
clients. Multicast aggregates the servicing of hot docu-
ments into a single transmission and is thus more scal-
able than traditional unicast. However, multicast is inap-
propriate for cold (unpopular) documents since the mul-
ticast channel would force unwanted contents on most
clients. Therefore, cold documents use traditional uni-
cast. As a result, hybrid data delivery would ideally
achieve scalable utilization of server and network re-
sources while avoiding the reception of unneeded con-
tents. However, the ideal picture is contingent on several
assumptions, and in particular on the server’s ability to
partition documents as hot or cold. Document selection
determines the data transfer method that is most appro-
priate for each data item. While previous work often fo-
cuses on one or several separate issues involved in doc-
ument selection, this paper attempts to investigate these
issues together, and devise integrated solutions for the
document selection problem.

The first issue in document selection is to estimate
document popularity. The problem can be further di-
vided into two aspects. (1) Popularity of cold data. Ref-
erences to cold documents can be recorded during the
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processing of client requests. The challenge lies in mon-
itoring the unicast workload and collecting popularity
information in the presence of workload dynamics. For
example, if unicast connections are rejected at the oper-
ating system level due to unexpected sudden increase of
unicast workload, the server can underrate the popular-
ity of cold data since it fails to see the denied connec-
tions. In this paper, we present a two-phase processing
design for accommodating client requests and capturing
workload dynamics. Our design enables the server to
adapt to a rapidly changing environment. (2) Popular-
ity of hot data. Accesses to hot data are not seen by the
server. One effective method to evaluate popularity of
hot data is to sample clients, where the server multicasts
polling requests so that clients would submit reports of
references to hot documents with a specified probability.
In practice, some concerns arise. For example, packets
for polling requests can fail to reach a portion of clients
if the underlying multicast protocol is not reliable [8],
which leads the server to underestimate the popularity
of hot data. We provide a scalable sampling approach
that is highly resilient to packet loss.

The second key problem in document selection is the
algorithm for classifying hot documents given popular-
ity estimates. Previous algorithms are designed with the
assumption that multicast bandwidth can be set to any
amount within the total server bandwidth [7,11]. How-
ever, in the Internet, the feasible multicast bandwidth
is generally small compared with the available server
bandwidth [27]. Hence, the problem needs to be re-
examined. In this paper, we propose a simple and ef-
ficient algorithm for hot document selection. The algo-
rithm ensures scalability by controlling the server per-
ceived workload. Unlike early algorithms that assume a
flat schedule on the multicast push channel [7, 11, 28],
our algorithm allows the server to select more advanced
scheduling strategies.

Another major problem is the selection of warm doc-
uments (defined in Sec. 2). Warm documents can so-
licit a big number of client requests and cause a sudden
load increase on the server. One solution is to employ
the multicast pull technology, where the server broad-
casts warm data on an additional multicast channel (the
multicast pull channel) [13]. However, previous work
has not adequately investigated the selection method of
warm documents. In this paper, we argue that warm doc-
ument selection should be conservative to improve per-
formance. As a consequence, we propose a lazy warm
document selection scheme, which delays warm docu-
ment selection until there is a potential of server over-
load.

In this paper, for the first time, we demonstrate that
unpopular large documents notably impair performance.
We give an efficient method to erase their negative ef-

fects by improving the hot document selection algo-
rithm.

We implement our solutions in the context of the
MBDD architecture [13], and evaluate them on Planet-
Lab (an Internet based network testbed) using collected
web traces. The trace-driven experiments show that our
multicast server is scalable and employs significantly
less bandwidth than traditional web servers to provide
comparable services. The multicast server is capable
of controlling the incoming rate of unicast requests in
the presence of traffic dynamics, thereby avoiding over-
loads. Furthermore, we conduct synthetic experiments
on PlanetLab, which demonstrate the fast speed of the
multicast server to adapt to huge workload increase by
means of the document selection algorithms.

The remaining paper is structured as follows. Sec. 2
describes the background of MBDD. In Sec. 3, we in-
vestigate document selection and propose our solutions.
Sec. 4, 5 and 6 report our experiments. In Sec. 7, we
further compare our work with prior related work. Sec.
8 concludes the paper.

2 Background: The MBDD Middleware

The MBDD middleware unifies data management
methods and data communication techniques into a soft-
ware distribution [13]. It frees distributed applications
from the details of underlying multicast transport and
provides them with a scalable data management layer.

Data dissemination methods: = The middleware
utilizes three data dissemination methods: multicast
push, multicast pull and unicast pull. In multicast push,
the server repeatedly broadcasts documents (data items
identified by URIs, e.g., an HTML file, an image file)
to clients. Clients wait on the multicast channel for the
requested data without sending explicit requests to the
server. Multicast push is ideal for propagating hot docu-
ments. In multicast pull, clients submit explicit requests
for documents and the server multicasts the requested
data to clients. When multiple clients access the same
document within a short time, the server multicasts the
document only once. Multicast pull is suitable for dis-
seminating warm documents, for which repetitive multi-
cast push cannot be justified, while there is an advantage
in aggregating concurrent client requests. Traditional
unicast pull is preserved to disseminate cold documents.

