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Sensor networks naturally apply to a broad range of applications that involve system
monitoring and information tracking (e.g., airport security infrastructure, monitoring
of children in metropolitan areas, product transition in warehouse networks,
fine-grained weather/environmental measurements, etc.). Meanwhile, there are con-
siderable performance deficiencies in applying existing sensornets in the applications
that have stringent requirements for efficient mechanisms for querying sensor data
and delivering the query result. The amount of data collected from all relevant sensors
may be quite large and will require high data transmission rates to satisfy time
constraints. It implies that excessive packet collisions can lead to packet losses and
retransmissions resulting in significant energy costs and latency. In this paper we
provide a formal consideration of a Data Transmission Algebra (DTA) that supports
application-driven data interrogation patterns and optimization across multiple
network layers. We use a logical framework to specify DTA semantics and to prove
its soundness and completeness. Further, we prove that DTA query execution schedules
have the key property of being collision-free. Finally, we describe and evaluate an
algebraic query optimizer performing collision-aware query scheduling that both
improve the response time and reduce the energy consumption.

Keywords Wireless sensor networks; Cross-layer techniques; Query optimization;
Algebraic optimization; Wireless communications

1. Introduction

Recent advances in wireless communications and microelectronics have enabled wide
deployment of smart wireless sensor networks (WSNs). Such networks will support a
broad range of scientific, commercial, or security applications that require information
tracking. Meanwhile, there are considerable performance deficiencies in applying exist-
ing WSNs in critical monitoring applications. As an example, consider Structural Health
Monitoring (SHM) in which a wireless sensor network is deployed to monitor the
structural integrity of a building or a ship [9, 24, 25]. As such tasks are characterized
by considerable network load, excessive packet collisions lead to packet losses and
retransmissions resulting in significant energy costs and latency. For example, the
successful packet delivery ratio in 802.15.4 networks can drop from 95% to 55% as the
load increases from 1 packet/sec to 10 packets/sec [16, 33]. Meanwhile, the sensors in an
SHM system can generate up to 6 packets/sec of vibration data. As reported in [24, 25]
the average residence time for 1 packet in a medium scale multi-hop sensor network
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could be tens of seconds. When this rate increases to 2 packets/sec per sensor, the
network collapses. Under high traffic load, sensor nodes quickly run out of energy due
to collisions and consequently the increased death of the sensors decreases the timeliness
and the quality of data.

Several techniques have been proposed to alleviate the problem of network load and
limited power at the network level such as energy-efficient routing and clustering [4, 14,
15, 27]. Sensor database research has also investigated sensor query processing strategies
to minimize query response time and reduce energy consumption. Such strategies are
sampling (e.g. [18]), prediction (e.g. [10, 7]), approximation (e.g. [5]), and in-network
query processing (or aggregation) (e.g. [1, 3, 18, 23]). Sensor databases extend database
technology to monitoring and query processing over sensor networks [1, 2, 26]. These
include both language extensions to SQL and new query execution strategies. Typical
sensor query execution maps into a tree-like data delivery pattern where a responding
sensor node sends its data to a neighbor node which then transmits it further to the next
node towards the requesting node (the root). Looking at these techniques in terms of
traditional databases, we realize that these efforts primarily focus on one of the two main
elements for improving the interactive performance of queries, namely query
optimization, which decides the dependencies between the query operators (the query
plan). The other main element is scheduling that decides the order of execution of query
operators (concurrency control). Scheduling affects both energy consumption and
response time.

Our research, on one hand enhances all the above existing approaches while on the
other hand it offers the only solution for the timeliness and quality of data when none of
these techniques are applicable. Specifically, we formally study query scheduling in sensor
databases that combines both the data processing at sensor nodes and data transmission
among sensor nodes. We develop an optimization framework and a Data Transmission
Algebra (DTA) that allows an optimizer to utilize lower network layer protocols in
scheduling sensor database queries [29, 30, 38]. In particular, DTA can capture the
information about how the medium access control (MAC) layer operates while processing
sensor queries. That is, the DTA can uniformly capture the structure of data transmissions,
their constraints/conflicts, and their requirements. Our framework enables both qualitative
analysis and quantitative cost-based optimization of sensor queries. Further, it allows the
automatic generation and evaluation of alternative routing trees for a given set of queries
and network configurations. Using our framework, we have been able to develop novel
cross-layer optimization techniques. An example of such an optimization is collision-
aware query scheduling [29] that minimizes simultaneous transmissions that interfere with
each other. As opposed to other schemes which assume that the MAC layer handles
collisions in an appropriate manner, our collision-aware query scheduling reduces the
amount of retransmissions and thus saves time and energy.

In this paper, we present a formal study of our framework. We consider the
soundness and completeness of our algebra and show that the schedules derived
using DTA have the key property of being collision-free. Specifically, in Section 2,
we describe our system model and introduce the relevant wireless data communica-
tion background. In Section 3, we informally introduce DTA and its application to
cost-based query scheduling. Section 4 specifies the DTA signature together with a
basic set of DTA inference rules (DTA theory). In Section 5, we use a logical framework
to specify DTA semantics. It should be noted that many a formalism exists that can be
used to consider the soundness and completeness of our algebra (e.g., A-calculus).
We have chosen the logical formalism, which is naturally to utilize within the database
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community. In Section 6 we study and prove the soundness and completeness of DTA,
and show that valid DTA schedules are collision-free. Sections 7 and 8 elaborate on the
implementation of our algebraic optimizer and provide its experimental evaluation.
Section 9 concludes.

2. System Model

We assume that a query optimizer executes at the base station along with other utilities
such as data mining for cost-effective and model-driven data acquisition [DGMHHO04].
For a given query or data acquisition model, our query optimizer selects the query routing
tree with optimal response time and energy consumption. A query optimizer generates
alternative query schedules taking into consideration the current topology of stationary
sensor nodes, the applications’ coverage requirements, and the Collision Domains (CDs)
of the sensor nodes, which we explain next.