Architecture: The MBDD server comprises of a
number of components. The document selection com-
ponent collects statistics on document popularity. The
component periodically performs document selection to
update the hot document group. Each selection cycle is
called a document selection period (a DS period). An
index of current hot documents is constantly broadcast
on multicast push so that clients can quickly find out if
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a document is on the multicast push channel. Unlike hot
document selection, warm document selection can take
place any time as needed (see Sec. 3.4). The multicast
push scheduling component determines the frequency
and order by which hot documents are broadcast. The
multicast pull scheduling component arranges the se-
quence in which warm documents are disseminated.

To acquire a hot document, an MBDD client simply
waits for the data on the multicast channels. To obtain a
non-hot document, the client opens a TCP connection to
the server and submits a request over it; then the client
waits for the data on both the unicast channel and the
multicast channels.

At both client and server sides, the transport adaption
layer (TAL) allows the middleware to interact with var-
ious underlying multicast overlays with a uniform API.
Although large scale overlays are still an active research
area, a discussion of the underlying TAL overlay is out
of the scope of the paper.

Supporting web data dissemination: Web applica-
tions interact with the middleware using the HTTP pro-
tocol. The MBDD client sits under web clients such
as browsers. Web clients send HTTP requests to the
MBDD client and receive HTTP responses from it. The
MBDD server sits in front of a back-end web server. The
MBDD server obtains the content of documents from the
web server using HTTP. In [31], we give more details
and provide the method to incrementally deploy MBDD
in the Internet.

3 Document Selection Issues
3.1 Popularity of Non-hot Documents

3.1.1 Processing Unicast Requests

Clients access non-hot documents by making unicast re-
quests. Hence, the problem of evaluating popularity of
non-hot data can be studied by examining the processing
of client requests at the server.

Fig. 1(a) describes a design that processes a unicast
request in two phases. In the first phase, the Parser ac-
cepts a request, parses it, and reports the targeted docu-
ment D to the DocSelection which is in charge of docu-
ment selection. Then, the request is added to a first-in-
first-out (FIFO) queue named the RequestQueue. The
DocSelection increases the count of references to D by
1. Meanwhile, the DocSelection analyzes the current
workload and may make a warm document selection
(see Sec. 3.4). If a warm document W is success-
fully selected, all requests for W in the RequestQueue
are removed and dropped since W will be broadcast on
the multicast pull channel. Dropping a request leads the
server to close the corresponding unicast connection. As
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Figure 1. Two-phase Processing

a result, requests for warm documents do not need the
second phase processing.

The second phase is handled by RequestHandlers in a
thread pool. A RequestHandler takes a request from the
RequestQueue, and sends back the requested data over
the unicast connection associated with the request.

The RequestQueue’s size is bounded. This helps to
keep requests served within a reasonable time. When
the queue size reaches the uplimit and no warm docu-
ment can be selected to reduce it, any new parsed re-
quest must be dropped. However, before the drop, the
victim request is reported to the DocSelection, so that
no popularity information is lost.

In this design, the server uses the Parser to monitor
two things. First, unicast workload is observed by count-
ing the total unicast references R. Second, the access
probability of a document by unicast requests is com-
puted as r/ R, where r is the number of references to the
document.

3.1.2 Improving Adaptability

The server can perceive a large and rapid increment of
unicast requests. For example, several cold documents
suddenly become extremely popular. If the rate of in-
coming requests exceeds the processing speed of the
Parser, a portion of client connection requests can be
silently rejected at the operating system level. Being
blind to the denied connections, the server underesti-
mates the workload and is unable to perform appropriate
document selection to adapt promptly. We show this fact
with experiments in [31].

Fig. 1(b) shows an improved design to enhance
server’s adaptability. The basic idea is to separate work-
load monitoring from the Parser. We add the Acceptor to
accept requests and report workload. Upon accepting a
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request, the Acceptor asks the DocSelection to increase
a counter that records the total unicast accesses. The ac-
cepted request is then put in an FIFO queue called the
AcceptQueue. The Parser takes requests from the Ac-
ceptQueue and parses them. As the Acceptor’s task is
light, arrived requests are quickly accepted and counted,
thereby avoiding having requests accumulated at the op-
erating system level. In a DS period, if the Acceptor
accepts n requests, and among m requests parsed by the
Parser, r of them refer to document D, the DocSelection
assumes there are nr/m requests for the document. If
the DS period length is L, the access rate of D is evalu-
ated as nr/mL.

The AcceptQueue’s size is bounded to avoid a huge
number of concurrent connections that consume exces-
sive resources. Should the queue be full, the Acceptor
drops newly accepted requests after reporting their ar-
rivals to the DocSelection. As a result, the server is kept
aware of the actual incoming request rate, which enables
it to conduct appropriate document selections.

3.2 Popularity of Hot Documents

To collect hot data popularity, the server multicasts a
polling request (PR) that asks clients to submit reports
with probability p. A report lists the hot documents ac-
cessed during a time interval with their reference counts.
A major concern is that a PR can fail to reach some
clients if multicast is not reliable [8]. We solve the prob-
lem by having the server broadcast the PR multiple times
in each DS period. To achieve scalability, our approach
spreads the arrivals of reports at the server to prevent
report bursts.

Suppose a DS period with identifier I starts at time
to and ends at time t;. The server creates a PR at ¢ty and
transmits it on multicast push every « seconds during the
period. Furthermore, the server expects to receive client
reports in the interval of [t; — (,¢1). By tuning 3, the
server can spread out the report arrivals. Every time the
PR is transmitted, it contains I, p, § and ¢, where ( is
the length of time between the current transmission and
t1. For PRs of the same DS period, a client only reacts
to the first one that is received, and it replies to it with
probability p. If 3 < (, the client should reply between
time ¢; — (3 and time ¢, and in practice it counts accesses
to hot documents for ( — ~ seconds, where + is a ran-
dom value in (0, 5], and submits a report. If 8 > (, the
client has received the PR during the expected reply in-
terval, and so it computes statistics for v seconds before
submitting a report, where + is a random value in [0, ¢).
Note the length of the sampling interval is piggybacked
to the report.

The server defines a valid report as one that was col-
lected for an interval no less than a threshold (we sim-

ply set it to « in our experiments). Suppose among
m received reports, k of them are valid. Further, sup-
pose the access rate to a document in report ¢ is \;, the
estimated access rate of the document is calculated as
mY¥_, \;/pk. This popularity estimate can be analyzed
in terms of its accuracy. However, in this paper, we omit
the analysis except to observe that the server is robust to
sampling errors thanks to the warm document selection
(Sec. 3.4).

The reports must be processed in time for effective
new hot document selection. The server assigns higher
priority to reports over any other requests. Handling a
report is efficient for it does not incur the overhead asso-
ciated with a response. Moreover, in MBDD, identifiers
of documents are represented with digests [24]; thus, the
reports are quite compact.

The server controls the number of reports by spec-
ifying a proper p. Suppose p is the intended number
of reports in a DS period, n is the estimated number of
clients, then p = p/n. The actual number of received
reports is used to adjust the value of n, which in turn is
employed to decide p for the next DS period. Effective
methods can be adopted for optimal estimation of n [5].

3.3 Hot Document Selection

Hot documents are selected at the beginning of a DS
period based on data popularity in the previous DS pe-
riod. Algorithms in earlier research [7, 11,28] make one
or both of the following two assumptions. First, the
multicast bandwidth can be set to any amount within
the total available server bandwidth. Second, the multi-
cast scheduling is simply flat (flat multicast), where each
document is sent exactly once in every multicast period.

In the Internet, a feasible multicast bandwidth is gen-
erally small compared with the server bandwidth. This is
because the multicast bandwidth of end-to-end multicast
networks is restricted by the limited uplink bandwidth of
the participating end hosts [27]. In most DSL and cable
connections, a host’s outgoing bandwidth is configured
to be much smaller than incoming bandwidth. Hence,
in this paper, we model the problem as document selec-
tion given a small fixed multicast bandwidth. Constant
multicast bandwidth is also used in [23,28].

To achieve high scalability, the primary objective
of document selection is to guarantee the server per-
ceived workload (unicast requests for non-hot docu-
ments) within its service capacity. The workload is re-
duced when assigning more popular documents to the
multicast push channel. However, when the server is
not overloaded, unicast communication is preferred to
transmit a document since it results in smaller client per-
ceived latencies. Therefore, the essential idea of our al-
gorithm is to assign as many documents as possible to
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the unicast channel, while guaranteeing the server’s scal-
ability by keeping the server workload under capacity.

As in [25], the server capacity is determined by two
factors: (1) the local resources of the hosting machine,
and (2) its bandwidth. First, the CPU cycles and mem-
ory size restrict the number of connections simultane-
ously held by the server, thereby putting a cap on the
maximum request rate that can be served on unicast. For
our analysis, the server processing capacity is expressed
as a target number R of unicast requests per second.
Second, a bandwidth bottleneck is modeled as server’s
uplink bandwidth constraint as in [25]. When the mul-
ticast bandwidth is constant, the uplink bandwidth for
unicast is also fixed. We let U be a parameter that rep-
resents the target unicast bandwidth. Its value should
be below the actual maximum unicast bandwidth. It is
otherwise a tunable parameter.