In general, the transmissions between sensors are ad hoc dependent on the query
and require the use of a medium access control (MAC) layer to handle transmissions
on the same medium. If we assume that all sensor nodes use the same frequency band
for transmission, two transmissions that overlap will get corrupted (collide) if the
sensor nodes involved in transmission or reception are in the same collision domain
CD(ni,nj) defined as the union of the transmission ranges of ni and nj. Figure 1
elaborates on the concept of collision domains in a typical wireless network such as
IEEE 802.15.4 [33] and illustrates how collisions are handled in such a network.
Consider two nodes n/ and n2 that wish to communicate. In Fig. 1, nodes nl, n2, n3,
and n4, n5, and n6 are in the same collision domain. This implies that when n/ and n2
are communicating, n3, n4, n5, and n6 cannot participate in any communications.
A typical wireless network handles collisions using carrier sense multiple-access with
collision avoidance (CSCMA-CA) [6]. In general, before starting a transmission,
nodes must sense the channel for a predetermined amount of time (waiting time).
If the channel is busy, the nodes wait for the predetermined amount of time after
the channel becomes free. In addition, nodes back off for a random time to avoid the
possibility that two or more nodes transmit at the same time after the waiting period.
For this entire period, the node must sense the channel and this consumes energy.
Each packet also needs to be acknowledged by the receiver since wireless channels
are unreliable.

nl n2
Oz)
n6

n4
© @)

Figure 1. Collision domain of two communicating sensors.
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3. Algebraic Query Optimization using DTA

In related research [29, 30] we introduced an algebraic query optimization technique for
sensor networks. We developed a Data Transmission Algebra(DTA) that allows a query
optimizer to generate query routing trees to maximize collision-free concurrent data
transmissions.

The DTA consists of a set of operations that take transmissions between wireless
sensor nodes as input and produce a schedule of transmissions as their result. A one-hop
transmission from a source sensor node ni to a destination node nj is called elementary
transmission (denoted ni~nj). Each elementary transmission ni~nj is associated with a
collision domain CD(ni, nj) as defined above. A transmission schedule is either an
elementary transmission, or a composition of elementary transmissions using one of the
operations of the DTA. The basic DTA includes three operations that combine two
transmission schedules A and B:

1. o(A,B). This is a strict order operation, that is, A must be executed before B.

2. ¢(A,B). This is a non-strict order operation, that is, either A executes before B, or vice
versa. Thus, ¢(A,B) = (o(A,B) or o(B,A)).

3. a(A,B). This is an overlap operation, that is, A and B can be executed concurrently.

For an example of the DTA operations consider the query tree in Fig. 2 which was
generated for some query Q. It shows some DTA specifications that reflect basic con-
straints of the query tree. For instance, operation o(n4~n2, n2~nl) specifies that trans-
mission n2~nl occurs after n4~n2 is completed. This constraint reflects a part of the
query tree topology. Operation c(n2~nli, n3~nl) specifies that there is an order between
transmissions n2~nl and n3~nl since they share the same destination. However, this
order is not strict. Operation a(n4~n2, n5~n3) specifies that n4~n2 can be executed
concurrently with n5~n3, since neither n3 nor n5 belongs to CD(n4,n2), and neither n4
nor n2 are in CD(n5,n3).

Each operation of the DTA specification defines a simple transmission schedule that
consists of two elementary transmissions. The DTA introduces a set of transformation
rules [29, 30] that can be used to generate more complex schedules. Figure 2 shows an
example of a complete schedule that includes all elementary transmissions of the query

Initial Specification:

n4~n2
nl n2~nt

n3 n5~n3

6 n2 /70\ 0\6 n3~nt
O o(n4~n2,n2~nt)
o(n5~n3,n3~n1)

c(n2~n1,n3~n1)

a(n4 ~n2, n5~n3)

Elementary Transmission: n4 ~ n2 a(n4~n2, n3~nt)
Strictly Ordered Transmissions: o(n4~n2,n2~nt) a(n5~n3, n2~nt)
Non-strictly Ordered Transmissions: ¢(n2~n1, n3~n1)
Concurrent Transmissions: a(n4 ~n2, n5~n3)

Complete Schedule: o( a(n4 ~n2, n5~n3), ¢(n2~n1,n3~n1))

Figure 2. Example of a query tree for some query Q and DTA specification.
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Initial Specification:

n4 ~n2
n2~nt

1
6\ n3 ns~n3
7 n3~n1
fz — @)

o(n4d~n2,n2~nt)

\ o(n5~n3,n3~nt)
124 12 c(n2~n1,n3~n1)
c(n4~n2, n5~n3)

a(n4~n2, n3~nt)
a(n5~n3, n2~n1)

Figure 3. Impact of sensor topology on initial DTA specification.

tree. Figure 2 also shows the initial DTA specification reflecting basic constraints of the
query tree. The initial specification consists of a set of elementary transmissions reflect-
ing the tree topology imposed by the query semantics, as well as order and overlap
operations over the elementary transmissions. Non-strict order constraints can be derived
from the initial specification. Figure 3 illustrates a query tree with different topology. The
initial DTA specification of the second tree includes only two potentially concurrent
transmission pairs.

Using an initial DTA specification, a cost-based query optimizer identifies DTA
schedules with acceptable query response time and overall energy consumption.
Implementation and experimental evaluation of our optimizer are provided in Sections
7 and 8. Next, we consider the soundness and completeness of the DTA, and prove that
the DTA query execution schedules have the key property of being collision-free. In order
to do that, first we will introduce formal specification of the DTA syntax and semantics.

4. DTA Theory

In this section we introduce a DTA theory consisting of the DTA signature and DTA
inference rules [8]. The DTA signature specifies basic DTA syntax, while DTA inference
rules represent transformations of the well-formed DTA terms. The DTA signature
specification is presented in Fig. 4. It includes a set of sorts together with operations
defined on them. The DTA signature includes two sorts Node and Schedule. Elementary
transmission (denoted ~) is a DTA operation that takes two nodes as input and outputs a
schedule. The rest of the DTA operations (o, ¢, a) map two input schedules to an output
schedule.

Signature: DTA

Sorts: Node, Schedule

Operations:
~: Node, Node — Schedule
o : Schedule, Schedule — Schedule
¢ : Schedule, Schedule — Schedule
a : Schedule, Schedule — Schedule

Figure 4. DTA Signature.
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In order to introduce DTA inference rules we extend the basic DTA signature with a
secondary operation subs, which for a given DTA schedule returns all its sub-schedules.
The subs operation is specified as follows:

subs : Schedule — P(Schedule),

where P(Schedule) denotes the power set of schedules. The following equations complete
the specification of subs:

subs(XY) = {XY}.

subs(comp(S1,82)) = {comp(S1,52)} U subs(S1) U subs(S2),
where comp denotes any of DTA operations o, ¢, or a.

DTA inference rules are represented in Fig. 5. A DTA inference rule Premise —
Conclusion reflects the fact that there is a one step inference from Premise to Conclusion.
For example, using rule 1 (order introduction) we can infer a strict order of two
elementary transmission if the destination node of the first transmission is also a source
node of the second transmission. Rule 5 generates a strict order of DTA schedules X and S
if there exists a sub-schedule S; of the schedule S such that o(X,S;) can be generated by the

DTA rules. In order to infer a(X,S), we should be able to infer a(X, S;) for all sub-
schedules §; of the schedule S.

4.1. Definition 1 (DTA Inferability)

A DTA schedule ¢ is inferable from a set of DTA schedules S (denoted S % t) iff either t € S,
or t can be generated from § via finite applications of the DTA inference rules.

Example 1. Consider the following set of DTA schedules:
S={nd ~n2,n2 ~nl,n5~n3,n3 ~nl,a(nd ~a2,n5 ~ n3),a(n4 ~ n2,n3 ~ nl)},
which is a subset of the initial DTA specification from Fig. 2. We can infer from S the
following schedule:
a(nd ~ n2,0(n5 ~ n3,n3 ~ nl)),
using rules 1 and 8:
n5 ~n3,n3 ~ il — .1 o(n5 ~ n3,n3 ~ nl),

a(nd ~ n2,n5 ~n3),a(nd ~ n2,n3 ~ nl) — s a(nd ~ n2,0(n5 ~ n3,n3 ~ nl)).

Order introduction N1~N2, N2~N3 — o(N1~N2, N2~N3)
Order transitivity 0(X,2), o(Z,Y) — o(X,Y)

Choice commutativity — ¢(X,Y) < ¢(Y,X)

Overlap commutativity a(X,Y) < a(Y,X)

Left sub-schedule order (3, € subs(S), o(X, S;)) = o(X,S)
Right sub-schedule order (3S; € subs(S), o( S;, X)) — o(S,X)
Sub-schedule choice (3, € subs(S), ¢(X, S;)) — o(X,S)
(VS & subs($), a(X, 5,)) — a(X.9)

Sub-schedule overlap

Figure 5. Basic DTA Inference Rules.
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5. DTA Semantics

We provide a logic-based specification of DTA semantics using Prolog-like Horn clauses
[GZ02]. A predicate looks as follows: p(t1,£2,...,tn), where p is a predicate name of arity
n, each fi is a term, and (¢1,12,...,tn) is a tuple. A term is a constant or a variable, or a
complex term constructed using function symbols. A name starting with a capital letter
signifies a variable. A rule is a statement of the form

p: _q17q27 -y 4N,

where p and gi are predicates, p is the rule head, and the conjunction g1, g2, ..., gn
is the rule body. A rule with an empty body is called a fact. A rule may be used to
define the predicate p, so that p holds whenever ¢/, ...,qn all hold. For example, the
following rule defines that X is a grandparent of Y if X is a parent of Z and Z is a
parent of Y:

grandparent(X,Y) : —parent(X,Z), parent(Z,Y).

Below we introduce the predicates used in the logical specification of DTA semantics.
The predicates are grouped into environment constraints, which reflect basic properties of
wireless transmission medium, and query constraints, which reflect data transmission
patterns imposed by the query semantics. Finally, we use environment and query con-
straints to define the semantic validity of DTA schedules.

5.1. Environment Constraints

The environment constraints reflect an actual sensor network with wireless nodes com-
municating via data transmissions. The transmissions can be either elementary (one-hop),
or complex ones (consisting of several elementary transmissions). The following pre-
dicates specify the environment constraints:

e wirelessNode(X). This predicate specifies that X is a wireless sensor node.

o distance(X1, X2, D). This predicate specifies that D is the distance between
wireless nodes X/ and X2.

e range(X, R). This predicate specifies that wireless node X can transmit in
range R.

e in_range(X1, X2). This predicate is true if wireless node X/ is within transmission
range of node X2. The following rule defines the in_range predicate:

in_range(X1,X2) : —range(X2, Range),
distance(X1,X2, Dist),
Range >= Dist.
e reachable(X1, X2). This predicate is true if nodes X/ and X2 are within transmis-
sion ranges of each other:
reachable(X1,X2) : —in_range(X1,X2),
in_range(X2,X1).

o starts(S,T). This predicate specifies that data transmission S (elementary or complex
one) starts at time moment 7.
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e ends(S,T). This predicate specifies that data transmission S ends at time
moment 7.

o time_overlap(S1,S2). This predicate is true if transmissions S/ and S2 overlap in
time. The following rule defines the time_overlap predicate We use a semicolon to
denote disjunction:

time_overlap(S1,82) : —starts(S1,ST1), starts(S2,ST2),
ends(S1,ET1), ends(S2,ET2),
((ST2 < ET1,ET2 > ST1);
(ST1 < ET2,ET1 > ST2)).

o member(X~Y, S). This predicate is true if the elementary transmission X~V is
included in a complex transmission S.