Suppose \; is the access rate to document i, i =
1,...,n. Let Set, be the collection of documents as-
signed to the unicast channel. To control requests for
non-hot data, we require

YieSet, \i < R. (1)

Define the size of document ¢ as s;. To prevent sever
overload, we must keep the bandwidth consumption be-
low U, hence,

YieSet, Misi < U. (2)

Algorithm 1 outputs the set of hot documents. The
documents are sorted by their popularity in ascending
order. If two documents have the same popularity, the
one with larger size will sit before the other in the or-
dered sequence. The algorithm scans the documents
from least to most popular and puts them to the unicast
channel as long as the above inequalities (1) and (2) still
hold. Note that a selected hot document by the algorithm
can have a smaller access rate than a cold document. The
algorithm is both simple and efficient. Its running time
is O(nlogn). We will improve the algorithm in Sec.
5.5.

When the sending rate is constant, the multicast
push performance mainly depends on two factors: the
scheduling and the size of hot data. Our algorithm
does not specify a multicast schedule, hence, it allows
the server to employ sophisticated scheduling strategies
[10,29]. To deflate the size of hot documents, compres-
sion technology can be adopted.

Note given a multicast bandwidth and multicast
schedule, as the number of clients scales up, the la-
tency to wait on the multicast channel increases since
the server selects more hot documents. However, the la-
tency still compares favorably with the infinite latency
of an overloaded server.

Algorithm 1 Hot Document Selection

Require: U, R, \1, Ao, ...
1: Setpot < empty
24— 1,r—0,bw 0
3: Sort the documents so that Mg, < Ag, < .o < Mg,
and if Ay, = Ak, then sp; > sp,.,, where 1 <
<n
4: while (i < n) do

aAn» 515,82,y Sn

5. if (r + A\p, > R) then

6: Add document k;, ki1 1, ..., n to Setp o
7: Return Sety, o

8: elseif (bw + A, sk, < U) then

9: T 14 Mg, bw — bw + Ay, Sk,

10:  else

11: Add document k; to Sety,ot

12 endif

13: 1+—1+1

14: end while

15: Return Sety, ot

3.4 Warm Document Selection

Warm document selection examines two questions:
how and when to perform the selection. If multicast can
use any fraction of the available server bandwidth, the
selection can be triggered as long as there are multiple
outstanding unicast requests for one document [12]. By
aggregating requests, the server reduces the workload
and clients experience less latency. To select warm doc-
uments, the server counts the outstanding requests on
each document; if the counted number reaches a thresh-
old, called the warm threshold, the corresponding doc-
ument is classified as warm and scheduled on the mul-
ticast pull channel; meanwhile, outstanding unicast re-
quests on the document are dropped.

However, in the Internet, where the feasible multi-
cast bandwidth is small, multicast pull competes with
multicast push for the limited multicast bandwidth. On
one side, the performance of multicast push is nega-
tively affected by contention with multicast pull. For
example, with a flat schedule, the mean latency per-
ceived on multicast push is inversely proportional to the
bandwidth available to the push channel. As the work-
load turns heavier, the impact on overall performance
becomes more evident because an increased fraction of
all requests are satisfied by the multicast push channel.
On the other hand, if we schedule a document on multi-
cast pull every time the warm threshold is reached, warm
documents can experience long waiting time before be-
ing multicast due to a large volume of warm data.

In this paper, we propose a lazy warm document se-
lection (LWDS) scheme, where the server triggers warm
document selections only if it sees a potential of over-
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load. We define a threshold 7" that is no more than the
maximum size of the RequestQueue. A warm document
selection is only performed when the RequestQueue’s
size exceeds 7. If warm documents exist, only the
most popular one is scheduled on multicast pull, and
any request for the document is removed from the Re-
questQueue so that the queue size is reduced. In case
the RequestQueue is full and no warm document can
be selected, newly parsed requests will be dropped by
the Parser. To send a warm document, the multicast pull
channel preempts a fraction of multicast bandwidth from
multicast push. The bandwidth is returned to multicast
push when no document is scheduled on multicast pull.

In LWDS, the primary goal of warm document se-
lection is to relieve a sudden and heavy load, thereby
ensuring server scalability. Instant heavy workload can
be caused either by workload dynamics or by the fact
that a popular document is incorrectly classified as cold.
Moreover, warm document selection also makes the
server robust to the setting of the parameter U in Sec.
3.3. In our experiment, U is simply set to the maximum
available unicast bandwidth.

4 Experimental Methodology

We implement the proposed solutions in Java in the
context of MBDD and evaluate them on PlanetLab. We
conduct two types of experiments: trace-driven experi-
ments and synthetic experiments. The trace-driven ex-
periments aim at demonstrating the significant scalabil-
ity enhancement by MBDD in handling real web server
workload compared with traditional unicast servers. The
first metric is the client perceived latency which is de-
fined as the time between a document request is gen-
erated and the request is satisfied. The second met-
ric is the ratio of the bandwidth required by an MBDD
server and by a unicast server to accommodate the same
workload. Our synthetic experiments stress the speed of
server adaptation under rapid and large traffic increase,
and also emphasize the effectiveness of our warm doc-
ument selection scheme in MBDD from the perspective
of the client perceived latency. For lack of space, we
only highlight the results of our synthetic experiments
in Section 6; details can be found in [31].