e in_cd(X, XI~YI1). This predicate is true if node X is located in the collision domain
of elementary transmission X/~X2:

in_cd(X,X1 ~ Y1) : —in_range(X,X1);in_range(X, Y1).

e can_collide(S1,52). This predicate specifies that concurrent execution of transmis-
sions S/ and S2 may result in collisions. The first rule considers the case when
both S7 and S2 are elementary transmissions. The second rule deals with complex
transmissions.

can_collide(X1 ~ Y1,X2 ~ ¥2): —
in_cd(Y1,X2 ~ Y2);in_cd(X1,X2 ~ Y2);
in_cd(Y2,X1 ~ Y1);in_cd(X2,X1 ~ Y1).
can_collide(S1,S2) : —member(CS1,51),
member(CS2,S52),
can_collide(CS1, CS2).

e collide(S1,52). This predicate specifies that concurrent execution of transmissions
S1 and S2 results in collisions.

collide(S1,82) : —can_collide(S1,S2),
time_overlap(S1,S2).

5.2. Query Constraints

o strict_precede(S1,S2). This predicate states that query semantics require schedule
S1 to be executed before schedule S2:

strict_precede(S1,82) : —ends(S1,ET1),
starts(S2,ST2),
ST2 > ET1.
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e precede(S1, S2). This predicate states that schedules S7 and S2 must be executed in
an order (either S/ follows S2, or S2 follows S7):

precede(S1, S2) : —strict_precede(S1,S2);
strict_precede(S2,S1).

o no_conflict(S1, S2). This predicate states that transmissions S/ and S2 can be
executed concurrently without violating any query-imposed orders and without risk
of collisions:

no_conflict(S1, S2) : —notprecede(S1,S2),
notcan_collide(S1, S2).

5.3. Validity of DTA Schedules

At this point we are ready to specify semantics of the DTA schedules in terms of the
predicates introduced above. First, we should define a mapping of the DTA terms into
our semantic domain. We assume an identity mapping function between Node sort of
DTA signature and wireless nodes. We also assume that any DTA term X~Y will map
in elementary transmission X~Y. DTA terms comp(S1,52), where comp denotes one of
the DTA operations o, ¢, or a will map in the complex transmission that includes all
elementary transmissions et; € subs(comp(S1,52)). We will represent a data transmis-
sion as a list of its elementary transmissions [et,, ..., et,]. The mapping is defined via
the following map predicate:

map(X ~ Y, [X ~ Y)).

map(comp(S1,S2), Result) : —
map(S1, MS1), map(S2, MS2),
append(MS1,MS2, Result).

The first map rule specifies that any elementary transmission X~Y schedule is mapped
to an actual data transmission represented as a list [X~Y] whose only member is the
given elementary transmission. The second rule applies the map predicate recursively
to the components of a complex schedule and generates the resulting complex trans-
mission as a list of elementary transmissions appending the results of the component
mappings. Predicate append(L1,L2,R) is true if list R is a concatenation of the lists L/
and L2.

Example 2. Consider the DTA schedule inferred in Example 1: a(n4 ~ n2, o(n5~n3,
n3~nl)). Using the map predicate it will be mapped in the following list of elementary
transmissions: [n4d~n2, n5~n3, n3~nl].
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The following valid predicate specifies semantics for each of the DTA operations:

valid(X ~ Y) : —wirelessNode(X), wirelessNode(Y),

reachable(X,Y).

valid(o(S1,S82)) : —valid(S1), valid(S2),
map(S1,MS1), map(S2, MS2),
strict_precede(MS1, MS2).

valid(c(S1,82)) : —valid(S1), valid(S2),
map(S1,MS1), map(S2, MS2),
precede(MS1, MS2).

valid(a(S1,S82)) : —valid(S1), valid(S2),
map(S1,MS1), map(S2, MS2),
no_conflict(MS1,MS?2).

The definition of the valid predicate consists of four rules with one rule per DTA
operation. Elementary transmission X~Y is valid if the participating wireless nodes X and
Y are reachable from each other, i.e., X and Y are in each other’s transmission ranges.
Strict order o(S1,52) is valid if both S/ and S2 are valid schedules, S/ is executed before
S2 (imposed by strict_precede predicate). The validity of ¢(S1,52) and a($1,52) is defined
using precede and no_conflict predicates.

Using the valid predicate we can define a DTA semantic entailment, or logical
implication relation:

Definition 2 (DTA semantic implication). DTA term ¢ is semantically implied by a
set of DTA schedules S (denoted S = 1) if ¢ is valid whenever all t; € § are valid.

6. Soundness, Completeness and Collisionless of DTA Scheduling

6.1. Soundness

Lemma 1 (can_collide commutativity). can_collide(X,Y) = can_collide(Y,X).
Proof. The proof follows from the definition of can_collide predicate.[]

Theorem 1 (DTA Soundness). For any set of DTA schedules S and a DTA schedule t, if
St tthen S t.

Proof. The soundness of rules 1 and 2 follows from the definition of strict_precede
predicate. The soundness of rule 3 follows from the definition of precede predicate.
Soundness of rule 4 follows from the commutativity of can_collide predicate (Lemma 1).

Sub-schedule order. First we prove the left sub-schedule order. Consider two valid
DTA schedules X and S and assume that there is a sub-schedule S; € subs(S) such that
valid(o(X,S;)). This implies that there are elementary transmissions etl, et2, and
mappings map(S; MS;) such that member(et2,MS;) and valid(o(etl,et2)). Meanwhile,
S;esubs(S) also implies member(et2,MS), where map(S, MS). Then, from the defini-
tion of strict_precede we conclude valid(o(X,S)). The proof of right sub-schedule
order is conducted in the same way.
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Sub-schedule choice and Sub-schedule overlap. The structure of the proof has the
same schema as the proof of sub-schedule orders. The proof is based on the definitions
of the precede and no_conflict predicates.

6.2. Completeness

Generally speaking, the DTA inference rules are not complete, i.e., we cannot prove that
for any set of DTA schedules S and a DTA schedule ¢, if S‘: t then St ¢. As an example
consider two valid elementary transmissions et/ and ef2 such that not precede(etl,et2),
and not can_collide(etl,et2). Then {etl,et2} }: a(etl,et2). However, we cannot infer
a(etl,et2) from {etl,et2} using the DTA rules. The reason is that DTA does not utilize
the low-level semantics of transmission ranges and collision domains. Meanwhile, we can
prove that the DTA rules are complete with respect to a given query: if the initial DTA
specification reflects basic environment and query constraints, then any valid DTA
schedule is also DTA inferable. Below we formally introduce the concept of the query
completeness (g-completeness) and prove g-completeness of the DTA inference rules.

Definition 3 (query tree). For a given query Q we define a query tree Ty as a set of all
elementary transmissions required to evaluate Q.

Example 3. Consider query Q from Fig. 2. Then Ty = {n4~n2, n2~nl, n5~n3,
n3~nl}.

Definition 4 (g-complete set). A set of DTA schedules Sy, is query complete (g-complete)
with respect to a query Q if it includes all elementary transmissions of the query tree T,
and all valid schedules c(eti,etj) and a(eti,etj) over the elementary transmissions of Tj,.
More formally
So = ToU
{c(eti, etf)leti, etj € Tp"valid(a(eti, etj)) }U
{al(eti, etj)|eti, etj € Tp valid(c(eti, et))}

Example 4. For query Q from Fig. 2
So = {nd ~n2,n2 ~ nl,n5 ~n3,n3 ~nl,

c¢(n2 ~nl,n3 ~ nl),
a(nd ~ n2,n5 ~ n3), a(nd ~ n2,n3 ~ al),
a(n5 ~n3,n2 ~nl)}

Theorem 2 (DTA g-completeness). Forany query Q and a DTA schedule t, if SQ}: tthen SQ+ t.

Proof. Assume that S, }: t, but not Sy }- t. If ¢ is the elementary transmission or
comp(S1,52), where comp is either ¢ or a and S/, S2 are elementary transmissions, then
by definition of Sy: Sp }: t=1¢c Sp=SpttIftisao(S1,52), where S1 and S2 are
elementary transmissions, then ¢ can be inferred from S, by finite number of applications
of the DTA rules 1 (order introduction) and 2 (order transitivity). If t is a 0o(S1,52) and at
least one of S/ or S2 is not an elementary transmission, then # can be inferred from S, by
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finite number of applications of the DTA sub-schedule rules 2, 5, and 6. If t is a
comp(S1,52), where comp is either ¢ or @ and at least one of S1 or S2 is not an elementary
transmission, then t can be inferred from S, by finite number of applications of the DTA
rules 3, 4, 7, and 8. Thus, S, }: t implies Sy } t

6.3. Derived DTA Rules, Executable Schedules and Deadlocks

In order to increase the performance of our algebraic optimization we use the basic DTA
rules to infer a set of derived rules. Figure 6 shows some examples of the derived DTA
rules. The derived rules are utilized by our randomized optimizer as valid moves between
DTA schedules [12, 29, 31].

It is interesting to note that the expected order associativity o(o(X,Y)Z) —
o(X,0(Y,Z)) and the choice associativity c(c(X,Y),Z) < c(X,c(Y,Z)) are not sound infer-
ence rules. Consider a query tree in Fig. 7. The following DTA schedule is valid:
o(o(a(nl~n5,nd~n8), n9~nll), nl0~nl2). However, the schedule o(a(nl~n5,n4~n8),o(
n9~nll, n10~nl2)) is not valid, since valid(o( n9~nl 1, nl0~nli2)) is not true. Similarly,
c(c(n7~nl10,n8~nl0), n6~n9) is valid, while ¢(n7~n10, c(n8~nl0, n6~n9)) is not valid.
With the tree topology of Fig. 7 transmissions n8~nl0 and n6~n9 can be executed
concurrently, i.e., valid(a(n8~nl0, n6~n9)) holds.

It should be noted that while being invalid the above schedules o(n9~nl1, n10~nli2)
and ¢(n8~nl0, n6~n9) are still executable. Indeed, the fact that query semantics do not
impose a strict order on the transmissions n9~nl1 and nl0~ni2 does not mean that we
cannot execute them in the order o(n9~nll, n10~nl2). The same is true about n8~nl0
and n6~n9. An interesting question is if it is possible to generate a valid DTA schedule

Overlap associativity
Left A/O exchange
Right A/O exchange
A/C exchange

a(a(X,Y),Z) = a(X,a(Y,Z))
a(X,0(Y,Z)) = o(a(X,Y),Z)
a(X,0(Z,Y)) = o(Z, a(X,Y))
a(X,c(Y,2)) = c(a(X,Y),Z2)

Left O/A exchange o(a(X,Y),Z), a(X,Z) — a(X,0(Y,Z))
Right O/A Exchange o(Z, a(X,Y), a(X,Z) — a(X,0(Z,Y))
C/A exchange ca(X,Y),2), a(X,Z) - a(X,c(Y,Z))

Figure 6. Derived DTA Inference Rules.

nl3
™

nll nl2

! 1

n9 nl0

PN PN

n5 né n7 n8
! [ 1
nl n2 n3 n4

Figure 7. Invalidation of order and choice associativity.
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which would not be executable. This question has a positive answer. An example of a
valid non-executable schedule is a deadlocked schedule.

Definition 5 (deadlock-potential schedules). DTA schedules S/ and S2 are deadlock-
potential if both o(S1,52) and 0(S2,51) are valid.

For example, in the query tree in Fig. 7 schedules a(nl~n5, n10~nli2) and a(n4~né,
n9~nll) are deadlock-potential. This is implied by the fact that both o(nl~n5, n9~nll)
and o(nl~n5, n9~nll) are valid. Then, a strict order of the deadlock-potential schedules
will make a valid non-executable deadlocked schedule. The following is an example of a
valid deadlocked schedule:

o(a(nl ~ n5,n10 ~ n112),a(n4 ~ n8,n9 ~ nll)).