4.1 Trace Extraction

The Soccer World Cup 1998 server trace is one of the
busiest recorded so far, and is extensively and currently
used in research [25,26,30]. During peak time, the 30
World Cup servers receive more than 10 million requests
per hour [6]. We extract our experimental trace from the
original trace between 6pm and 11pm (coord.univ.time)
on July 8th. The interval includes the semi-final game

Table 1. Trace Information

| File Size (byte)

‘ Trace

#Client ‘ #Request ‘ #File | Mean | Median [  Max |

[ Original [[ 69013 | 21254172 ] 11312 [ 14867 | 5620 | 2.80M |
| Experiment [| 420 | 3665066 | 9042 | 12624 | 5659 | 2.89M |

between France and Croatia ' (7pm-9pm). The selected
trace exhibits a typical server workload behavior during
the course of a hot event: the traffic volume increases
tremendously after the event begins, and falls back to
normal level at the end of the event.

To fit the trace into PlanetLab scale, we filter out most
clients from the original trace. The experimental trace
comprises of the busiest 420 client traces. We keep the
requests that are GET or HEAD methods and result in
200 (ok) and 304 (not modified) responses. These re-
quests account for about 1/6 of the original workload.
The top rate is as high as 700 reg/sec (requests per sec-
ond). The number of requests in each client trace ranges
from 4386 to 43687. Table 1 presents the statistics of the
original trace and the experimental trace.

The experimental trace captures most of the major
workload characteristics of the original trace. Fig. 2(a),
(b) and (c) compare the original and experimental traces
in their distributions of file popularity, file sizes and re-
sponse sizes respectively. The two traces follow similar
distributions except that the file popularity distribution
of the experimental trace is slightly more skewed. Fig.
2(d) compares the workload variation over time, where
the request rate is normalized to the maximum rate. The
request pattern of the experimental trace closely matches
that of the original trace during the game. Although
there is a difference before and after the game, it does
not matter much since our purpose is to demonstrate our
server’s scalability under heavy workloads. When the
workload is light, the server behaves like a unicast web
server.

4.2 Experiment Setup

We conduct our experiments on PlanetLab, which al-
lows us to investigate the system under real Internet con-
ditions and at large scale. We utilize 210 machines dis-
tributed across North America and Europe. As the re-
source of a PlanetLab node is often shared by several
tens of slices [16], we assign only 2 virtual clients to a
machine to avoid overloading the node. Each of these
420 virtual clients runs as an MBDD client and cre-
ates its own workload independently based on a distinct
client trace. We also set a timeout of 120 seconds for

'We do not select the final game because its trace is quite light. The
game was held on Sunday, thus, most people watched it on TV [6].
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Figure 2. Comparison of Original and Experimental Workload

requests waiting on multicast channels to avoid a high
number of cumulative concurrent requests that consume
excessive system resource. Moreover, if a request wait-
ing on the unicast channel receives no data in any pe-
riod of 120 seconds, it will be aborted and logged as a
timeout request. We will quantify the impact of time-
out requests. As the middleware runs at both client and
server sides, it is easy to employ compression technol-
ogy. A typical factor of gain in HTML file size is more
than 3 [18]. Since contents of documents are not avail-
able, we assume the size of an HTML file is reduced by
two thirds.

The MBDD server is on a non-PlanetLab machine
in our lab. The machine runs Linux Fedora 2 and is
equipped with a 1.7G Intel Pentium 4 processor and
512 RAM. We limit server’s unicast uplink bandwidth to
1.6Mbps so that the server will employ multicast com-
munication under the experimental workload. When no
warm data are on multicast pull, the multicast push rate
is 160Kbps; otherwise, the sending rates on multicast
pull and multicast push are 40Kbps and 120Kbps respec-
tively. The scheduling of multicast push is MAD [29]
and that of multicast pull is LTSF [3]. Each multicast
channel runs on a simple end-to-end multicast overlay
network. The topology of the multicast overlay network
is a binary tree rooted at the server. Data delivery be-
tween nodes employs TCP connections. A document is
broken into 1024-byte chunks to multicast on the net-
work. Each end node has a buffer of 50 chunks, hence,
data can be dropped out at the node due to temporary

network congestion.

The server has 50 RequestHandlers. Both the Accep-
tQueue and RequestQueue have an uplimit of 100 re-
quests. Warm document selection is triggered when the
RequestQueue’s size is 100. The warm threshold is set
to 4.

The server makes hot document selection every 60
seconds. In the selection algorithm, the threshold pa-
rameters U and R are set to 200KBps (1.6Mbps) and
100 reg/sec respectively. The server samples clients to
collect popularity of hot documents. The targeted num-
ber of reports is set to 40 in a DS period;anda = =5
seconds.

5 Evaluation
5.1 Overall Performance

We leave out the results where only the unicast chan-
nel is active because the MBDD server acts as a tradi-
tional unicast server at the time. We observe the server
employs both unicast and multicast during the period
of emulating the trace with log time between 7:00pm
and 9:15pm. In this examined interval, clients gener-
ate a total of 3213190 requests > toward the server and

2Should the same workload be satisfied by a unicast server with the
same bandwidth, the average latency is 4993 seconds; this simulation
assumes the server has an infinite waiting queue and can hold unlim-
ited unicast connections, and an HTML file is compressed to 1/3 of its
original size.
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Table 2. #Request and Average Latency

#Request % | Ave.Lat.

Overall 3213190 100 | 2795 ms
Multicast Push 2400475 | 74.7 | 3338 ms
Multicast Pull 51354 1.6 | 4815 ms
Unicast 749583 | 23.3 931 ms

Table 3. #Request and Average Latency at
Peak Time

#Request % | Ave.Lat.

Overall 432197 100 | 3985 ms
Multicast Push 374345 | 86.6 | 4349 ms
Multicast Pull 5225 1.2 | 3588 ms
Unicast 51828 | 12.0 | 1392 ms

99.6% of them receive the requested data successfully.
The remaining 0.4% of requests are aborted due to time-
outs. As timeouts are rare, they have no significant ef-
fect on the performance. Table 2 displays the number
of requests served by each channel and the average la-
tencies in millisecond. The latency is the time between
a request is generated and the request is satisfied by a
channel. The third column of Table 2 shows the percent-
age of requests served by each channel. The table indi-
cates multicast push satisfies most of all requests while
keeping the mean latency within a reasonable amount.
Unicast responses are delivered at a high efficiency and
clients perceive short latencies on unicast. Although the
multicast pull channel presents a longer average latency,
requests served by it are much fewer than by the other
channels. To facilitate later discussion, we define an
MPush (or MPull) request as one request that acquires
its requested data from the multicast push (or multicast
pull) channel.

Our next analysis looks at the latency distribution.
We count the requests with latencies in the range from
50¢ to 50(¢ + 1) milliseconds, 7 > 0. Fig. 3 shows
the results with the horizontal dimension denotes the la-
tency. To be more readable, each figure is separated into
two parts by a vertical solid line: the left part expresses
latencies in a linear scale whereas the right partin a loga-
rithmic form. As seen in Fig. 3(a), 75.2% of all requests
experience latencies less than 4 seconds and 96.6% of
all requests have latencies within 8 seconds. From the
perspective of individual channels, an value of 8 sec-
onds bounds the latency of 95.7% of MPush requests,
89% of MPull requests, and 99.7% of requests served
by unicast.

5.2 Peak Time Performance
The effectiveness of hybrid data delivery largely re-

lies on its ability to cope with peak time workloads. Fig.
2(d) exposes the busiest traffic occurred near 8:55pm.

For our analysis, we choose an 11-minute peak time that
starts from 8:49:00pm to 8:59:59pm. The total requests
generated during this period account for 13.5% requests
of the entire investigated interval, and create a consis-
tent workload above 36000 requests per minute. Among
these requests, we find 799 (0.2%) timeouts. Appar-
ently, the peak workload does not raise the pecentage
of timeouts. Table 3 presents the summarized result for
comparison with that in Table 2. Our first observation
is that the fraction of requests served by multicast push
jumps from 74.7% in Table 2 to 86.6% while their aver-
age latency rises by 30 percent. As expected, the peak
workload forces the MBDD server to select more hot
documents. Consequently, the expanded volume of hot
data extend multicast cycles, which in turn results in
longer latencies perceived by clients. Meanwhile, the
unicast channel sees a 50 percent increment in average
latency. However, heavy workloads have limited impact
on the unicast performance because document selection
limits the request serving rate on the unicast channel. An
interesting finding is that average latency on the multi-
cast pull channel drops by 25 percent of the amount in
Table 2. Multicast pull performance is affected more by
workload dynamics than by workload volumes.

5.3 Server Perceived Workload Control

We examine the investigated interval in a granularity
of minute. For simplicity, we number the minutes from
the beginning of the interval from 0 to 135, and group
all requests based on the minute within which they are
created. Fig. 4(a) plots the overall request rate issued
by clients as well as the request rates satisfied through
each channel in every minute. The server successfully
controls its perceived unicast workload. When the uni-
cast request rate is much smaller than 100 req/sec, the
unicast bandwidth is the dominant bottleneck in the cor-
responding hot document selection. On the other hand,
when the overall workload grows, MPush requests in-
crease steadily and the increment curve is roughly par-
allel to that of the overall request rate. Fig. 4(a) also
shows that the server frequently resorts to multicast pull
to avoid overloads when bursty unicast requests arrive.
For example, among the requests created in the 94"
minute, 2995 of them are satisfied by the multicast pull
channel, corresponding to 39% of total unicast requests
generated in that minute. However, the benefit of multi-
cast pull is less pronounced during the workload rapidly
decreasing phase from the 120*" to 128" minute. In this
period, hot document selection often over-estimates the
future traffic, which results in sufficient available unicast
bandwidth.