In order to capture the deadlock semantics we extend the DTA semantic definition
from Section 5 with deadlock(T1,T2) predicate stating that DTA transmissions 7/ and 72
are deadlocked. The following rule provides a formal definition of the deadlock
predicate:

deadlock(T1,T2) : —strict_precede(T1,T2),
strict_precede(T2,T1).

Note, that negation of the deadlock predicate in the body of the valid(o(S1,52)) rule
(Section 5) would invalidate the deadlocked schedules. This, however, would add more
complexity to DTA inference rules in order to maintain DTA soundness and complete-
ness. In order to preserve reasonable complexity of the query optimization we allow DTA
rules to generate deadlocked schedules. Instead of making DTA deadlock-free we
implemented efficient deadlock handling strategies with further consideration of which
is out of scope of this paper.

6.4. Collision-free DTA Schedules

Finally, we prove a key property of DTA: DTA inference rules generate only collision-
free schedules.

Definition 6 (collision-free schedule). A DTA schedule S 1is -collision-free if
VS, S; esubs(S),Si # Sj, map(Si, Ti), map(Sj, Tj)impliesnotcollide(Ti, Tj).

Theorem 3 (valid schedule is collision free). For any DTA schedule ¢, if valid(t) then ¢ is
collision free.

Proof. If t is an elementary transmission then the fact that 7 is collision-free follows
from Definition 5. Indeed, in this case VS;,S; €subs(t)S; = S; = t. Suppose t is a com-
posed schedule comp(S1,52), where comp is either o or c. Since ¢ is valid, then there are
mappings map(S1,T1) and map(S2,T2) such that time_overlap(T1,T2) is false (this
follows from the definition of strict_procede and procede predicates). Thus, collide
(T1,72) is false, which implies that t is collision-free. Now assume that t is a composed
schedule a(S1,52). Since t is valid, then there are mappings map(S1,T1) and map(S2,72)
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such that can_collide(T1,T2) is false (this follows from the definition of no_conflict
predicates). Thus, collide(T1,T2) is false, which implies that t is collision-free.[]

Corollary 1 (DTA-inferable schedule is collision free). For any set of valid DTA sche-
dules S and a DTA schedule ¢, if 51» t then ¢ is collision free.

Proof. The proof follows from soundness of DTA (Theorem 1) and Theorem 3.[]

7. Implementation of the DTA-based Optimizer

We implemented a cost-based multi-objective query optimizer that identifies DTA
schedules with an acceptable query response time and overall energy consumption. In
general, a multi-objective optimization (MOP) aims at minimizing values of several
objective functions f1,...fn under a given set of constraints. In most cases it is unlikely
that different objectives would be optimized by the same parameter choice. Informally, an
objective vector is Pareto optimal [17] if all other feasible vectors in the objective space
have a higher value for at least one of the objective functions, or else have the same value
for all objectives. For example, if the following set includes feasible solutions for bi-
objective MOP: {(5,1), (2,2), (2,3), (1,5)}, then the Pareto optimal set (also called Pareto
front) is {(5,1), (2,2), (1,5)}.

Among all Pareto optimal solutions, our optimizer chooses one using an application-
dependent utility function. The optimizer evaluates time and energy gains/losses, and
makes a preference considering the relative importance of time and energy in the context
of a specific query. Figure 8 presents the algorithm that our optimizer uses to compute
time/energy utility function. The algorithm inputs two Pareto optimal objective vectors
(T1,E1) and (T2,E2), where T1, T2 are response times and E1,E2 — consumed energy; in
addition the optimizer considers two factors: time factor TF and energy factor EF ranging
from O to 1. The higher the TF (EF), the more importance the optimizer gives to the time
(energy) savings. Consider the Pareto set from a previous subsection: {(5,1), (2,2),
(1,5)}.Then UF((5,1),(2,2),0.8,0.2) will return (5,1), while UF((5,1),(2,2),0.2,0.8) results
in (2,2). In general UF impose an order on the Pareto set for a given setting of TF and EF.
For example, with TF = 0.2 and EF = 0.8 the order would be {(2,2),(1,5),(5,1)}.

DTA scheduling may be expensive due to its combinatorial nature. The number of
alternative schedules grows exponentially with the number of sensor nodes and elemen-
tary transmissions participating in a query. In general, for a query tree with n (n > 1)
elementary transmissions the total number of all possible complete DTA schedules

UF ((T1,E1),(T2,E2),TF.EF)
BEGIN
DT=(T1-T2)/(T1+T2); DE=(E1-E2)/(E1+E2);
DT1 = abs(DT * TF); DE1 = abs(DE * EF);
if (DT < 0 and DT1>DEI)
then return (T2,E2),
else if (DE <0 and DE1>DT1),
then return (T2,E2),
else return (T1,E1).
END

Figure 8. Calculating Time/Energy utility function.
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involving those transmissions will be equal to a number of permutations of n transmis-
sions without repetitions multiplied by a number of total variations of three DTA
operations with repetitions of length (n—1):

Num_of DTA _schedules(n) = n! x 3"~

For example of the two elementary transmissions ¢t/ and #2 we can generate
2! x 3% = 6 schedules, namely: o(11,12), o(12,t1), c(t1,12), c(12,t1), a(t1,t2), a(12,t1).