Fig. 4(b) shows the performance perceived on each
channel. The average latency on multicast push climbs
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cending load. However, the increment of latency is slow
compared with that of the overall requests shown in Fig.
4(a). As additional requests on hot data will not add a
burden on the server, multicast push effectively allevi-
ates the impact of the mounting overall workload. On
the “MPush” curve in Fig. 4(b), sharp spikes like those
at the 4" and 134" minute occur randomly and in DS
periods when the MPush requests are few. However,
spikes like that at the 119" minute emerge constantly
in our experiments and we give schemes to smoothen
them in Sec. 5.5.

Fig. 4(b) also indicates the mean latency on unicast
is not notably affected by the variation of workloads.
Thanks to hot document selection and multicast pull, the
server assures the unicast workload is within the capac-
ity of the unicast channel.

The average latency on the multicast pull channel

spikes seen from the figure, we find that there are few
requests in the minute where a spike appears. This re-
sult is consistent with our previous observation that the
latency of most requests is bounded within a reasonable
extent.

5.4 Bandwidth Usage

Fig. 4(c) contrasts the bandwidth needed by the
MBDD server and a web server to satisfy the requests
in the experimental trace. The necessary bandwidth of
a web server increases consistently with the growth of
workloads. At the busiest moment, a web server re-
quires about 9 times of bandwidth utilized by the MBDD
server. In practice, the HTTP protocol allows web
servers to send 304 (not modified) responses to reduce
data transfer if the requested content is cached at clients
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and unchanged. Leaving out requests that cause 304 re-
sponses, the curve “for 200 (ok) responses” in Fig. 4(c)
depicts the bandwidth used by a web server to satisfy the
remainder requests in the experimental trace.

Note that bandwidth saving is only one facet of the
benefit of hybrid data dissemination. As the rate of uni-
cast requests is controlled, the server’s processing time
is also greatly saved.

5.5 Unpopular Large Documents

(ULDs)

ULDs can produce remarkable negative impact on
performance: they cause sudden increase of multicast
push latency. Examples can be seen at the 119" minute
in Fig. 4(b). A ULD has two features. First, its size is
notably large compared with the average document size.
Second, its popularity is extremely low and requests on
it appear sparsely, i.e., it is always cold.

Suppose a ULD D with size s is accessed once in the
previous DS period. In hot document selection at the be-
ginning of the current DS period, the selection algorithm
(Sec. 3.3) will assume the request rate on D to be 1/L
and allocate s/L of unicast bandwidth for D, where L
is the DS period length. Since s is huge, the allocation
takes away much unicast bandwidth. As a result, the al-
gorithm has to select more hot documents. The boosted
volume of hot data causes a sudden increment of latency
perceived on the multicast push channel. For instance, at
the 118" minute, the server receives 3 requests on 3 dif-
ferent ULDs with a size of 2.1MB, 1.9MB and 1.4MB
respectively. In the 119" DS period, the total size of hot
data increases by 79 percent of that of the previous pe-
riod. Consequently, the mean latency of multicast push
at the 119" minute increases by 32 percent (see Fig.
4(b)).

The effect of ULDs is largely due to fact that the se-
lection algorithm overestimates the popularity of ULDs.
The algorithm can only distinguish a minimum request
rate of 1/L while the actual request rate on a ULD can
be far below it. A natural solution is to employ enlarged
DS periods particularly for ULDs. However, using var-
ious lengths of DS periods introduces complexity in the
server. We have devised a simple and efficient solution.

Essentially, our solution breaks a ULD into small sec-
tions and transfers them across multiple DS periods. We
limit the unicast bandwidth allocated to a ULD in each
DS period so that ULDs would not consume excessive
bandwidth, which avoids sudden increase of hot data
size. Since the ULD transmission is broken down across
multiple DS, its transmission time is lengthened appro-
priately depending on the document size and the server’s
load. Suppose a ULD’s size is no less than S. Two mod-
ifications are made to the hot document selection algo-
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Figure 5. Improved Multicast Push Perfor-
mance

rithm. (1) If a ULD D with size s is accessed n times
in the previous DS period, the algorithm assumes D has
[s/S] sections numbered from O to [s/S] — 1. Each of
the first [s/S| — 1 section has a size of S. The band-
width needs of a section are an/L, where a is the sec-
tion’s size. The algorithm uses the 0 section for the
current document selection and allocates Sn/L unicast
bandwidth to the section, that is, D is treated as if its size
were S. The algorithm adds the future bandwidth need
of the i*" section (i > 0) to the (i — 1)*¢ slot in a history
@ that represents the cumulative future bandwidth needs
of the ULDs. (2) At the beginning of the document se-
lection algorithm, the head of () is removed and its value
is interpreted as the cumulative unicast bandwidth needs
of ULDs inherited from previous DS periods. The algo-
rithm subtracts this inherited bandwidth needs from the
unicast bandwidth parameter U before it selects new hot
documents.

In Fig. 5, we give the experiment results with the im-
proved selection algorithm. We specify S = 500KB.
The latency on multicast push at the 119" minute de-
clines for the hot data size is effectively reduced using
the improved algorithm. Moreover, the figure shows the
inherited bandwidth needs do no notably affect the mul-
ticast push performance after the 119*" minute. In our
experiment, we also observe that the latency on unicast
and multicast pull do not change appreciably (not shown
in the figure). As a disadvantage, the mean latency of the
3 requests for the 3 ULDs at the 118" minute is roughly
doubled from 68 to 145 seconds. However, users gen-
erally will tolerate more latency in retrieving a larger
document. Also, there are not many users waiting for a
ULD.

6 Synthetic Experiments

We have reported the details of our synthetic ex-
periments in [31]. Due to space constraints, we only
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highlight the results here. In the first experiment, we
stress the adaptation speed of the server. The synthetic
workload increases from 0 to 1000 req/sec instantly and
maintains 1000 reqg/sec thereafter, which simulates the
rapid and large workload changes such as flash crowds
[21]. We observe that our server monitors the workload
effectively under extreme heavy traffic, and adapts to
the workload change by a single hot document selec-
tion. Our second experiment scenario demonstrates the
effectiveness of our warm document selection scheme
from the perspective of the client perceived latency. We
use the same synthetic workload and perform the ex-
periment with warm document selection disabled. We
observe that the average client perceived latency is in-
creased by a factor of 3.5.

7 Related Work

Multicast push and multicast pull have been previ-
ously combined in a hybrid scheme using static selec-
tion of hot documents [2]. Hybrid models with multi-
cast pull and unicast have also been analyzed, and the
delivery method for a document is determined by the
integrated schedule for both channels [4]. Other work
examines hybrid schemes using multicast push and uni-
cast [7,11,23,28]. Some of them study document se-
lection in combination with the problem of bandwidth
division among the channels [7, 11]. They assume flat
multicast and arbitrary bandwidth can be used for multi-
cast. The multicast bandwidth has also been modeled as
constant like in our work [23,28]. A document selection
approach has been proposed for servers using flat mul-
ticast [28]. In another method, the server monitors its
load and increases (or decreases) the amount of hot data
when the load is high (or low) [23]. The adjustment can
occur at any time as needed. A comprehensive review of
hybrid schemes is in our survey [14].

The popularity of a hot document can be estimated
by probing [28]. The server temporarily removes the
document from the push channel, and the number of
solicited requests indicates its popularity. This method
might suffer from scalability problem if the document is
extremely popular [11]. Alternatively, access informa-
tion of hot data is piggybacked to unicast requests [23].
However, accurate popularity of hot data cannot be ob-
tained since clients do not report references to hot data
if they do not access cold documents.

In our work, hot document selection is periodically
performed. The selection algorithm does not require a
specific multicast schedule. Popularity of hot data is col-
lected by sampling clients. Unlike prior work, our server
combines three channels. The difference is not trivial.
For example, in our model, multicast pull should be con-
servative and is used to relieve sudden and heavy load;

but in a model using multicast push and multicast pull,
the role of multicast pull is different as it serves all uni-
cast requests, and multicast pull performance has to be
investigated more carefully. Multicast pull also makes
our server more robust to workload dynamics than hy-
brid servers that only use multicast push and unicast.

Collecting cold data popularity is seldom studied in
earlier research. The issue is important for server to
survive unexpected environment changes, such as flash
crowd [21], a sudden large surge of traffic that often re-
sults in server collapse. In our design, when flash crowd
occurs, despite requests are frequently dropped by the
server at the beginning, the unicast workload is accu-
rately monitored. Consequently, hot document selection
is effectively performed, thereby leading the server to
adapt promptly.

8 Conclusion

We have studied the key issues that arise in document
selection in hybrid data delivery over the Internet. While
previous related work often focuses on one or several
separate issues, we attempt to devise integrated solutions
for the document selection problem. Moreover, prior re-
lated work rarely provides quantitatively evaluation in
the real Internet with real server traces. Our proposed
solutions are implemented and evaluated with real web
traces and on PlanetLab, a real Internet based test-bed
environment. Our results show that our multicast server
can effectively adapt to dynamic environments and is
substantially more scalable than traditional Web servers.
Our work is a contribution to building practical hybrid
data dissemination services.
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