In order to cope with the expected scheduling complexity our optimizer utilizes
randomized algorithms [12] to generate Pareto fronts for larger query trees.
Randomized algorithms search for a solution of a combinatorial problem in a large
space of all possible solutions. Each solution is associated with application-specific cost.
Randomized algorithms are searching for a solution with the minimal cost performing
random walks in the solution space via series of valid moves. In our case possible solutions
are DTA schedules. Specific algorithms are different with respect to moving strategies and
stopping conditions. We explore the performance of each of them for the purpose of
scalable DTA scheduling. Figure 9 illustrates how DTA scheduling utilizes Iterative
Improvement algorithm. Variables and parameters of the algorithm are explained in
Table 1. Initially the IT algorithm assigns a serial schedule Sser that performs all elementary

Procedure T1() {
minS = Sser;
while not (stoping_condition) do {
S =random DTA schedule;
while ( local_minimum(S) ) do {
S’ =random DTA schedule in neighbors(S);
if cost(S’) < cost(S) then S=S’;
}
if cost(S) < cost(minS) then minS=S;
}
return (minS);

}

Figure 9. II Optimization Algorithm for DTA scheduling.

Table 1

Explanation of Variables and Parameters of II Algorithm
minS Current DTA schedule with minimal cost
Sser Random serial DTA schedule
S Random initial DTA schedule
neighbors(S) Set of schedules that can be generated

from S via one valid move

stopping_condition Number of considered initial schedules
local_minimum(S) Number of neighbors of S to be tested, of which

none has lower cost than S. If the test id successful,
S is considered to be a local minimum
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transmissions sequentially as an optimal schedule minS. Then it tries to improve this serial
baseline increasing the concurrency benefit of the initial schedule. Concurrency benefit is a
part of the time cost that can be “hidden” by scheduling some transmissions concurrently.
A more accurate definition of the concurrency benefit is presented in section 8, where we
provide an experimental evaluation of our optimizer. Valid moves between DTA schedules
correspond to valid DTA transformations introduced in Sections 4 and 6.

The optimizer utilizes a cost model that associates execution time and energy
consumption with each DTA schedule. For example, the execution time of elementary
transmission ni~nj consists of local processing times Tp at nodes ni and #j plus the time
Ttx required for transmitting data from #ni to nj. The execution time of a strict order of
schedules A and B is the sum of the execution times of A and B. For concurrent schedules
A and B, the execution time would be the maximum of the execution times of A and B.
The energy model is for elementary transmission and is based on a path-loss equation.
The energy cost model for elementary transmission is based on a path-loss equation that
approximates the power loss with distance [28]. For complex schedules the energy cost is
a sum of energy costs for each elementary transmission involved in that schedule. More
details on the optimizer cost modeling are provided in [28, 29].

In order to support DTA query scheduling the optimizer should rely upon highly
available and accurate query statistics and other relevant network meta-data including
current network topology, processing and transmission delays, collision domains, and
current distribution of pre-aggregated and materialized data. Part of such query statistics
and network meta-data should be reflected in an initial DTA specification and it should
be stored in a highly available distributed repository with varying freshness, precision,
and availability requirements. Design and implementation of such a repository together
with an appropriate signaling system is a considerable challenge. Currently our optimizer
utilizes a centralized scheme for the implementation of such a meta-data repository,
where all the statistics metadata is maintained in a central node accessible through a
base station. In a centralized scheme, the root node is a base station (BS) with a large
broadcast area and unlimited power supply since it is presumably a fixed node and
located in an opportunistic location. The BS maintains the statistics on processing and
transmission delays, the network topology, and collision domains. The synchronization of
the participating nodes can be easily achieved, since every node listens to the same BS.
The BS performs query scheduling using DTA and broadcasts the resulting schedule to
every node in the network. For this purpose, out-of-band signaling or periodic beacons
can be employed.

We also explore more distributed schema, where each wireless node maintains
statistics meta-data about itself. A query can be submitted at a root node of a routing
tree and then propagates down the tree to every node. After receiving a query, each child
node in the lowest level provides its statistics, i.e., processing and transmission times
(delays) to their parent. Then, the parent node performs query scheduling for each child
node using DTA in order to minimize collisions and the active time for the parent’s
receiver. The parent node returns this schedule to its children. After scheduling its
children, the parent node estimates and sends its own processing and transmission
delay information to an upper level parent node. Then the same process propagates up
the routing tree until it reaches the root node. The above process can vary depending on
actual query and network statistics. For example, the transmission time of the latest node
can be fixed and the transmissions for the remaining nodes should be scheduled ahead of
the latest node. Under a different scheme, every node in the sensor network is associated
with its own statistics metadata, and some of the nodes can additionally host statistics
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meta-data (perhaps more summarized) about a subnet of devices in their local meta-data
repository.

An algebraic optimization as explained above assumes that the sensor nodes are
stationary. Meanwhile, we can also apply the DTA-optimizer to improve the performance
of Mobile Sensor Networks (MSNs). In MSNs wireless sensor devices can be attached to
mobile devices such as mobile robots. Mobile sensors platform can be deployed in
conjunction with stationary sensor nodes to acquire and process data for surveillance
and tracking, environmental monitoring for highly sensitive areas, or execute search and
rescue operations. Resource constraints of MSNs make it difficult to utilize them for
advanced environmental monitoring that requires data intensive collaboration between
the nodes (e.g., exchange of multimedia data streams). In general, the time/energy trade-
offs involve energy and time gains/losses associated with specific layouts of the nodes.
Both relocation and changing the transmission range of sensor nodes could result in
changing the number of potential collision-free concurrent transmissions. Those factors
can also result in changing the number of hops and intermediate transmission nodes
involved in query execution. This, however, brings both benefits and penalties. If the
filtering factor of the intermediate node is low (i.e., it just retransmits the data) then
introducing it we expect to have some time and energy loss due to extra hop. From the
other side the intermediate node does reduce the data transmission ranges, which results
in saving some energy. If the intermediate node does a lot of filtering, the benefit includes
spending less energy in order to transmit less data.

An algebraic query optimization based on DTA can be used to generate query routing
trees to maximize collisionless concurrent data transmissions taking into account inter-
mediate hops and filtering factors of mobile facilitators. Figure 10 shows a query tree
topology with four previously positioned nodes s0, s1, s2, s3 and three different positions
of a mobile facilitator m. The facilitators consume extra energy and introduce some extra
processing delay. However, by reducing the transmission range and data stream sizes,
they are also capable of reducing the overall query time and energy consumption. Note,
how the re-positioning of the facilitator is reflected in the initial DTA specifications is1,
is2 and is3.

Out of the many possible query routing trees and transmission schedules the
optimizer should select an option with an acceptable query response time and overall
energy consumption. Further details on the implementation of our optimizer are in
[28, 29].

is2:

isl: c(s1~s0,m~s0) is3:
c(s1~s0,s2~s0) c(m~s0,53~s0) c(s1~s0, m~s0)
sl ¢(s2~s0,83~s0) sl o o(s2~m,m~s0) sl 0(s2~m, m~s0)
Q ® a(s2~m,s1~s0) Q 0{s3~m, m~s0)
m a(s2~m, s1~s0)
S0 40 a(s3~m, s1~s0)
O\ SO A=~ [O) s0. @
o 82 m %2 \ m_o
° s2
o
39 s3 o/
s3

Figure 10. Impact of mobility on DTA specification.
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8. Experimental Evaluation of the DTA-based Optimizer

First we report on the behavior of the DTA scheduler for a medium complexity query tree
involving ten sensor nodes with conflicting collision domains. Figure 11 represents some
of our preliminary experimental graphs characterizing the performance of II algorithm.
Processing and transmission costs were generated randomly using Gaussian distributions.
As a baseline, we consider a serial scheduling strategy that performs elementary trans-
missions sequentially. Figure 11 reports on time costs and concurrency benefits of
selected schedules. Recall from section 7 that the concurrency benefit is a part of the
time cost that the DTA scheduler is able to ‘“hide” scheduling some transmissions
concurrently. The benefit is defined recursively for each of the DTA operations. The
benefit of a(X,Y) is equal to minimum of costs cost(X) and cost(Y). For the rest of the
DTA operations the benefit is equal to zero. Thus, any serial schedule has a zero benefit.
In addition to costs and benefits of serial and winner schedules we also report a value of
gain received from the local minimum phase of the algorithm. We observe that the
performance of the II algorithm consistently improves as we increase the stopping
condition and the local minimum conditions.

Figure 12 reports on Pareto fronts explored by the optimizer for a two-hop query
tree of 8 nodes with some data aggregation/filtering at intermediate nodes. For example,
filtering factor 0.2 means that 20% of data delivered to an intermediate node will be
forwarded to the base station. A major observation here is an increase of variability in
both time and energy consumption with a decrease of the facilitator filtering factor. For
the filtering factor of 0.2 the energy varies between 66000 mJ and 80000 mJ, while for
the filtering factor of 0.8 the energy range is 78000-81000 mJ. The time ranges are
46-76 sec and 64-95 sec correspondingly. The optimizer should explore related time/
energy tradeoffs maximizing benefits and avoiding risks of selecting bad schedules.

Figure 13 shows the optimization choices for one of the generated Pareto fronts using
the utility function described in Fig. 8. The choices are made for different time and
energy factors. We observe a consistent optimizer behavior in making preferences with
respect to the time and energy factors. We observed similar performance trends with
other query tree topologies considered in our experiment.

Figure 14 reports on the packet success ratio representing the percentage of trans-
mitted packets that reach a destination (sink) node successfully. Recall, that it was a low
packet success ratio that caused network collapses for higher traffic loads from critical
monitoring applications, so it is important to observe how DTA helps to maintain it
compared to the typical IEEE 802.15.4 that uses carrier sense multiple access with
collision avoidance (CSMA-CA) [33]. We experimented with medium and large star-
like networks using CMU wireless and mobility extensions to ns-2 simulator [20]. The
medium network consists of 25 nodes positioned within a 150 x 150 meters flat area
while the medium network includes 73 nodes. All nodes (except the central sink node)
deliver packets to the sink in multi-hop fashion. We used 250 Kbps channel data rate with
the sensor transmission range of 15 meters.

Figure 14 (left graph) shows the simulation results for a medium network. We
observe that at lower loads, the packet success ratio of DTA is around 98%. It decreases
to 80% as the data generation rate increases to 40 packets/second. This slight degradation
is caused by an insufficient queue buffer size of the sensor nodes. Meanwhile, even at
very low traffic loads (0.5 and 1 packet/sec) CSMA delivers only 70% of data to the sink
node. When the load increases, the CSMA network becomes overloaded with collided or
lost packets and the packet success ratio drops to 30%.
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Figure 12. Actual Pareto fronts explored by optimizer.

80000 -(1,0)
- (0.8,0.2)
| ~(0.5,0.5)
g o000 (0.2.0.8)
§ 70000 — (01
4]
W 65000
60000 -

50 60 70 80
TCost (sec)

Figure 13. Effect of TF and EF on utility-based tree selection.
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Figure 14. Packet success ratio for medium and large networks.

The benefit of DTA becomes even more obvious for a large network (Fig. 14, right
graph). At lower rates, the DTA packet success ratio is around 95%. The ratio decreases
to 40% as the data generation rate increases to 27 packets/second. This is because the
traffic load exceeds the channel data rate (250 Kbps). Meanwhile, the packet success ratio
with CSMA drops to less then 20% almost immediately.
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9. Conclusion

A major contribution of this paper is a formal discussion of algebraic query scheduling in
sensor networks. Such scheduling is one of the key elements for improving the perfor-
mance of queries with respect to both the response time and the energy consumption.
Specifically, we introduced and formally characterized a Data Transmission Algebra
(DTA) that utilizes the information about how the lower network layers operate while
processing queries in sensor databases. Our DTA uniformly captures the constraints of
data transmissions and provides a background for novel cross-layer query optimization.
Using the DTA, an optimizer can perform collision-aware query scheduling that avoids
simultaneous interfering transmission. We considered DTA soundness and completeness
and proved that DTA inference rules generate only collision-free transmission schedules.
We described and evaluated a DTA-based query optimizer that performs collision-aware
query scheduling.
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